A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach

The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity co...

Full description

Autores:
Mohamad, Dadang
Ahmed, Dr. Alim Al Ayub
Widjaja, Gunawan
Alghazali, Tawfeeq
Grimaldo Guerrero, John William
Fardeeva, Irina
Hasanzadeh, Alireza
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9114
Acceso en línea:
https://hdl.handle.net/11323/9114
https://doi.org/10.7232/iems.2021.20.4.613
https://repositorio.cuc.edu.co/
Palabra clave:
Hierarchical hub center location
Multi-objective optimization
Capacity constraints
Perishable goods
Rights
openAccess
License
© 2021 KIIE
id RCUC2_990f91dc2aa213495ed7886d060c8147
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9114
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
title A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
spellingShingle A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
Hierarchical hub center location
Multi-objective optimization
Capacity constraints
Perishable goods
title_short A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
title_full A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
title_fullStr A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
title_full_unstemmed A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
title_sort A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
dc.creator.fl_str_mv Mohamad, Dadang
Ahmed, Dr. Alim Al Ayub
Widjaja, Gunawan
Alghazali, Tawfeeq
Grimaldo Guerrero, John William
Fardeeva, Irina
Hasanzadeh, Alireza
dc.contributor.author.spa.fl_str_mv Mohamad, Dadang
Ahmed, Dr. Alim Al Ayub
Widjaja, Gunawan
Alghazali, Tawfeeq
Grimaldo Guerrero, John William
Fardeeva, Irina
Hasanzadeh, Alireza
dc.subject.proposal.eng.fl_str_mv Hierarchical hub center location
Multi-objective optimization
Capacity constraints
Perishable goods
topic Hierarchical hub center location
Multi-objective optimization
Capacity constraints
Perishable goods
description The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity constraint. Given that the issue under consideration is for the purpose of transporting perishable goods, Such problems are often used in transportation systems in which customer response time is of great importance and sensitivity; Therefore, the objectives of the proposed model are to find the best location for hubs in the network as well as the best allocation of nodes to hubs so that network transportation costs are reduced and the maximum travel time between each pair of origin destination nodes is minimized. To evaluate the model, a numerical example with CAB dataset is introduced and to review and analyze the results, GAMS software with CPLEX solver is used. The results show that the discount coefficient of central hubs compared to the discount coefficient of second level hubs has the greatest impact on the cost of transportation and travel time.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-04-05T12:48:19Z
dc.date.available.none.fl_str_mv 2022-04-05T12:48:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1598-7248
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9114
dc.identifier.url.spa.fl_str_mv https://doi.org/10.7232/iems.2021.20.4.613
dc.identifier.doi.spa.fl_str_mv 10.7232/iems.2021.20.4.613
dc.identifier.eissn.spa.fl_str_mv 2234-6473
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1598-7248
10.7232/iems.2021.20.4.613
2234-6473
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9114
https://doi.org/10.7232/iems.2021.20.4.613
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv South Korea
dc.relation.references.spa.fl_str_mv Alumur, S. A., Yaman, H., and Kara, B. Y. (2012), Hierarchical multimodal hub location problem with time-definite deliveries, Transportation Research Part E: Logistics and Transportation Review, 48(6), 1107-1120.
Arshadi Khamseh, A. and Doost Mohamadi, M. (2014), Complete/incomplete hierarchical hub center single assignment network problem, Journal of Optimization in Industrial Engineering, 7(14), 1-12.
Brimberg, J., Mladenović, N., Todosijević, R., and Urošević, D. (2017), General variable neighborhood search for the uncapacitated single allocation p-hub center problem, Optimization Letters, 11(2), 377-388.
Esmizadeh, Y. and Bashiri, M. (2014), Applying hierarchical hub location problem on perishable good distribution systems, In Joint International Symposium on The Social Impacts of Developments in Information, Manufacturing and Service Systems, Istanbul, Turkey, 260-269.
Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. (2013), Hub location problems: A review of models, classification, solution techniques, and application, Computers & Industrial Engineering, 64(4), 1096-1109.
Graça Costa, M., Captivo, M. E., and Clímacoc, J. (2008), Capacitated single allocation hub location problem: A bi-criteria approach, Computers & Operations Research, 35(11), 3671-3695.
