Introducing ∆h Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations
The article introduces a novel class of polynomials, HQ [∆h] m (q1 , q2, q3, q4 , q5; h), termed ∆h Hermite-based Appell polynomials, utilizing the monomiality principle. These polynomials exhibit close connections with ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials, elucidating their s...
- Autores:
-
Ramirez, William
Nisarc, Junaid
Warke, Arundhati
Gani Dar, Javid
Ahmad Rather, Zahoor
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13922
- Acceso en línea:
- https://hdl.handle.net/11323/13922
https://repositorio.cuc.edu.co/
- Palabra clave:
- ∆h hybrid special polynomials
Explicit forms
Appell polynomials
Monomiality principle
Explicit forms
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
Summary: | The article introduces a novel class of polynomials, HQ [∆h] m (q1 , q2, q3, q4 , q5; h), termed ∆h Hermite-based Appell polynomials, utilizing the monomiality principle. These polynomials exhibit close connections with ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials, elucidating their specific properties and explicit forms. Moreover, the research establishes generating relations for these polynomials, facilitating profound insights applicable across diverse domains such as mathematics, physics, and engineering sciences. |
---|