Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens
Concrete is one of the most important material for civil construction, given its high applicability. C Compressive strength (fc) is one of the main parameters to evaluate the concrete quality. Concrete of the same mixing volume may vary even with the same materials preparation. Concrete specimens mo...
- Autores:
-
R. Lerner, Lucas
Ott, Maira
Führ, Lucas M.
Ehrenbring, Hinoel Zamis
Pacheco Vera, Fernanda
Tutikian, Bernardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7101
- Acceso en línea:
- https://hdl.handle.net/11323/7101
http://dx.doi.org/10.7764/rdlc.19.1.159-169
https://repositorio.cuc.edu.co/
- Palabra clave:
- Concrete
Casting
Surface treatment
Compressive strength
Hormigón
Fundición
Tratamiento de superficies
Fuerza compresiva
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_993f2548594bc73593c407c358df30c1 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7101 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
dc.title.translated.spa.fl_str_mv |
Influencia del proceso de moldeo y diferentes métodos de regularización de superficies en la resistencia a la compresión de probetas de hormigón |
title |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
spellingShingle |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens Concrete Casting Surface treatment Compressive strength Hormigón Fundición Tratamiento de superficies Fuerza compresiva |
title_short |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
title_full |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
title_fullStr |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
title_full_unstemmed |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
title_sort |
Influence of the molding process and different surface regularization methods on the compressive strength of concrete specimens |
dc.creator.fl_str_mv |
R. Lerner, Lucas Ott, Maira Führ, Lucas M. Ehrenbring, Hinoel Zamis Pacheco Vera, Fernanda Tutikian, Bernardo |
dc.contributor.author.spa.fl_str_mv |
R. Lerner, Lucas Ott, Maira Führ, Lucas M. Ehrenbring, Hinoel Zamis Pacheco Vera, Fernanda Tutikian, Bernardo |
dc.subject.spa.fl_str_mv |
Concrete Casting Surface treatment Compressive strength Hormigón Fundición Tratamiento de superficies Fuerza compresiva |
topic |
Concrete Casting Surface treatment Compressive strength Hormigón Fundición Tratamiento de superficies Fuerza compresiva |
description |
Concrete is one of the most important material for civil construction, given its high applicability. C Compressive strength (fc) is one of the main parameters to evaluate the concrete quality. Concrete of the same mixing volume may vary even with the same materials preparation. Concrete specimens molding, and its surface regularization contribute to these variations that are often hard to measure. Therefore, this paper aims to determine the variations in compressive strength of concrete, simulating different processes for casting, initial curing and surface treatment. In stage 1, the specimens were subjected to five surface treatment types, resulting in variations of 30% for concrete fc, whereas grinding specimens reached the highest 28-day compressive strength, so they were carried over to the next stage. In stage 2, specimens were produced as per ABNT NBR 5738 (2015) and with induced errors in casting and initial curing. The specimen produced according to the standard achieved the second-best result, whose 28-day fc was3% lower than that of the similar method, despite leaving the specimen uncovered for the first 24 hours after casting. Specimens produced in metal cylinder form works shows higher results than those produced in polyvinyl chloride molds (PVC). |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-15T15:45:58Z |
dc.date.available.none.fl_str_mv |
2020-09-15T15:45:58Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0718-915X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7101 |
dc.identifier.doi.spa.fl_str_mv |
http://dx.doi.org/10.7764/rdlc.19.1.159-169 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0718-915X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7101 http://dx.doi.org/10.7764/rdlc.19.1.159-169 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
ABNT NBR 5738. (2015). Concreto - Procedimento para moldagem e cura de corpos de prova. Associação Brasileira de Normas Técnicas (ABNT) ABNT NBR 5739. (2018). Concreto - Ensaios de compressão de corpos de prova cilíndricos.. Associação Brasileira de Normas Técnicas (ABNT). ABNT NBR 8802. (2019). Concreto endurecido - Determinação da velocidade de propagação de onda ultrassônica. Associação Brasileira de Normas Técnicas (ABNT). ABNT NBR 8953. Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência. Associação Brasileira de Normas Técnicas (ABNT). [ Links ] Araújo, S. da S., Guimarães, G. N., &Geyer, A. L. B. (2016). Influência do tipo de concreto, da dimensão do corpo de prova e do tipo de laboratório na determinação da resistência à compressão do concreto. Revista Engenharia Civil Universidade do Minho, 52, 5-22. Retrieved from: <http://www.civil.uminho.pt/revista/artigos/n52/pag.05-22.pdf>. 2016. [ Links ] ASTM C1231/C1231M (2010). Standard practice for use of unbonded caps in determination of compressive strength of hardened concrete cylinders. American Society for Testing and Materials (ASTM). [ Links ] ASTM C597. (2016). Standard test method for pulse velocity through concrete. American Society for Testing and Materials (ASTM). [ Links ] Bezerra, A. C. da S.,Aguilar, M. T. P., & Cetlin, P. R. (2008). Influência do capeamento nos resultados do ensaio de resistência à compressão em concretos. In: 50 o Congresso Brasileiro do Concreto. Salvador, Bahia/Brazil: IBRACON. [ Links ] Bezerra, U. T., Alves, S. M. S., Barbosa, N. P., & Torres, S. M. (2016). Hourglass-shaped specimen: compressive strength of concrete and mortar (numerical and experimental analyses). Revista IBRACON de Estruturas e Materiais, 9(4), 510-524. doi: doi.org/10.1590/S1983-41952016000400003 [ Links ] Boesing, R., Philippsen, R. A., & da Luz, C. A. (2010). Influência do material de capeamento na resistência à compressão dos corpos de prova de concreto e argamassas: comparação entre enxofre, pasta de cimento e pasta de gesso.In: 13 o Encontro Nacional de Tecnologia do Ambiente Construído. Canela, Rio Grande do Sul/Brazil: ANTAC. [ Links ] Chies, J. A., Rohden, A. B.,&Filho, L. C. P. S. (2014). Tratamentos superficiais em corpos de prova de concreto submetidos à compressão. Revista IBRACON de Estruturas e Materiais, 7(5), 775-800. doi: https://doi.org/10.1590/S1983-41952014000500004. [ Links ] Couto, D., Carvalho, M., Cintra, A., & Helene, P. (2015). Concrete structures: Contribution of the safety assessment of existing structures. Revista IBRACON de Estruturas e Materiais, 8(3), 365-389. doi: https://doi.org/10.1590/S1983-41952015000300007 [ Links ] Ehrenbring, H. Z., Quinino, U., Oliveira, L.S.,& Tutikian, B. F. (2019). Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct. Concr ., 20, 1064-1075. doi:10.1002/suco.201800228. [ Links ] Fernandes, B., Gil, A.M., Bolina, F.L.,& Tutikian, B.F. (2018). Thermal damage evaluation of full scale concrete columns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín), 85, 123-128. [ Links ] Gil, A., Pacheco, F. Christ, R. Bolina, F.L . Khayat, K. H., &Tutikian, B.F . (2017). Comparative study of concrete panels’ fire resistance. Aci. Mater. J ., 114, 755-762. [ Links ] Gupta, S.L. (2018). Comparison of Non-Destructive and Destructive Testing on Concrete : A Review. Trends in Civil Engineering and its Architecture, 3(1), 351-357. doi: http://dx.doi.org/10.32474/TCEIA.2018.03.000154 [ Links ] Helene, P. (2011). Análise da resistência à compressão do concreto em estruturas acabadas com vistas à revisão da segurança estrutural. Revista ALCONPAT, 1(1), 64-89. doi: https://doi.org/10.21041/ra.v1i1.7 [ Links ] Indelicato, F., & Paggi, M. (2008). Specimen shape and the problem of contact in the assessment of concrete compressive strength. Materials and Structures, 41(2), 431-441. doi: 10.1617/s11527-007-9256-7 [ Links ] Mazepa, R. C., & Rodrigues, T. de C. (2011). Estudo comparativo entre corpos de prova cilíndrico e cúbico para o ensaio de resistência a compressão axial. (Master’s Dissertation, Universidade Tecnológica Federal do Paraná, Curitiba). Retrieved from http://repositorio.roca.utfpr.edu.br/jspui/handle/1/1401 [ Links ] Moreno, E. I., Solís-Carcaño, R. G., Varela-Rivera, J., & López, M. A. G.(2016). Resistencia a tensión del concreto elaborado com agregado calizo de alta absorción. Concreto y cimento. Investigación y desarrollo, 8(1), 35-45. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-30112016000200035&lng=es&nrm=iso&tlng=pt [ Links ] Nalon, G.H., Lima, G. E. S., Martins, R. O. G., & Alvarenga, R. de C. S. S.(2016). Efeito da forma e do tamanho de corpos de prova na determinação da resistência à compressão e deformabilidade de argamassas mistas de cal e cimento.In: 22 o Congresso Brasileiro de Engenharia e Ciência dos Materiais. (p. 1316-1324). Natal, Rio Grande do Norte/Brazil. [ Links ] Namoulniara, K., Mahieux, P. Y., Lux, J., Aït-Mokhtar, A., & Turcry, P. (2019). Efficiency of water repellent surface treatment: Experiments on low performance concrete and numerical investigation with pore network model. Construction and Building Materials, 227(10). doi: https://doi.org/10.1016/j.conbuildmat.2019.08.019 [ Links ] Neto, I. R. V., Vasconcelos, N. R., & Albuquerque, G. L. A. (2017). Controle tecnológico de elementos estruturais: um estudo de caso de um edifício em sobral. In: Congresso Técnico Científico da Engenharia e da Agronomia. Belém, Pará/Brazil. [ Links ] Neville, A. M., & Brooks, J. (2013). Concrete Technology. 3th. Canada: Building and Environment. [ Links ] NP EN 12390. (2009). Ensaios do betão endurecido - Parte 3: Resistência à compressão de provetes. Norma Portuguesa (NP). [ Links ] Oliveira Júnior, A. L., Pedroti, L.G., & Fernandes, W. E. H. (2018). Propagação de erros e incertezas em experimentos envolvendo propriedades mecânicas de um concreto ecológico reforçado com fibras de garrafa PET. In:23 o Congresso Brasileiro de Engenharia e Ciência dos Materiais (p. 2670-2685). Foz do Iguaçu, Paraná/Brazil. [ Links ] Pacheco, F ., Souza, R., Christ, R ., Rocha, C., Silva, L., &Tutikian, B. (2018). Determination of volume and distribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Structural Concrete, 1-9. doi: 10.1002/suco.201800075 [ Links ] Pan, X., Shi, Z., Shi, C., Ling, T., & Li, N. (2017a). A review on surface treatment for concrete - Part 1: Types and mechanisms. Construction and Building Materials, 132(1), 578-590. doi: doi.org/10.1016/j.conbuildmat.2016.12.025 [ Links ] Pan, X., Shi, Z., Shi, C., Ling, T., & Li, N. (2017b). A review on surface treatment for concrete - Part 2: Performance. Construction and Building Materials, 133(15), 81-90. doi: https://doi.org/10.1016/j.conbuildmat.2016.11.128 [ Links ] Silva, J. R. B., Mendonça, G., Modesto, M. A., & Agra, T. M. S (2017). Análise comparativa entre os métodos de correção de topo de corpos de prova: neoprene, enxofre e retifica. In 59º Congresso Brasileiro do Concreto. Bento Gonçalves, Rio Grande do Sul/Brazil: IBRACON. [ Links ] Silva, B. do V., & Filho, L.C.P.S. (2011). Análise da influência da regularização dos topos de corpos-de-prova cilíndricos sobre a resistência à compressão do concreto. In: 53 o Congresso Brasileiro do Concreto. Florianópolis, Santa Catarina/Brazil: IBRACON. [ Links ] Silva, M. J., Ricceli, R., Ponciano, B., Haltiery, D., Peixoto, R., & Bezerra, A. (2011). Influência de dois tipos de capeamento de corpos de prova de concreto. In:53 o Congresso Brasileiro do Concreto. Florianópolis, Santa Catarina/Brazil: IBRACON. [ Links ] Sousa, G. G. (2006). Influência dos procedimentos de ensaio à compressão de corpos-de-prova cilíndricos no controle de qualidade do concreto. (Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis). Retrieved from http://repositorio.ufsc.br/xmlui/handle/123456789/88935 [ Links ] Souza, P. T., & Bastos, P.S.S. (2017). Capeamento de corpos de prova cilíndricos de concreto com placas de HDF não aderentes. In: 59 o Congresso Brasileiro do Concreto. Bento Gonçalves, Rio Grande do Sul/Brazil:IBRACON. [ Links ] Tam, T., Daneti, S.B., & Li, W. (2017). EN 206 conformity testing for concrete strength in compression. Procedia Engineering, 171, 227-237. doi: https://doi.org/10.1016/j.proeng.2017.01.330 [ Links ] Thandavamoorthy, T. S. (2015). Determination of concrete compressive strength : A novel approach. Advances in Applied Science Research, 6(10), 88-96. Retrieved from https://go.aws/34vyBwP [ Links ] Tunç, E. T. (2018). Strength Properties of Hardened Concrete Produced with Natural Aggregates for Different Water / Cement Ratios. Avrupa Bilim ve Teknoloji Dergisi, 14, 280-287. doi: https://doi.org/10.31590/ejosat.486093 [ Links ] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Revista de la construcción |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-915X2020000100159&lng=pt&nrm=iso&tlng=en |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/86867019-c03d-47eb-82fe-03172f6b96d9/download https://repositorio.cuc.edu.co/bitstreams/25c0a630-8063-43e6-a0ca-3e71503c0196/download https://repositorio.cuc.edu.co/bitstreams/e2cbf138-22b5-44cf-8456-7b757ff9ce13/download https://repositorio.cuc.edu.co/bitstreams/1ea6e12c-2107-4808-8974-ba8f6b5bf670/download https://repositorio.cuc.edu.co/bitstreams/25238d79-73e0-46f8-bd54-c1f63580b04d/download |
bitstream.checksum.fl_str_mv |
8343878360416068f38c5b6d2d2da686 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad fc51b9d83ae0b031d05e824a96df5588 0d8644b036437f650d845ebc8b6b48fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760767512346624 |
spelling |
R. Lerner, LucasOtt, MairaFühr, Lucas M.Ehrenbring, Hinoel ZamisPacheco Vera, FernandaTutikian, Bernardo2020-09-15T15:45:58Z2020-09-15T15:45:58Z20200718-915Xhttps://hdl.handle.net/11323/7101http://dx.doi.org/10.7764/rdlc.19.1.159-169Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Concrete is one of the most important material for civil construction, given its high applicability. C Compressive strength (fc) is one of the main parameters to evaluate the concrete quality. Concrete of the same mixing volume may vary even with the same materials preparation. Concrete specimens molding, and its surface regularization contribute to these variations that are often hard to measure. Therefore, this paper aims to determine the variations in compressive strength of concrete, simulating different processes for casting, initial curing and surface treatment. In stage 1, the specimens were subjected to five surface treatment types, resulting in variations of 30% for concrete fc, whereas grinding specimens reached the highest 28-day compressive strength, so they were carried over to the next stage. In stage 2, specimens were produced as per ABNT NBR 5738 (2015) and with induced errors in casting and initial curing. The specimen produced according to the standard achieved the second-best result, whose 28-day fc was3% lower than that of the similar method, despite leaving the specimen uncovered for the first 24 hours after casting. Specimens produced in metal cylinder form works shows higher results than those produced in polyvinyl chloride molds (PVC).El hormigón es uno de los materiales más importantes para la construcción civil, dada su alta aplicabilidad. C La resistencia a la compresión (fc) es uno de los principales parámetros para evaluar la calidad del hormigón. El hormigón del mismo volumen de mezcla puede variar incluso con la misma preparación de materiales. El moldeo de las probetas de hormigón y su regularización superficial contribuyen a estas variaciones que a menudo son difíciles de medir. Por tanto, este trabajo tiene como objetivo determinar las variaciones en la resistencia a la compresión del hormigón, simulando diferentes procesos de colada, curado inicial y tratamiento superficial. En la etapa 1, las probetas se sometieron a cinco tipos de tratamiento superficial, lo que resultó en variaciones del 30% para el concreto fc, mientras que las probetas de molienda alcanzaron la resistencia a la compresión más alta a los 28 días, por lo que se trasladaron a la siguiente etapa. En la etapa 2, las muestras se produjeron según ABNT NBR 5738 (2015) y con errores inducidos en la fundición y el curado inicial. El espécimen producido según el estándar logró el segundo mejor resultado, cuyo fc a los 28 días fue un 3% menor que el del método similar, a pesar de dejar el espécimen descubierto durante las primeras 24 horas después de la colada. Las muestras producidas en forma de cilindros metálicos muestran resultados superiores a las producidas en moldes de cloruro de polivinilo (PVC).R. Lerner, LucasOtt, Maira-will be generated-orcid-0000-0001-8450-5855-600Führ, Lucas M.Ehrenbring, Hinoel Zamis-will be generated-orcid-0000-0002-0339-9825-600Pacheco Vera, Fernanda-will be generated-orcid-0000-0002-4294-0098-600Tutikian, Bernardo-will be generated-orcid-0000-0003-1319-0547-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista de la construcciónhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-915X2020000100159&lng=pt&nrm=iso&tlng=enConcreteCastingSurface treatmentCompressive strengthHormigónFundiciónTratamiento de superficiesFuerza compresivaInfluence of the molding process and different surface regularization methods on the compressive strength of concrete specimensInfluencia del proceso de moldeo y diferentes métodos de regularización de superficies en la resistencia a la compresión de probetas de hormigónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionABNT NBR 5738. (2015). Concreto - Procedimento para moldagem e cura de corpos de prova. Associação Brasileira de Normas Técnicas (ABNT)ABNT NBR 5739. (2018). Concreto - Ensaios de compressão de corpos de prova cilíndricos.. Associação Brasileira de Normas Técnicas (ABNT).ABNT NBR 8802. (2019). Concreto endurecido - Determinação da velocidade de propagação de onda ultrassônica. Associação Brasileira de Normas Técnicas (ABNT).ABNT NBR 8953. Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência. Associação Brasileira de Normas Técnicas (ABNT). [ Links ]Araújo, S. da S., Guimarães, G. N., &Geyer, A. L. B. (2016). Influência do tipo de concreto, da dimensão do corpo de prova e do tipo de laboratório na determinação da resistência à compressão do concreto. Revista Engenharia Civil Universidade do Minho, 52, 5-22. Retrieved from: <http://www.civil.uminho.pt/revista/artigos/n52/pag.05-22.pdf>. 2016. [ Links ]ASTM C1231/C1231M (2010). Standard practice for use of unbonded caps in determination of compressive strength of hardened concrete cylinders. American Society for Testing and Materials (ASTM). [ Links ]ASTM C597. (2016). Standard test method for pulse velocity through concrete. American Society for Testing and Materials (ASTM). [ Links ]Bezerra, A. C. da S.,Aguilar, M. T. P., & Cetlin, P. R. (2008). Influência do capeamento nos resultados do ensaio de resistência à compressão em concretos. In: 50 o Congresso Brasileiro do Concreto. Salvador, Bahia/Brazil: IBRACON. [ Links ]Bezerra, U. T., Alves, S. M. S., Barbosa, N. P., & Torres, S. M. (2016). Hourglass-shaped specimen: compressive strength of concrete and mortar (numerical and experimental analyses). Revista IBRACON de Estruturas e Materiais, 9(4), 510-524. doi: doi.org/10.1590/S1983-41952016000400003 [ Links ]Boesing, R., Philippsen, R. A., & da Luz, C. A. (2010). Influência do material de capeamento na resistência à compressão dos corpos de prova de concreto e argamassas: comparação entre enxofre, pasta de cimento e pasta de