Jafari, D. and Pour, M. H. (2018), The single-allocation heuristic hub location problem solving, Industrial Engineering & Management Systems, 17(3), 588-599.
Karimi, M., Eydi, A. R., and Korani, E. (2014), Modeling of the capacitated single allocation hub location problem with a hierarchical approach, International Journal of Engineering, 27(4), 573-586.
Kartal, Z., Krishnamoorthy, M., and Ernst, A. T. (2019), Heuristic algorithms for the single allocation p-hub center problem with routing considerations, OR Spectrum, 41(1), 99-145.
Nagy, G. and Salhi, S. (1998), The many-to-many location-routing problem, Top, 6(2), 261-275. Taherkhani, G., Alumur, S. A., and Hosseini, M. (2020), Benders decomposition for the profit maximizing capacitated hub location problem with multiple demand classes, Transportation Science, 54(6), 1446-1470.
Tikani, H., Honarvar, M., and Mehrjerdi, Y. Z. (2018), Developing an integrated hub location and revenue management model considering multi-classes of customers in the airline industry, Computational and Applied Mathematics, 37(3), 3334-3364.
Tiwari, R., Srivastava, S., and Gera, R. (2020), Investigation of artificial intelligence techniques in finance and marketing, Procedia Computer Science, 173, 149-157.
Tiwari, R., Jayaswal, S., and Sinha, A. (2021), Alternate solution approaches for competitive hub location problems, European Journal of Operational Research, 290(1), 68-80.
Yaman, H. (2009), The hierarchical hub median problem with single assignment, Transportation Research Part B: Methodological, 43(6), 643-658.
Zhao, L., Stoeter, J., Li, H., Hu, Q., Cheng, Z., and Wang, X. (2020), European hub location problem for china railway express in the context of the belt and road initiative, International Journal of Logistics Research and Applications, 23(6), 561-579.
dc.relation.citationendpage.spa.fl_str_mv 620
dc.relation.citationstartpage.spa.fl_str_mv 613
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationvolume.spa.fl_str_mv 20
dc.rights.spa.fl_str_mv © 2021 KIIE
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2021 KIIE
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv South Korea
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a64259fb-bc50-4e31-a678-15c3ef9b0edd/download
https://repositorio.cuc.edu.co/bitstreams/a2f76124-de2f-4b71-9b8b-1565cfe6570d/download
https://repositorio.cuc.edu.co/bitstreams/1d8c8a06-ff2c-4248-a3b4-54980fb2a7e7/download
https://repositorio.cuc.edu.co/bitstreams/c9fbca66-d85c-4ea3-b318-6604dc255a42/download
bitstream.checksum.fl_str_mv afd6cee0baffaadeaae6dcae9971013d
e30e9215131d99561d40d6b0abbe9bad
cc340bbdd1b5cb74656741504fc94ddb
96acbeaaecd6871260c7e42eeda9eaad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760694417162240
spelling Mohamad, DadangAhmed, Dr. Alim Al AyubWidjaja, GunawanAlghazali, TawfeeqGrimaldo Guerrero, John WilliamFardeeva, IrinaHasanzadeh, Alireza2022-04-05T12:48:19Z2022-04-05T12:48:19Z20211598-7248https://hdl.handle.net/11323/9114https://doi.org/10.7232/iems.2021.20.4.61310.7232/iems.2021.20.4.6132234-6473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity constraint. Given that the issue under consideration is for the purpose of transporting perishable goods, Such problems are often used in transportation systems in which customer response time is of great importance and sensitivity; Therefore, the objectives of the proposed model are to find the best location for hubs in the network as well as the best allocation of nodes to hubs so that network transportation costs are reduced and the maximum travel time between each pair of origin destination nodes is minimized. To evaluate the model, a numerical example with CAB dataset is introduced and to review and analyze the results, GAMS software with CPLEX solver is used. The results show that the discount coefficient of central hubs compared to the discount coefficient of second level hubs has the greatest impact on the cost of transportation and travel time.8 páginasapplication/pdfeng© 2021 KIIEAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionSouth KoreaSouth KoreaAlumur, S. A., Yaman, H., and Kara, B. Y. (2012), Hierarchical multimodal hub