Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Ther...
- Autores:
-
Alayi, Reza
Jahangiri, Mehdi
Grimaldo Guerrero, John William
Akhmadeev, Ravil
Adamovich Shichiyakh, Rustem
Abbasi Zanghaneh, Sara
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8992
- Acceso en línea:
- https://hdl.handle.net/11323/8992
https://doi.org/10.1093/ce/zkab041
https://repositorio.cuc.edu.co/
- Palabra clave:
- Reliability
Wind turbine
Photovoltaic cell
Intelligent algorithm
Economic analysis
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_97dcd3d76b0d694fb40f14f1aeb5156e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8992 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
title |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
spellingShingle |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms Reliability Wind turbine Photovoltaic cell Intelligent algorithm Economic analysis |
title_short |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
title_full |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
title_fullStr |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
title_full_unstemmed |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
title_sort |
Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms |
dc.creator.fl_str_mv |
Alayi, Reza Jahangiri, Mehdi Grimaldo Guerrero, John William Akhmadeev, Ravil Adamovich Shichiyakh, Rustem Abbasi Zanghaneh, Sara |
dc.contributor.author.spa.fl_str_mv |
Alayi, Reza Jahangiri, Mehdi Grimaldo Guerrero, John William Akhmadeev, Ravil Adamovich Shichiyakh, Rustem Abbasi Zanghaneh, Sara |
dc.subject.spa.fl_str_mv |
Reliability Wind turbine Photovoltaic cell Intelligent algorithm Economic analysis |
topic |
Reliability Wind turbine Photovoltaic cell Intelligent algorithm Economic analysis |
description |
One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Therefore, the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell, which is needed to investigate their ability to supply electrical energy. To determine this important power production, real data of solar-radiation intensity and wind are used and, in modelling photovoltaic cells, the effects of ambient temperature are also considered. In order to generalize the studied system in all dimensions, different scenarios have been considered. According to the amount of electrical power generated, during the evaluation of these scenarios, two economic parameters, namely the selected scenario of a wind/solar system with diesel-generator support, was determined. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-01-21T15:00:47Z |
dc.date.available.none.fl_str_mv |
2022-01-21T15:00:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2515-396X 2515-4230 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8992 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1093/ce/zkab041 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2515-396X 2515-4230 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8992 https://doi.org/10.1093/ce/zkab041 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Eriksson ELV, Gray EM. Optimization of renewable hybrid energy systems—a multi-objective approach. Renewable Energy, 2019, 133:971–999. [2] Alayi R, Ahmadi MH, Visei AR, et al. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: a case study of Saveh City. International Journal of Low-Carbon Technologies, 2021, 16:447–453. [3] Khalili H, Arash A, Alayi R. Simulation and economical optimization hybrid system PV and grid in Ardabil city. Journal of Current Research in Science, 2015, 3:83. [4] Talha M, Sohail M, Tariq R, et al. Impact of oil prices, energy consumption and economic growth on the inflation rate in Malaysia. Cuadernos de Economía, 2021, 44:26–32. [5] Alayi R, Jahanbin F. Generation management analysis of a stand-alone photovoltaic system with battery. Renewable Energy Research and Application, 2020, 1:205–209. [6] Ehyaei MA, Assad MEH. Energy and exergy analyses of wind turbines. In: Assad MEH, Rosen MA (eds). Design and Performance Optimization of Renewable Energy Systems. Oxford, UK: Academic Press, 2021, 195–203. https://www.sciencedirect.com/science/article/pii/B9780128216026000158 [7] Sibuea MB, Sibuea SR, Pratama I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. 2021, 23:12–21. [8] Alayi R, Kumar R, Seydnouri SR, et al. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of LowCarbon Technologies, 2021, 16:570–576. [9] Koohi-Fayegh S, Rosen MA. A review of renewable energy options, applications, facilitating technologies and recent developments. European Journal of Sustainable Development Research, 2020,4:em0138. [10] Tun MM. An overview of renewable energy sources and their energy potential for sustainable development in Myanmar. European Journal of Sustainable Development Research, 2019, 3:em0071. [11] Alayi R, Velayti J. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 2021, 7:101–107. [12] Elavarasan RM. The motivation for renewable energy and its comparison with other energy sources: a review. European Journal of Sustainable Development Research, 2019, 3:em0076. [13] Alayi R, Rouhi H. Techno-economic analysis of electrical energy generation from urban waste in Hamadan, Iran. International Journal of Design & Nature and Ecodynamics, 2020, 15:337–341. [14] Kool ED, Cuomo MA, Reddy BV, et al. Multi-generation renewable energy system for dairy farms: exergy analysis. European Journal of Sustainable Development Research, 2018, 2:37. [15] Kasaeian A, Shamel A, Alayi R. Simulation and economic optimization of wind turbines and photovoltaic hybrid system with storage battery and hydrogen tank. Journal of Current Research in Science, 2015, 3:105. [16] Shamel A, Marefati M, Alayi R, et al. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology. Research Journal, 2016, 10:176—181. [17] Barakat S, Ibrahim H, Elbaset AA. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 2020, 60:102178. [18] Alayi R, Khan MRB, Mohmammadi MSG. Feasibility study of grid-connected PV system for peak demand reduction of a residential building in Tehran, Iran. Mathematical Modelling of Engineering Problems, 2020, 7:563–567. [19] Wang R, Xiong J, He MF, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy, 2020, 151:226–237. [20] Yang Y, Li R. Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies, 2020, 13:1585. [21] Ibrahim IA, Sabah S, Abbas R, et al. A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm. Energy Conversion and Management, 2021, 238:114179. [22] Alayi R, Kasaeian A, Najafi A. et al. Optimization and evaluation of a wind, solar and fuel cell hybrid system in supplying electricity to a remote district in national grid. International Journal of Energy Sector Management, 2020, 14:408–418. [23] Ridha HM, Gomes C, Hizam H, et al. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2021, 135:110202. [24] Shivam K, Tzou JC, Wu SC. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Conversion and Management, 2021, 237:114103. [25] Hysa A. Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters. Emerging Science Journal, 2019, 3:395–406. [26] Abbassi R, Abbassi A, Heidari AA, et al. An efficient salp swarminspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 2019, 179:362–372. [27] Shukla A, Khare M, Shukla KN. Modeling and simulation of solar PV module on MATLAB/Simulink. Engineering and Technology, 2015, 4:3297. [28] Bouaziz N, Benfdila A, Lakhlef A. A model for predicting photovoltaic module performances. International Journal of Power Electronics and Drive Systems, 2019, 10:1914. [29] Alvarez DI, Calle Castro CJ, Gonzalez FC, et al. Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador. In:2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 5–8 November 2017, 620–625. [30] Karamichailidou D, Kaloutsa V, Alexandridis A. Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renewable Energy, 2021, 163:2137–2152. [31] Fazlollahi V, Taghizadeh M, Ayatollah zade Shirazi F. Modeling and neuro-fuzzy controller design of a wind turbine in fullload region based on operational data. AUT Journal of Modeling and Simulation, 2019, 51:139–152. [32] Manobel B, Sehnke F, Lazzús JA, et al. Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renewable Energy, 2018, 125:1015–1020. [33] Yang N, Fu Y, Yue H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries. Electrochimica Acta, 2019, 311:8–20. [34] Cui Z, Poblete FR, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Applied Materials & Interfaces, 2019, 11:17836–17842. [35] Khalilnejad A, Sundararajan A, Sarwat A. I Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm. Journal of Modern Power Systems and Clean Energy, 2018, 6:40–49. [36] Moein M, Pahlavan S, Jahangiri M, et al. Finding the minimum distance from the national electricity grid for the cost-effective use of diesel generator-based hybrid renewable systems in Iran. Journal of Renewable Energy and Environment, 2018, 5:8–22. [37] Mostafaeipour A, Jahangiri M, Haghani A, et al. Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports, 2020, 6:2816–2827. [38] Karaboga D. Artificial bee colony algorithm. Scholarpedia, 2010, 5:6915. [39] Gao WF, Liu SY. A modified artificial bee colony algorithm. Computers & Operations Research, 2012, 39:687–697. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Clean Energy |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://academic.oup.com/ce/article/5/4/713/6408859 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5a4910e3-07f3-4198-aa41-1b1a999dc20a/download https://repositorio.cuc.edu.co/bitstreams/5c18bd1b-c00c-4167-adb8-4f988b0676b3/download https://repositorio.cuc.edu.co/bitstreams/d2b1ab48-07bc-4e28-9c51-611d585bf627/download https://repositorio.cuc.edu.co/bitstreams/8e4658dd-4757-46d3-92da-730c03c2b6ee/download https://repositorio.cuc.edu.co/bitstreams/39e74749-7a0c-429a-ab48-948b07b65701/download |
bitstream.checksum.fl_str_mv |
63b063c62fc795f8faedea52d63a5650 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 34b9f31529ad9aec4005049411a9139d 72d75c3babbcf4ad3cf1f0b640063ead |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760786060607488 |
spelling |
Alayi, RezaJahangiri, MehdiGrimaldo Guerrero, John WilliamAkhmadeev, RavilAdamovich Shichiyakh, RustemAbbasi Zanghaneh, Sara2022-01-21T15:00:47Z2022-01-21T15:00:47Z20212515-396X2515-4230https://hdl.handle.net/11323/8992https://doi.org/10.1093/ce/zkab041Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Therefore, the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell, which is needed to investigate their ability to supply electrical energy. To determine this important power production, real data of solar-radiation intensity and wind are used and, in modelling photovoltaic cells, the effects of ambient temperature are also considered. In order to generalize the studied system in all dimensions, different scenarios have been considered. According to the amount of electrical power generated, during the evaluation of these scenarios, two economic parameters, namely the selected scenario of a wind/solar system with diesel-generator support, was determined.Alayi, Reza-will be generated-orcid-0000-0003-2190-1185-600Jahangiri, Mehdi-will be generated-orcid-0000-0001-6803-8804-600Grimaldo Guerrero, John William-will be generated-orcid-0000-0002-1632-5374-600Akhmadeev, Ravil-will be generated-orcid-0000-0002-7526-0144-600Adamovich Shichiyakh, RustemAbbasi Zanghaneh, Saraapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clean Energyhttps://academic.oup.com/ce/article/5/4/713/6408859ReliabilityWind turbinePhotovoltaic cellIntelligent algorithmEconomic analysisModelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Eriksson ELV, Gray EM. Optimization of renewable hybrid energy systems—a multi-objective approach. Renewable Energy, 2019, 133:971–999.[2] Alayi R, Ahmadi MH, Visei AR, et al. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: a case study of Saveh City. International Journal of Low-Carbon Technologies, 2021, 16:447–453.[3] Khalili H, Arash A, Alayi R. Simulation and economical optimization hybrid system PV and grid in Ardabil city. Journal of Current Research in Science, 2015, 3:83.[4] Talha M, Sohail M, Tariq R, et al. Impact of oil prices, energy consumption and economic growth on the inflation rate in Malaysia. Cuadernos de Economía, 2021, 44:26–32.[5] Alayi R, Jahanbin F. Generation management analysis of a stand-alone photovoltaic system with battery. Renewable Energy Research and Application, 2020, 1:205–209.[6] Ehyaei MA, Assad MEH. Energy and exergy analyses of wind turbines. In: Assad MEH, Rosen MA (eds). Design and Performance Optimization of Renewable Energy Systems. Oxford, UK: Academic Press, 2021, 195–203. https://www.sciencedirect.com/science/article/pii/B9780128216026000158[7] Sibuea MB, Sibuea SR, Pratama I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. 2021, 23:12–21.[8] Alayi R, Kumar R, Seydnouri SR, et al. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of LowCarbon Technologies, 2021, 16:570–576.[9] Koohi-Fayegh S, Rosen MA. A review of renewable energy options, applications, facilitating technologies and recent developments. European Journal of Sustainable Development Research, 2020,4:em0138.[10] Tun MM. An overview of renewable energy sources and their energy potential for sustainable development in Myanmar. European Journal of Sustainable Development Research, 2019, 3:em0071.[11] Alayi R, Velayti J. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 2021, 7:101–107.[12] Elavarasan RM. The motivation for renewable energy and its comparison with other energy sources: a review. European Journal of Sustainable Development Research, 2019, 3:em0076.[13] Alayi R, Rouhi H. Techno-economic analysis of electrical energy generation from urban waste in Hamadan, Iran. International Journal of Design & Nature and Ecodynamics, 2020, 15:337–341.[14] Kool ED, Cuomo MA, Reddy BV, et al. Multi-generation renewable energy system for dairy farms: exergy analysis. European Journal of Sustainable Development Research, 2018, 2:37.[15] Kasaeian A, Shamel A, Alayi R. Simulation and economic optimization of wind turbines and photovoltaic hybrid system with storage battery and hydrogen tank. Journal of Current Research in Science, 2015, 3:105.[16] Shamel A, Marefati M, Alayi R, et al. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology. Research Journal, 2016, 10:176—181.[17] Barakat S, Ibrahim H, Elbaset AA. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 2020, 60:102178.[18] Alayi R, Khan MRB, Mohmammadi MSG. Feasibility study of grid-connected PV system for peak demand reduction of a residential building in Tehran, Iran. Mathematical Modelling of Engineering Problems, 2020, 7:563–567.[19] Wang R, Xiong J, He MF, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy, 2020, 151:226–237.[20] Yang Y, Li R. Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies, 2020, 13:1585.[21] Ibrahim IA, Sabah S, Abbas R, et al. A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm. Energy Conversion and Management, 2021, 238:114179.[22] Alayi R, Kasaeian A, Najafi A. et al. Optimization and evaluation of a wind, solar and fuel cell hybrid system in supplying electricity to a remote district in national grid. International Journal of Energy Sector Management, 2020, 14:408–418.[23] Ridha HM, Gomes C, Hizam H, et al. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2021, 135:110202.[24] Shivam K, Tzou JC, Wu SC. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Conversion and Management, 2021, 237:114103.[25] Hysa A. Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters. Emerging Science Journal, 2019, 3:395–406.[26] Abbassi R, Abbassi A, Heidari AA, et al. An efficient salp swarminspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 2019, 179:362–372.[27] Shukla A, Khare M, Shukla KN. Modeling and simulation of solar PV module on MATLAB/Simulink. Engineering and Technology, 2015, 4:3297.[28] Bouaziz N, Benfdila A, Lakhlef A. A model for predicting photovoltaic module performances. International Journal of Power Electronics and Drive Systems, 2019, 10:1914.[29] Alvarez DI, Calle Castro CJ, Gonzalez FC, et al. Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador. In:2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 5–8 November 2017, 620–625.[30] Karamichailidou D, Kaloutsa V, Alexandridis A. Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renewable Energy, 2021, 163:2137–2152.[31] Fazlollahi V, Taghizadeh M, Ayatollah zade Shirazi F. Modeling and neuro-fuzzy controller design of a wind turbine in fullload region based on operational data. AUT Journal of Modeling and Simulation, 2019, 51:139–152.[32] Manobel B, Sehnke F, Lazzús JA, et al. Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renewable Energy, 2018, 125:1015–1020.[33] Yang N, Fu Y, Yue H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries. Electrochimica Acta, 2019, 311:8–20.[34] Cui Z, Poblete FR, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Applied Materials & Interfaces, 2019, 11:17836–17842.[35] Khalilnejad A, Sundararajan A, Sarwat A. I Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm. Journal of Modern Power Systems and Clean Energy, 2018, 6:40–49.[36] Moein M, Pahlavan S, Jahangiri M, et al. Finding the minimum distance from the national electricity grid for the cost-effective use of diesel generator-based hybrid renewable systems in Iran. Journal of Renewable Energy and Environment, 2018, 5:8–22.[37] Mostafaeipour A, Jahangiri M, Haghani A, et al. Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports, 2020, 6:2816–2827.[38] Karaboga D. Artificial bee colony algorithm. Scholarpedia, 2010, 5:6915.[39] Gao WF, Liu SY. A modified artificial bee colony algorithm. Computers & Operations Research, 2012, 39:687–697.PublicationORIGINALModelling and reviewing the reliability and.pdfModelling and reviewing the reliability and.pdfapplication/pdf3404548https://repositorio.cuc.edu.co/bitstreams/5a4910e3-07f3-4198-aa41-1b1a999dc20a/download63b063c62fc795f8faedea52d63a5650MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5c18bd1b-c00c-4167-adb8-4f988b0676b3/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d2b1ab48-07bc-4e28-9c51-611d585bf627/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILModelling and reviewing the reliability and.pdf.jpgModelling and reviewing the reliability and.pdf.jpgimage/jpeg55976https://repositorio.cuc.edu.co/bitstreams/8e4658dd-4757-46d3-92da-730c03c2b6ee/download34b9f31529ad9aec4005049411a9139dMD54TEXTModelling and reviewing the reliability and.pdf.txtModelling and reviewing the reliability and.pdf.txttext/plain46837https://repositorio.cuc.edu.co/bitstreams/39e74749-7a0c-429a-ab48-948b07b65701/download72d75c3babbcf4ad3cf1f0b640063eadMD5511323/8992oai:repositorio.cuc.edu.co:11323/89922024-09-17 11:08:59.175http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |