Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms

One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Ther...

Full description

Autores:
Alayi, Reza
Jahangiri, Mehdi
Grimaldo Guerrero, John William
Akhmadeev, Ravil
Adamovich Shichiyakh, Rustem
Abbasi Zanghaneh, Sara
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8992
Acceso en línea:
https://hdl.handle.net/11323/8992
https://doi.org/10.1093/ce/zkab041
https://repositorio.cuc.edu.co/
Palabra clave:
Reliability
Wind turbine
Photovoltaic cell
Intelligent algorithm
Economic analysis
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_97dcd3d76b0d694fb40f14f1aeb5156e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8992
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
title Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
spellingShingle Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
Reliability
Wind turbine
Photovoltaic cell
Intelligent algorithm
Economic analysis
title_short Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
title_full Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
title_fullStr Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
title_full_unstemmed Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
title_sort Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms
dc.creator.fl_str_mv Alayi, Reza
Jahangiri, Mehdi
Grimaldo Guerrero, John William
Akhmadeev, Ravil
Adamovich Shichiyakh, Rustem
Abbasi Zanghaneh, Sara
dc.contributor.author.spa.fl_str_mv Alayi, Reza
Jahangiri, Mehdi
Grimaldo Guerrero, John William
Akhmadeev, Ravil
Adamovich Shichiyakh, Rustem
Abbasi Zanghaneh, Sara
dc.subject.spa.fl_str_mv Reliability
Wind turbine
Photovoltaic cell
Intelligent algorithm
Economic analysis
topic Reliability
Wind turbine
Photovoltaic cell
Intelligent algorithm
Economic analysis
description One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Therefore, the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell, which is needed to investigate their ability to supply electrical energy. To determine this important power production, real data of solar-radiation intensity and wind are used and, in modelling photovoltaic cells, the effects of ambient temperature are also considered. In order to generalize the studied system in all dimensions, different scenarios have been considered. According to the amount of electrical power generated, during the evaluation of these scenarios, two economic parameters, namely the selected scenario of a wind/solar system with diesel-generator support, was determined.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-21T15:00:47Z
dc.date.available.none.fl_str_mv 2022-01-21T15:00:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2515-396X
2515-4230
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8992
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1093/ce/zkab041
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2515-396X
2515-4230
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8992
https://doi.org/10.1093/ce/zkab041
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Eriksson ELV, Gray EM. Optimization of renewable hybrid energy systems—a multi-objective approach. Renewable Energy, 2019, 133:971–999.
[2] Alayi R, Ahmadi MH, Visei AR, et al. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: a case study of Saveh City. International Journal of Low-Carbon Technologies, 2021, 16:447–453.
[3] Khalili H, Arash A, Alayi R. Simulation and economical optimization hybrid system PV and grid in Ardabil city. Journal of Current Research in Science, 2015, 3:83.
[4] Talha M, Sohail M, Tariq R, et al. Impact of oil prices, energy consumption and economic growth on the inflation rate in Malaysia. Cuadernos de Economía, 2021, 44:26–32.
[5] Alayi R, Jahanbin F. Generation management analysis of a stand-alone photovoltaic system with battery. Renewable Energy Research and Application, 2020, 1:205–209.
[6] Ehyaei MA, Assad MEH. Energy and exergy analyses of wind turbines. In: Assad MEH, Rosen MA (eds). Design and Performance Optimization of Renewable Energy Systems. Oxford, UK: Academic Press, 2021, 195–203. https://www.sciencedirect.com/science/article/pii/B9780128216026000158
[7] Sibuea MB, Sibuea SR, Pratama I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. 2021, 23:12–21.
[8] Alayi R, Kumar R, Seydnouri SR, et al. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of LowCarbon Technologies, 2021, 16:570–576.
[9] Koohi-Fayegh S, Rosen MA. A review of renewable energy options, applications, facilitating technologies and recent developments. European Journal of Sustainable Development Research, 2020,4:em0138.
[10] Tun MM. An overview of renewable energy sources and their energy potential for sustainable development in Myanmar. European Journal of Sustainable Development Research, 2019, 3:em0071.
[11] Alayi R, Velayti J. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 2021, 7:101–107.
[12] Elavarasan RM. The motivation for renewable energy and its comparison with other energy sources: a review. European Journal of Sustainable Development Research, 2019, 3:em0076.
[13] Alayi R, Rouhi H. Techno-economic analysis of electrical energy generation from urban waste in Hamadan, Iran. International Journal of Design & Nature and Ecodynamics, 2020, 15:337–341.
[14] Kool ED, Cuomo MA, Reddy BV, et al. Multi-generation renewable energy system for dairy farms: exergy analysis. European Journal of Sustainable Development Research, 2018, 2:37.
[15] Kasaeian A, Shamel A, Alayi R. Simulation and economic optimization of wind turbines and photovoltaic hybrid system with storage battery and hydrogen tank. Journal of Current Research in Science, 2015, 3:105.
[16] Shamel A, Marefati M, Alayi R, et al. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology. Research Journal, 2016, 10:176—181.
[17] Barakat S, Ibrahim H, Elbaset AA. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 2020, 60:102178.
[18] Alayi R, Khan MRB, Mohmammadi MSG. Feasibility study of grid-connected PV system for peak demand reduction of a residential building in Tehran, Iran. Mathematical Modelling of Engineering Problems, 2020, 7:563–567.
[19] Wang R, Xiong J, He MF, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy, 2020, 151:226–237.
[20] Yang Y, Li R. Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies, 2020, 13:1585.
[21] Ibrahim IA, Sabah S, Abbas R, et al. A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm. Energy Conversion and Management, 2021, 238:114179.
[22] Alayi R, Kasaeian A, Najafi A. et al. Optimization and evaluation of a wind, solar and fuel cell hybrid system in supplying electricity to a remote district in national grid. International Journal of Energy Sector Management, 2020, 14:408–418.
[23] Ridha HM, Gomes C, Hizam H, et al. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2021, 135:110202.
[24] Shivam K, Tzou JC, Wu SC. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Conversion and Management, 2021, 237:114103.
[25] Hysa A. Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters. Emerging Science Journal, 2019, 3:395–406.
[26] Abbassi R, Abbassi A, Heidari AA, et al. An efficient salp swarminspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 2019, 179:362–372.
[27] Shukla A, Khare M, Shukla KN. Modeling and simulation of solar PV module on MATLAB/Simulink. Engineering and Technology, 2015, 4:3297.
[28] Bouaziz N, Benfdila A, Lakhlef A. A model for predicting photovoltaic module performances. International Journal of Power Electronics and Drive Systems, 2019, 10:1914.
[29] Alvarez DI, Calle Castro CJ, Gonzalez FC, et al. Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador. In:2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 5–8 November 2017, 620–625.
[30] Karamichailidou D, Kaloutsa V, Alexandridis A. Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renewable Energy, 2021, 163:2137–2152.
[31] Fazlollahi V, Taghizadeh M, Ayatollah zade Shirazi F. Modeling and neuro-fuzzy controller design of a wind turbine in fullload region based on operational data. AUT Journal of Modeling and Simulation, 2019, 51:139–152.
[32] Manobel B, Sehnke F, Lazzús JA, et al. Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renewable Energy, 2018, 125:1015–1020.
[33] Yang N, Fu Y, Yue H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries. Electrochimica Acta, 2019, 311:8–20.
[34] Cui Z, Poblete FR, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Applied Materials & Interfaces, 2019, 11:17836–17842.
[35] Khalilnejad A, Sundararajan A, Sarwat A. I Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm. Journal of Modern Power Systems and Clean Energy, 2018, 6:40–49.
[36] Moein M, Pahlavan S, Jahangiri M, et al. Finding the minimum distance from the national electricity grid for the cost-effective use of diesel generator-based hybrid renewable systems in Iran. Journal of Renewable Energy and Environment, 2018, 5:8–22.
[37] Mostafaeipour A, Jahangiri M, Haghani A, et al. Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports, 2020, 6:2816–2827.
[38] Karaboga D. Artificial bee colony algorithm. Scholarpedia, 2010, 5:6915.
[39] Gao WF, Liu SY. A modified artificial bee colony algorithm. Computers & Operations Research, 2012, 39:687–697.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Clean Energy
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://academic.oup.com/ce/article/5/4/713/6408859
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8992/1/Modelling%20and%20reviewing%20the%20reliability%20and.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8992/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8992/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8992/4/Modelling%20and%20reviewing%20the%20reliability%20and.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8992/5/Modelling%20and%20reviewing%20the%20reliability%20and.pdf.txt
bitstream.checksum.fl_str_mv 63b063c62fc795f8faedea52d63a5650
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
34b9f31529ad9aec4005049411a9139d
72d75c3babbcf4ad3cf1f0b640063ead
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400117265334272
spelling Alayi, Rezac27132df65ad8e552d321670b58aa14c300Jahangiri, Mehdi37e437e76632044b6db949a2d1a36cb1300Grimaldo Guerrero, John William4554b13a3632a3d9cb61becc3dd94e2dAkhmadeev, Ravil03b29165edce3c8ced19a7a14f442a7d300Adamovich Shichiyakh, Rustem3d39a92fa683101fe5ef4f124de71d3e300Abbasi Zanghaneh, Sara8f40858f1915a0ecbe7642b8def62aa73002022-01-21T15:00:47Z2022-01-21T15:00:47Z20212515-396X2515-4230https://hdl.handle.net/11323/8992https://doi.org/10.1093/ce/zkab041Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the options for non-dependence on fossil fuels is the use of renewable energy, which has not grown significantly due to the variable nature of this type of energy. The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output. Therefore, the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell, which is needed to investigate their ability to supply electrical energy. To determine this important power production, real data of solar-radiation intensity and wind are used and, in modelling photovoltaic cells, the effects of ambient temperature are also considered. In order to generalize the studied system in all dimensions, different scenarios have been considered. According to the amount of electrical power generated, during the evaluation of these scenarios, two economic parameters, namely the selected scenario of a wind/solar system with diesel-generator support, was determined.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clean Energyhttps://academic.oup.com/ce/article/5/4/713/6408859ReliabilityWind turbinePhotovoltaic cellIntelligent algorithmEconomic analysisModelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Eriksson ELV, Gray EM. Optimization of renewable hybrid energy systems—a multi-objective approach. Renewable Energy, 2019, 133:971–999.[2] Alayi R, Ahmadi MH, Visei AR, et al. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: a case study of Saveh City. International Journal of Low-Carbon Technologies, 2021, 16:447–453.[3] Khalili H, Arash A, Alayi R. Simulation and economical optimization hybrid system PV and grid in Ardabil city. Journal of Current Research in Science, 2015, 3:83.[4] Talha M, Sohail M, Tariq R, et al. Impact of oil prices, energy consumption and economic growth on the inflation rate in Malaysia. Cuadernos de Economía, 2021, 44:26–32.[5] Alayi R, Jahanbin F. Generation management analysis of a stand-alone photovoltaic system with battery. Renewable Energy Research and Application, 2020, 1:205–209.[6] Ehyaei MA, Assad MEH. Energy and exergy analyses of wind turbines. In: Assad MEH, Rosen MA (eds). Design and Performance Optimization of Renewable Energy Systems. Oxford, UK: Academic Press, 2021, 195–203. https://www.sciencedirect.com/science/article/pii/B9780128216026000158[7] Sibuea MB, Sibuea SR, Pratama I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. 2021, 23:12–21.[8] Alayi R, Kumar R, Seydnouri SR, et al. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of LowCarbon Technologies, 2021, 16:570–576.[9] Koohi-Fayegh S, Rosen MA. A review of renewable energy options, applications, facilitating technologies and recent developments. European Journal of Sustainable Development Research, 2020,4:em0138.[10] Tun MM. An overview of renewable energy sources and their energy potential for sustainable development in Myanmar. European Journal of Sustainable Development Research, 2019, 3:em0071.[11] Alayi R, Velayti J. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 2021, 7:101–107.[12] Elavarasan RM. The motivation for renewable energy and its comparison with other energy sources: a review. European Journal of Sustainable Development Research, 2019, 3:em0076.[13] Alayi R, Rouhi H. Techno-economic analysis of electrical energy generation from urban waste in Hamadan, Iran. International Journal of Design & Nature and Ecodynamics, 2020, 15:337–341.[14] Kool ED, Cuomo MA, Reddy BV, et al. Multi-generation renewable energy system for dairy farms: exergy analysis. European Journal of Sustainable Development Research, 2018, 2:37.[15] Kasaeian A, Shamel A, Alayi R. Simulation and economic optimization of wind turbines and photovoltaic hybrid system with storage battery and hydrogen tank. Journal of Current Research in Science, 2015, 3:105.[16] Shamel A, Marefati M, Alayi R, et al. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology. Research Journal, 2016, 10:176—181.[17] Barakat S, Ibrahim H, Elbaset AA. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 2020, 60:102178.[18] Alayi R, Khan MRB, Mohmammadi MSG. Feasibility study of grid-connected PV system for peak demand reduction of a residential building in Tehran, Iran. Mathematical Modelling of Engineering Problems, 2020, 7:563–567.[19] Wang R, Xiong J, He MF, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy, 2020, 151:226–237.[20] Yang Y, Li R. Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies, 2020, 13:1585.[21] Ibrahim IA, Sabah S, Abbas R, et al. A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm. Energy Conversion and Management, 2021, 238:114179.[22] Alayi R, Kasaeian A, Najafi A. et al. Optimization and evaluation of a wind, solar and fuel cell hybrid system in supplying electricity to a remote district in national grid. International Journal of Energy Sector Management, 2020, 14:408–418.[23] Ridha HM, Gomes C, Hizam H, et al. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2021, 135:110202.[24] Shivam K, Tzou JC, Wu SC. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Conversion and Management, 2021, 237:114103.[25] Hysa A. Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters. Emerging Science Journal, 2019, 3:395–406.[26] Abbassi R, Abbassi A, Heidari AA, et al. An efficient salp swarminspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 2019, 179:362–372.[27] Shukla A, Khare M, Shukla KN. Modeling and simulation of solar PV module on MATLAB/Simulink. Engineering and Technology, 2015, 4:3297.[28] Bouaziz N, Benfdila A, Lakhlef A. A model for predicting photovoltaic module performances. International Journal of Power Electronics and Drive Systems, 2019, 10:1914.[29] Alvarez DI, Calle Castro CJ, Gonzalez FC, et al. Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador. In:2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 5–8 November 2017, 620–625.[30] Karamichailidou D, Kaloutsa V, Alexandridis A. Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renewable Energy, 2021, 163:2137–2152.[31] Fazlollahi V, Taghizadeh M, Ayatollah zade Shirazi F. Modeling and neuro-fuzzy controller design of a wind turbine in fullload region based on operational data. AUT Journal of Modeling and Simulation, 2019, 51:139–152.[32] Manobel B, Sehnke F, Lazzús JA, et al. Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renewable Energy, 2018, 125:1015–1020.[33] Yang N, Fu Y, Yue H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries. Electrochimica Acta, 2019, 311:8–20.[34] Cui Z, Poblete FR, Zhu Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Applied Materials & Interfaces, 2019, 11:17836–17842.[35] Khalilnejad A, Sundararajan A, Sarwat A. I Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm. Journal of Modern Power Systems and Clean Energy, 2018, 6:40–49.[36] Moein M, Pahlavan S, Jahangiri M, et al. Finding the minimum distance from the national electricity grid for the cost-effective use of diesel generator-based hybrid renewable systems in Iran. Journal of Renewable Energy and Environment, 2018, 5:8–22.[37] Mostafaeipour A, Jahangiri M, Haghani A, et al. Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports, 2020, 6:2816–2827.[38] Karaboga D. Artificial bee colony algorithm. Scholarpedia, 2010, 5:6915.[39] Gao WF, Liu SY. A modified artificial bee colony algorithm. Computers & Operations Research, 2012, 39:687–697.ORIGINALModelling and reviewing the reliability and.pdfModelling and reviewing the reliability and.pdfapplication/pdf3404548https://repositorio.cuc.edu.co/bitstream/11323/8992/1/Modelling%20and%20reviewing%20the%20reliability%20and.pdf63b063c62fc795f8faedea52d63a5650MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8992/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8992/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILModelling and reviewing the reliability and.pdf.jpgModelling and reviewing the reliability and.pdf.jpgimage/jpeg55976https://repositorio.cuc.edu.co/bitstream/11323/8992/4/Modelling%20and%20reviewing%20the%20reliability%20and.pdf.jpg34b9f31529ad9aec4005049411a9139dMD54open accessTEXTModelling and reviewing the reliability and.pdf.txtModelling and reviewing the reliability and.pdf.txttext/plain46837https://repositorio.cuc.edu.co/bitstream/11323/8992/5/Modelling%20and%20reviewing%20the%20reliability%20and.pdf.txt72d75c3babbcf4ad3cf1f0b640063eadMD55open access11323/8992oai:repositorio.cuc.edu.co:11323/89922023-12-14 14:27:47.88CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==