Integration of data technology for analyzing university dropout

Dropout, defined as the abandonment of a career before obtaining the corresponding degree, considering a significant time period to rule out the possibility of return. Higher education students´ dropout generates several issues that affect students and universities. The results obtained from the dat...

Full description

Autores:
amelec, viloria
Garcia Padilla, Jholman
Vargas Mercado, Carlos
Hernández Palma, Hugo
ORELLANO LLINAS, NATALY
ARRAZOLA DAVID, MONICA JUDITH
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5878
Acceso en línea:
https://hdl.handle.net/11323/5878
https://repositorio.cuc.edu.co/
Palabra clave:
University retention
University dropout
Data mining
Education
Engineering
Big Data
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_99511d812abb369b178a3c933c42cc54
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5878
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Integration of data technology for analyzing university dropout
title Integration of data technology for analyzing university dropout
spellingShingle Integration of data technology for analyzing university dropout
University retention
University dropout
Data mining
Education
Engineering
Big Data
title_short Integration of data technology for analyzing university dropout
title_full Integration of data technology for analyzing university dropout
title_fullStr Integration of data technology for analyzing university dropout
title_full_unstemmed Integration of data technology for analyzing university dropout
title_sort Integration of data technology for analyzing university dropout
dc.creator.fl_str_mv amelec, viloria
Garcia Padilla, Jholman
Vargas Mercado, Carlos
Hernández Palma, Hugo
ORELLANO LLINAS, NATALY
ARRAZOLA DAVID, MONICA JUDITH
dc.contributor.author.spa.fl_str_mv amelec, viloria
Garcia Padilla, Jholman
Vargas Mercado, Carlos
Hernández Palma, Hugo
ORELLANO LLINAS, NATALY
ARRAZOLA DAVID, MONICA JUDITH
dc.subject.spa.fl_str_mv University retention
University dropout
Data mining
Education
Engineering
Big Data
topic University retention
University dropout
Data mining
Education
Engineering
Big Data
description Dropout, defined as the abandonment of a career before obtaining the corresponding degree, considering a significant time period to rule out the possibility of return. Higher education students´ dropout generates several issues that affect students and universities. The results obtained from the data provided by the Engineering departments of the University of Mumbai, in India, determine that the variables that best explain a student's dropout are the socioeconomic factors and the income score provided by the University Admission Test (UAT). According to the decision tree technique, it is concluded that the retention is 78.3%. The quality of the classifiers allows to ensure that their predictions are correct, with statistical levels of ROC curve are 76%, 75%, and 83% successful for Bayesian network classifiers, decision tree, and neural network respectively.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-08-19
dc.date.accessioned.none.fl_str_mv 2020-01-20T15:09:59Z
dc.date.available.none.fl_str_mv 2020-01-20T15:09:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0000-2010
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5878
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0000-2010
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5878
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1016/j.procs.2019.08.079
dc.relation.references.spa.fl_str_mv [1] Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017).
[2] Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009).
[3] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).
[4] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943,1-12 (2018).
[5] Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística, vol. 9(1), 93-106 (2016).
[6] Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing Data Warehouses: From Business Requirement Analysis to Multidimensional Modeling. In Proceedings of the 1st Int. Workshop on Requirements Engineering for Business Need and IT Alignment. Paris, France (2005).
[7] Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).
[8] Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).
[9] Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996).
[10] Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. European Journal of Operational Research 237(1), 1095-104 (2014).
[11] Sekmen, F., Kurkcu, M.: An Early Warning System for Turkey: The Forecasting of Economic Crisis by Using the Artificial Neural Networks. Asian Economic and Financial Review 4(1), 529-43 (2014).
[12] Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33 (1), 550-55 (2011).
[13] Mombeini, H., Yazdani-Chamzini, A.: Modelling Gold Price via Artificial Neural Network. Journal of Economics, Business and Management 3 (7), 699-703 (2015).
[14] Kulkarni, S., Haidar, I.: Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Future Prices. International Journal of Computer Science and Information Security 2 (1), 81-89 (2009).
[15] Bontempi, G., Ben Taieb, S., Borgne, Y. A.: Machine learning strategies for time series forecasting. In Lecture Notes in Business Information Processing, ed M.-A. Aufaure., and E. Zimányi, Heidelberg: Springer 138 (1), 70-73 (2013).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ac6e5445-57a0-4155-ad27-42601403759a/download
https://repositorio.cuc.edu.co/bitstreams/d0db1051-6b36-4e53-852e-3dc2015e99b5/download
https://repositorio.cuc.edu.co/bitstreams/92dbcbd9-0045-4cac-8328-52fc6ecb58b8/download
https://repositorio.cuc.edu.co/bitstreams/b3e19ea4-643b-4474-873b-25bbf7b3d5da/download
https://repositorio.cuc.edu.co/bitstreams/909d4528-3bc9-4418-b137-3e3575eae6be/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
8639e49568d232fce39233cf411e01c8
a6fb85d5bca0610273cd7ce676cbbfd1
d6c3d73146552d8fd2879cfadc570e11
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760838460047360
spelling amelec, viloriaGarcia Padilla, JholmanVargas Mercado, CarlosHernández Palma, HugoORELLANO LLINAS, NATALYARRAZOLA DAVID, MONICA JUDITH2020-01-20T15:09:59Z2020-01-20T15:09:59Z2019-08-190000-2010https://hdl.handle.net/11323/5878Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Dropout, defined as the abandonment of a career before obtaining the corresponding degree, considering a significant time period to rule out the possibility of return. Higher education students´ dropout generates several issues that affect students and universities. The results obtained from the data provided by the Engineering departments of the University of Mumbai, in India, determine that the variables that best explain a student's dropout are the socioeconomic factors and the income score provided by the University Admission Test (UAT). According to the decision tree technique, it is concluded that the retention is 78.3%. The quality of the classifiers allows to ensure that their predictions are correct, with statistical levels of ROC curve are 76%, 75%, and 83% successful for Bayesian network classifiers, decision tree, and neural network respectively.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Garcia Padilla, JholmanVargas Mercado, Carlos-will be generated-orcid-0000-0002-5436-0568-600Hernández Palma, HugoORELLANO LLINAS, NATALY-will be generated-orcid-0000-0002-5341-6718-600ARRAZOLA DAVID, MONICA JUDITH-will be generated-orcid-0000-0003-0973-8047-600engProcedia Computer Sciencehttps://doi.org/10.1016/j.procs.2019.08.079[1] Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017).[2] Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009).[3] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).[4] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943,1-12 (2018).[5] Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística, vol. 9(1), 93-106 (2016).[6] Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing Data Warehouses: From Business Requirement Analysis to Multidimensional Modeling. In Proceedings of the 1st Int. Workshop on Requirements Engineering for Business Need and IT Alignment. Paris, France (2005).[7] Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).[8] Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).[9] Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996).[10] Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. European Journal of Operational Research 237(1), 1095-104 (2014).[11] Sekmen, F., Kurkcu, M.: An Early Warning System for Turkey: The Forecasting of Economic Crisis by Using the Artificial Neural Networks. Asian Economic and Financial Review 4(1), 529-43 (2014).[12] Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33 (1), 550-55 (2011).[13] Mombeini, H., Yazdani-Chamzini, A.: Modelling Gold Price via Artificial Neural Network. Journal of Economics, Business and Management 3 (7), 699-703 (2015).[14] Kulkarni, S., Haidar, I.: Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Future Prices. International Journal of Computer Science and Information Security 2 (1), 81-89 (2009).[15] Bontempi, G., Ben Taieb, S., Borgne, Y. A.: Machine learning strategies for time series forecasting. In Lecture Notes in Business Information Processing, ed M.-A. Aufaure., and E. Zimányi, Heidelberg: Springer 138 (1), 70-73 (2013).CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2University retentionUniversity dropoutData miningEducationEngineeringBig DataIntegration of data technology for analyzing university dropoutArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ac6e5445-57a0-4155-ad27-42601403759a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d0db1051-6b36-4e53-852e-3dc2015e99b5/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALIntegration of Data Technology for Analyzing University Dropout.pdfIntegration of Data Technology for Analyzing University Dropout.pdfapplication/pdf438102https://repositorio.cuc.edu.co/bitstreams/92dbcbd9-0045-4cac-8328-52fc6ecb58b8/download8639e49568d232fce39233cf411e01c8MD51THUMBNAILIntegration of Data Technology for Analyzing University Dropout.pdf.jpgIntegration of Data Technology for Analyzing University Dropout.pdf.jpgimage/jpeg44091https://repositorio.cuc.edu.co/bitstreams/b3e19ea4-643b-4474-873b-25bbf7b3d5da/downloada6fb85d5bca0610273cd7ce676cbbfd1MD55TEXTIntegration of Data Technology for Analyzing University Dropout.pdf.txtIntegration of Data Technology for Analyzing University Dropout.pdf.txttext/plain23125https://repositorio.cuc.edu.co/bitstreams/909d4528-3bc9-4418-b137-3e3575eae6be/downloadd6c3d73146552d8fd2879cfadc570e11MD5611323/5878oai:repositorio.cuc.edu.co:11323/58782024-09-17 14:08:28.095http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=