location problem with time-definite deliveries, Transportation Research Part E: Logistics and Transportation Review, 48(6), 1107-1120.Arshadi Khamseh, A. and Doost Mohamadi, M. (2014), Complete/incomplete hierarchical hub center single assignment network problem, Journal of Optimization in Industrial Engineering, 7(14), 1-12.Brimberg, J., Mladenović, N., Todosijević, R., and Urošević, D. (2017), General variable neighborhood search for the uncapacitated single allocation p-hub center problem, Optimization Letters, 11(2), 377-388.Esmizadeh, Y. and Bashiri, M. (2014), Applying hierarchical hub location problem on perishable good distribution systems, In Joint International Symposium on The Social Impacts of Developments in Information, Manufacturing and Service Systems, Istanbul, Turkey, 260-269.Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. (2013), Hub location problems: A review of models, classification, solution techniques, and application, Computers & Industrial Engineering, 64(4), 1096-1109.Graça Costa, M., Captivo, M. E., and Clímacoc, J. (2008), Capacitated single allocation hub location problem: A bi-criteria approach, Computers & Operations Research, 35(11), 3671-3695.Jafari, D. and Pour, M. H. (2018), The single-allocation heuristic hub location problem solving, Industrial Engineering & Management Systems, 17(3), 588-599.Karimi, M., Eydi, A. R., and Korani, E. (2014), Modeling of the capacitated single allocation hub location problem with a hierarchical approach, International Journal of Engineering, 27(4), 573-586.Kartal, Z., Krishnamoorthy, M., and Ernst, A. T. (2019), Heuristic algorithms for the single allocation p-hub center problem with routing considerations, OR Spectrum, 41(1), 99-145.Nagy, G. and Salhi, S. (1998), The many-to-many location-routing problem, Top, 6(2), 261-275. Taherkhani, G., Alumur, S. A., and Hosseini, M. (2020), Benders decomposition for the profit maximizing capacitated hub location problem with multiple demand classes, Transportation Science, 54(6), 1446-1470.Tikani, H., Honarvar, M., and Mehrjerdi, Y. Z. (2018), Developing an integrated hub location and revenue management model considering multi-classes of customers in the airline industry, Computational and Applied Mathematics, 37(3), 3334-3364.Tiwari, R., Srivastava, S., and Gera, R. (2020), Investigation of artificial intelligence techniques in finance and marketing, Procedia Computer Science, 173, 149-157.Tiwari, R., Jayaswal, S., and Sinha, A. (2021), Alternate solution approaches for competitive hub location problems, European Journal of Operational Research, 290(1), 68-80.Yaman, H. (2009), The hierarchical hub median problem with single assignment, Transportation Research Part B: Methodological, 43(6), 643-658.Zhao, L., Stoeter, J., Li, H., Hu, Q., Cheng, Z., and Wang, X. (2020), European hub location problem for china railway express in the context of the belt and road initiative, International Journal of Logistics Research and Applications, 23(6), 561-579.620613420Hierarchical hub center locationMulti-objective optimizationCapacity constraintsPerishable goodsPublicationORIGINALA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdfA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdfapplication/pdf321264https://repositorio.cuc.edu.co/bitstreams/a64259fb-bc50-4e31-a678-15c3ef9b0edd/downloadafd6cee0baffaadeaae6dcae9971013dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a2f76124-de2f-4b71-9b8b-1565cfe6570d/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.txtA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.txttext/plain28925https://repositorio.cuc.edu.co/bitstreams/1d8c8a06-ff2c-4248-a3b4-54980fb2a7e7/downloadcc340bbdd1b5cb74656741504fc94ddbMD53THUMBNAILA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.jpgA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.jpgimage/jpeg13152https://repositorio.cuc.edu.co/bitstreams/c9fbca66-d85c-4ea3-b318-6604dc255a42/download96acbeaaecd6871260c7e42eeda9eaadMD5411323/9114oai:repositorio.cuc.edu.co:11323/91142024-09-17 10:15:05.028https://creativecommons.org/licenses/by/4.0/© 2021 KIIEopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==