gesso.In: 13 o Encontro Nacional de Tecnologia do Ambiente Construído. Canela, Rio Grande do Sul/Brazil: ANTAC. [ Links ]Chies, J. A., Rohden, A. B.,&Filho, L. C. P. S. (2014). Tratamentos superficiais em corpos de prova de concreto submetidos à compressão. Revista IBRACON de Estruturas e Materiais, 7(5), 775-800. doi: https://doi.org/10.1590/S1983-41952014000500004. [ Links ]Couto, D., Carvalho, M., Cintra, A., & Helene, P. (2015). Concrete structures: Contribution of the safety assessment of existing structures. Revista IBRACON de Estruturas e Materiais, 8(3), 365-389. doi: https://doi.org/10.1590/S1983-41952015000300007 [ Links ]Ehrenbring, H. Z., Quinino, U., Oliveira, L.S.,& Tutikian, B. F. (2019). Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct. Concr ., 20, 1064-1075. doi:10.1002/suco.201800228. [ Links ]Fernandes, B., Gil, A.M., Bolina, F.L.,& Tutikian, B.F. (2018). Thermal damage evaluation of full scale concrete columns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín), 85, 123-128. [ Links ]Gil, A., Pacheco, F. Christ, R. Bolina, F.L . Khayat, K. H., &Tutikian, B.F . (2017). Comparative study of concrete panels’ fire resistance. Aci. Mater. J ., 114, 755-762. [ Links ]Gupta, S.L. (2018). Comparison of Non-Destructive and Destructive Testing on Concrete : A Review. Trends in Civil Engineering and its Architecture, 3(1), 351-357. doi: http://dx.doi.org/10.32474/TCEIA.2018.03.000154 [ Links ]Helene, P. (2011). Análise da resistência à compressão do concreto em estruturas acabadas com vistas à revisão da segurança estrutural. Revista ALCONPAT, 1(1), 64-89. doi: https://doi.org/10.21041/ra.v1i1.7 [ Links ]Indelicato, F., & Paggi, M. (2008). Specimen shape and the problem of contact in the assessment of concrete compressive strength. Materials and Structures, 41(2), 431-441. doi: 10.1617/s11527-007-9256-7 [ Links ]Mazepa, R. C., & Rodrigues, T. de C. (2011). Estudo comparativo entre corpos de prova cilíndrico e cúbico para o ensaio de resistência a compressão axial. (Master’s Dissertation, Universidade Tecnológica Federal do Paraná, Curitiba). Retrieved from http://repositorio.roca.utfpr.edu.br/jspui/handle/1/1401 [ Links ]Moreno, E. I., Solís-Carcaño, R. G., Varela-Rivera, J., & López, M. A. G.(2016). Resistencia a tensión del concreto elaborado com agregado calizo de alta absorción. Concreto y cimento. Investigación y desarrollo, 8(1), 35-45. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-30112016000200035&lng=es&nrm=iso&tlng=pt [ Links ]Nalon, G.H., Lima, G. E. S., Martins, R. O. G., & Alvarenga, R. de C. S. S.(2016). Efeito da forma e do tamanho de corpos de prova na determinação da resistência à compressão e deformabilidade de argamassas mistas de cal e cimento.In: 22 o Congresso Brasileiro de Engenharia e Ciência dos Materiais. (p. 1316-1324). Natal, Rio Grande do Norte/Brazil. [ Links ]Namoulniara, K., Mahieux, P. Y., Lux, J., Aït-Mokhtar, A., & Turcry, P. (2019). Efficiency of water repellent surface treatment: Experiments on low performance concrete and numerical investigation with pore network model. Construction and Building Materials, 227(10). doi: https://doi.org/10.1016/j.conbuildmat.2019.08.019 [ Links ]Neto, I. R. V., Vasconcelos, N. R., & Albuquerque, G. L. A. (2017). Controle tecnológico de elementos estruturais: um estudo de caso de um edifício em sobral. In: Congresso Técnico Científico da Engenharia e da Agronomia. Belém, Pará/Brazil. [ Links ]Neville, A. M., & Brooks, J. (2013). Concrete Technology. 3th. Canada: Building and Environment. [ Links ]NP EN 12390. (2009). Ensaios do betão endurecido - Parte 3: Resistência à compressão de provetes. Norma Portuguesa (NP). [ Links ]Oliveira Júnior, A. L., Pedroti, L.G., & Fernandes, W. E. H. (2018). Propagação de erros e incertezas em experimentos envolvendo propriedades mecânicas de um concreto ecológico reforçado com fibras de garrafa PET. In:23 o Congresso Brasileiro de Engenharia e Ciência dos Materiais (p. 2670-2685). Foz do Iguaçu, Paraná/Brazil. [ Links ]Pacheco, F ., Souza, R., Christ, R ., Rocha, C., Silva, L., &Tutikian, B. (2018). Determination of volume and distribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Structural Concrete, 1-9. doi: 10.1002/suco.201800075 [ Links ]Pan, X., Shi, Z., Shi, C., Ling, T., & Li, N. (2017a). A review on surface treatment for concrete - Part 1: Types and mechanisms. Construction and Building Materials, 132(1), 578-590. doi: doi.org/10.1016/j.conbuildmat.2016.12.025 [ Links ]Pan, X., Shi, Z., Shi, C., Ling, T., & Li, N. (2017b). A review on surface treatment for concrete - Part 2: Performance. Construction and Building Materials, 133(15), 81-90. doi: https://doi.org/10.1016/j.conbuildmat.2016.11.128 [ Links ]Silva, J. R. B., Mendonça, G., Modesto, M. A., & Agra, T. M. S (2017). Análise comparativa entre os métodos de correção de topo de corpos de prova: neoprene, enxofre e retifica. In 59º Congresso Brasileiro do Concreto. Bento Gonçalves, Rio Grande do Sul/Brazil: IBRACON. [ Links ]Silva, B. do V., & Filho, L.C.P.S. (2011). Análise da influência da regularização dos topos de corpos-de-prova cilíndricos sobre a resistência à compressão do concreto. In: 53 o Congresso Brasileiro do Concreto. Florianópolis, Santa Catarina/Brazil: IBRACON. [ Links ]Silva, M. J., Ricceli, R., Ponciano, B., Haltiery, D., Peixoto, R., & Bezerra, A. (2011). Influência de dois tipos de capeamento de corpos de prova de concreto. In:53 o Congresso Brasileiro do Concreto. Florianópolis, Santa Catarina/Brazil: IBRACON. [ Links ]Sousa, G. G. (2006). Influência dos procedimentos de ensaio à compressão de corpos-de-prova cilíndricos no controle de qualidade do concreto. (Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis). Retrieved from http://repositorio.ufsc.br/xmlui/handle/123456789/88935 [ Links ]Souza, P. T., & Bastos, P.S.S. (2017). Capeamento de corpos de prova cilíndricos de concreto com placas de HDF não aderentes. In: 59 o Congresso Brasileiro do Concreto. Bento Gonçalves, Rio Grande do Sul/Brazil:IBRACON. [ Links ]Tam, T., Daneti, S.B., & Li, W. (2017). EN 206 conformity testing for concrete strength in compression. Procedia Engineering, 171, 227-237. doi: https://doi.org/10.1016/j.proeng.2017.01.330 [ Links ]Thandavamoorthy, T. S. (2015). Determination of concrete compressive strength : A novel approach. Advances in Applied Science Research, 6(10), 88-96. Retrieved from https://go.aws/34vyBwP [ Links ]Tunç, E. T. (2018). Strength Properties of Hardened Concrete Produced with Natural Aggregates for Different Water / Cement Ratios. Avrupa Bilim ve Teknoloji Dergisi, 14, 280-287. doi: https://doi.org/10.31590/ejosat.486093 [ Links ]PublicationORIGINALInfluence of the molding process and different surface regularization.pdfInfluence of the molding process and different surface regularization.pdfapplication/pdf1244577https://repositorio.cuc.edu.co/bitstreams/86867019-c03d-47eb-82fe-03172f6b96d9/download8343878360416068f38c5b6d2d2da686MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/25c0a630-8063-43e6-a0ca-3e71503c0196/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e2cbf138-22b5-44cf-8456-7b757ff9ce13/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILInfluence of the molding process and different surface regularization.pdf.jpgInfluence of the molding process and different surface regularization.pdf.jpgimage/jpeg54652https://repositorio.cuc.edu.co/bitstreams/1ea6e12c-2107-4808-8974-ba8f6b5bf670/downloadfc51b9d83ae0b031d05e824a96df5588MD54TEXTInfluence of the molding process and different surface regularization.pdf.txtInfluence of the molding process and different surface regularization.pdf.txttext/plain39635https://repositorio.cuc.edu.co/bitstreams/25238d79-73e0-46f8-bd54-c1f63580b04d/download0d8644b036437f650d845ebc8b6b48fbMD5511323/7101oai:repositorio.cuc.edu.co:11323/71012024-09-17 11:03:30.512http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |