Introducing ∆h Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations

The article introduces a novel class of polynomials, HQ [∆h] m (q1 , q2, q3, q4 , q5; h), termed ∆h Hermite-based Appell polynomials, utilizing the monomiality principle. These polynomials exhibit close connections with ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials, elucidating their s...

Full description

Autores:
Ramirez, William
Nisarc, Junaid
Warke, Arundhati
Gani Dar, Javid
Ahmad Rather, Zahoor
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13922
Acceso en línea:
https://hdl.handle.net/11323/13922
https://repositorio.cuc.edu.co/
Palabra clave:
∆h hybrid special polynomials
Explicit forms
Appell polynomials
Monomiality principle
Explicit forms
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:The article introduces a novel class of polynomials, HQ [∆h] m (q1 , q2, q3, q4 , q5; h), termed ∆h Hermite-based Appell polynomials, utilizing the monomiality principle. These polynomials exhibit close connections with ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials, elucidating their specific properties and explicit forms. Moreover, the research establishes generating relations for these polynomials, facilitating profound insights applicable across diverse domains such as mathematics, physics, and engineering sciences.