A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach
The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity co...
- Autores:
-
Mohamad, Dadang
Ahmed, Dr. Alim Al Ayub
Widjaja, Gunawan
Alghazali, Tawfeeq
Grimaldo Guerrero, John William
Fardeeva, Irina
Hasanzadeh, Alireza
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9114
- Acceso en línea:
- https://hdl.handle.net/11323/9114
https://doi.org/10.7232/iems.2021.20.4.613
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hierarchical hub center location
Multi-objective optimization
Capacity constraints
Perishable goods
- Rights
- openAccess
- License
- © 2021 KIIE
id |
RCUC2_990f91dc2aa213495ed7886d060c8147 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9114 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
title |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
spellingShingle |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach Hierarchical hub center location Multi-objective optimization Capacity constraints Perishable goods |
title_short |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
title_full |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
title_fullStr |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
title_full_unstemmed |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
title_sort |
A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach |
dc.creator.fl_str_mv |
Mohamad, Dadang Ahmed, Dr. Alim Al Ayub Widjaja, Gunawan Alghazali, Tawfeeq Grimaldo Guerrero, John William Fardeeva, Irina Hasanzadeh, Alireza |
dc.contributor.author.spa.fl_str_mv |
Mohamad, Dadang Ahmed, Dr. Alim Al Ayub Widjaja, Gunawan Alghazali, Tawfeeq Grimaldo Guerrero, John William Fardeeva, Irina Hasanzadeh, Alireza |
dc.subject.proposal.eng.fl_str_mv |
Hierarchical hub center location Multi-objective optimization Capacity constraints Perishable goods |
topic |
Hierarchical hub center location Multi-objective optimization Capacity constraints Perishable goods |
description |
The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity constraint. Given that the issue under consideration is for the purpose of transporting perishable goods, Such problems are often used in transportation systems in which customer response time is of great importance and sensitivity; Therefore, the objectives of the proposed model are to find the best location for hubs in the network as well as the best allocation of nodes to hubs so that network transportation costs are reduced and the maximum travel time between each pair of origin destination nodes is minimized. To evaluate the model, a numerical example with CAB dataset is introduced and to review and analyze the results, GAMS software with CPLEX solver is used. The results show that the discount coefficient of central hubs compared to the discount coefficient of second level hubs has the greatest impact on the cost of transportation and travel time. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-04-05T12:48:19Z |
dc.date.available.none.fl_str_mv |
2022-04-05T12:48:19Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1598-7248 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9114 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.7232/iems.2021.20.4.613 |
dc.identifier.doi.spa.fl_str_mv |
10.7232/iems.2021.20.4.613 |
dc.identifier.eissn.spa.fl_str_mv |
2234-6473 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1598-7248 10.7232/iems.2021.20.4.613 2234-6473 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9114 https://doi.org/10.7232/iems.2021.20.4.613 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
South Korea |
dc.relation.references.spa.fl_str_mv |
Alumur, S. A., Yaman, H., and Kara, B. Y. (2012), Hierarchical multimodal hub location problem with time-definite deliveries, Transportation Research Part E: Logistics and Transportation Review, 48(6), 1107-1120. Arshadi Khamseh, A. and Doost Mohamadi, M. (2014), Complete/incomplete hierarchical hub center single assignment network problem, Journal of Optimization in Industrial Engineering, 7(14), 1-12. Brimberg, J., Mladenović, N., Todosijević, R., and Urošević, D. (2017), General variable neighborhood search for the uncapacitated single allocation p-hub center problem, Optimization Letters, 11(2), 377-388. Esmizadeh, Y. and Bashiri, M. (2014), Applying hierarchical hub location problem on perishable good distribution systems, In Joint International Symposium on The Social Impacts of Developments in Information, Manufacturing and Service Systems, Istanbul, Turkey, 260-269. Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. (2013), Hub location problems: A review of models, classification, solution techniques, and application, Computers & Industrial Engineering, 64(4), 1096-1109. Graça Costa, M., Captivo, M. E., and Clímacoc, J. (2008), Capacitated single allocation hub location problem: A bi-criteria approach, Computers & Operations Research, 35(11), 3671-3695. Jafari, D. and Pour, M. H. (2018), The single-allocation heuristic hub location problem solving, Industrial Engineering & Management Systems, 17(3), 588-599. Karimi, M., Eydi, A. R., and Korani, E. (2014), Modeling of the capacitated single allocation hub location problem with a hierarchical approach, International Journal of Engineering, 27(4), 573-586. Kartal, Z., Krishnamoorthy, M., and Ernst, A. T. (2019), Heuristic algorithms for the single allocation p-hub center problem with routing considerations, OR Spectrum, 41(1), 99-145. Nagy, G. and Salhi, S. (1998), The many-to-many location-routing problem, Top, 6(2), 261-275. Taherkhani, G., Alumur, S. A., and Hosseini, M. (2020), Benders decomposition for the profit maximizing capacitated hub location problem with multiple demand classes, Transportation Science, 54(6), 1446-1470. Tikani, H., Honarvar, M., and Mehrjerdi, Y. Z. (2018), Developing an integrated hub location and revenue management model considering multi-classes of customers in the airline industry, Computational and Applied Mathematics, 37(3), 3334-3364. Tiwari, R., Srivastava, S., and Gera, R. (2020), Investigation of artificial intelligence techniques in finance and marketing, Procedia Computer Science, 173, 149-157. Tiwari, R., Jayaswal, S., and Sinha, A. (2021), Alternate solution approaches for competitive hub location problems, European Journal of Operational Research, 290(1), 68-80. Yaman, H. (2009), The hierarchical hub median problem with single assignment, Transportation Research Part B: Methodological, 43(6), 643-658. Zhao, L., Stoeter, J., Li, H., Hu, Q., Cheng, Z., and Wang, X. (2020), European hub location problem for china railway express in the context of the belt and road initiative, International Journal of Logistics Research and Applications, 23(6), 561-579. |
dc.relation.citationendpage.spa.fl_str_mv |
620 |
dc.relation.citationstartpage.spa.fl_str_mv |
613 |
dc.relation.citationissue.spa.fl_str_mv |
4 |
dc.relation.citationvolume.spa.fl_str_mv |
20 |
dc.rights.spa.fl_str_mv |
© 2021 KIIE Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2021 KIIE Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
South Korea |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a64259fb-bc50-4e31-a678-15c3ef9b0edd/download https://repositorio.cuc.edu.co/bitstreams/a2f76124-de2f-4b71-9b8b-1565cfe6570d/download https://repositorio.cuc.edu.co/bitstreams/1d8c8a06-ff2c-4248-a3b4-54980fb2a7e7/download https://repositorio.cuc.edu.co/bitstreams/c9fbca66-d85c-4ea3-b318-6604dc255a42/download |
bitstream.checksum.fl_str_mv |
afd6cee0baffaadeaae6dcae9971013d e30e9215131d99561d40d6b0abbe9bad cc340bbdd1b5cb74656741504fc94ddb 96acbeaaecd6871260c7e42eeda9eaad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760694417162240 |
spelling |
Mohamad, DadangAhmed, Dr. Alim Al AyubWidjaja, GunawanAlghazali, TawfeeqGrimaldo Guerrero, John WilliamFardeeva, IrinaHasanzadeh, Alireza2022-04-05T12:48:19Z2022-04-05T12:48:19Z20211598-7248https://hdl.handle.net/11323/9114https://doi.org/10.7232/iems.2021.20.4.61310.7232/iems.2021.20.4.6132234-6473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The problem studied in this paper is the p hub center and the network structure is hierarchical and in three levels; where level one is for demand nodes, level two is for hub nodes, and level three is for central hubs. Central hubs have a complete network and hubs in the network have the capacity constraint. Given that the issue under consideration is for the purpose of transporting perishable goods, Such problems are often used in transportation systems in which customer response time is of great importance and sensitivity; Therefore, the objectives of the proposed model are to find the best location for hubs in the network as well as the best allocation of nodes to hubs so that network transportation costs are reduced and the maximum travel time between each pair of origin destination nodes is minimized. To evaluate the model, a numerical example with CAB dataset is introduced and to review and analyze the results, GAMS software with CPLEX solver is used. The results show that the discount coefficient of central hubs compared to the discount coefficient of second level hubs has the greatest impact on the cost of transportation and travel time.8 páginasapplication/pdfeng© 2021 KIIEAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionSouth KoreaSouth KoreaAlumur, S. A., Yaman, H., and Kara, B. Y. (2012), Hierarchical multimodal hub location problem with time-definite deliveries, Transportation Research Part E: Logistics and Transportation Review, 48(6), 1107-1120.Arshadi Khamseh, A. and Doost Mohamadi, M. (2014), Complete/incomplete hierarchical hub center single assignment network problem, Journal of Optimization in Industrial Engineering, 7(14), 1-12.Brimberg, J., Mladenović, N., Todosijević, R., and Urošević, D. (2017), General variable neighborhood search for the uncapacitated single allocation p-hub center problem, Optimization Letters, 11(2), 377-388.Esmizadeh, Y. and Bashiri, M. (2014), Applying hierarchical hub location problem on perishable good distribution systems, In Joint International Symposium on The Social Impacts of Developments in Information, Manufacturing and Service Systems, Istanbul, Turkey, 260-269.Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. (2013), Hub location problems: A review of models, classification, solution techniques, and application, Computers & Industrial Engineering, 64(4), 1096-1109.Graça Costa, M., Captivo, M. E., and Clímacoc, J. (2008), Capacitated single allocation hub location problem: A bi-criteria approach, Computers & Operations Research, 35(11), 3671-3695.Jafari, D. and Pour, M. H. (2018), The single-allocation heuristic hub location problem solving, Industrial Engineering & Management Systems, 17(3), 588-599.Karimi, M., Eydi, A. R., and Korani, E. (2014), Modeling of the capacitated single allocation hub location problem with a hierarchical approach, International Journal of Engineering, 27(4), 573-586.Kartal, Z., Krishnamoorthy, M., and Ernst, A. T. (2019), Heuristic algorithms for the single allocation p-hub center problem with routing considerations, OR Spectrum, 41(1), 99-145.Nagy, G. and Salhi, S. (1998), The many-to-many location-routing problem, Top, 6(2), 261-275. Taherkhani, G., Alumur, S. A., and Hosseini, M. (2020), Benders decomposition for the profit maximizing capacitated hub location problem with multiple demand classes, Transportation Science, 54(6), 1446-1470.Tikani, H., Honarvar, M., and Mehrjerdi, Y. Z. (2018), Developing an integrated hub location and revenue management model considering multi-classes of customers in the airline industry, Computational and Applied Mathematics, 37(3), 3334-3364.Tiwari, R., Srivastava, S., and Gera, R. (2020), Investigation of artificial intelligence techniques in finance and marketing, Procedia Computer Science, 173, 149-157.Tiwari, R., Jayaswal, S., and Sinha, A. (2021), Alternate solution approaches for competitive hub location problems, European Journal of Operational Research, 290(1), 68-80.Yaman, H. (2009), The hierarchical hub median problem with single assignment, Transportation Research Part B: Methodological, 43(6), 643-658.Zhao, L., Stoeter, J., Li, H., Hu, Q., Cheng, Z., and Wang, X. (2020), European hub location problem for china railway express in the context of the belt and road initiative, International Journal of Logistics Research and Applications, 23(6), 561-579.620613420Hierarchical hub center locationMulti-objective optimizationCapacity constraintsPerishable goodsPublicationORIGINALA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdfA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdfapplication/pdf321264https://repositorio.cuc.edu.co/bitstreams/a64259fb-bc50-4e31-a678-15c3ef9b0edd/downloadafd6cee0baffaadeaae6dcae9971013dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a2f76124-de2f-4b71-9b8b-1565cfe6570d/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.txtA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.txttext/plain28925https://repositorio.cuc.edu.co/bitstreams/1d8c8a06-ff2c-4248-a3b4-54980fb2a7e7/downloadcc340bbdd1b5cb74656741504fc94ddbMD53THUMBNAILA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.jpgA hierarchical p-hub center problem for perishable products using CPLEX method and origin-destination approach.pdf.jpgimage/jpeg13152https://repositorio.cuc.edu.co/bitstreams/c9fbca66-d85c-4ea3-b318-6604dc255a42/download96acbeaaecd6871260c7e42eeda9eaadMD5411323/9114oai:repositorio.cuc.edu.co:11323/91142024-09-17 10:15:05.028https://creativecommons.org/licenses/by/4.0/© 2021 KIIEopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |