Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue
The performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor: fluidized bed, packed bed with a divided cell and packed bed with an undivided cell....
- Autores:
-
Acuña Bedoya, Jawer David
Comas Cabrales, Jovannis Alexander
Alvarez Pugliese, Christian Eduardo
Marriaga-Cabrales, Nilson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8075
- Acceso en línea:
- https://hdl.handle.net/11323/8075
https://doi.org/10.1016/j.jece.2020.104074
https://repositorio.cuc.edu.co/
- Palabra clave:
- BDD
Adsorption
Electrolytic regeneration
Wastewater
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_95fcc54c50ed7b195cb144f8a3008cf3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8075 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
title |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
spellingShingle |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue BDD Adsorption Electrolytic regeneration Wastewater |
title_short |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
title_full |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
title_fullStr |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
title_full_unstemmed |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
title_sort |
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue |
dc.creator.fl_str_mv |
Acuña Bedoya, Jawer David Comas Cabrales, Jovannis Alexander Alvarez Pugliese, Christian Eduardo Marriaga-Cabrales, Nilson |
dc.contributor.author.spa.fl_str_mv |
Acuña Bedoya, Jawer David Comas Cabrales, Jovannis Alexander Alvarez Pugliese, Christian Eduardo Marriaga-Cabrales, Nilson |
dc.subject.spa.fl_str_mv |
BDD Adsorption Electrolytic regeneration Wastewater |
topic |
BDD Adsorption Electrolytic regeneration Wastewater |
description |
The performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor: fluidized bed, packed bed with a divided cell and packed bed with an undivided cell. The GAC used was previously saturated with a synthetic solution of methylene blue (MB). The effects of three operational parameters were evaluated: current density, initial pH and reaction time, and NaCl as the electrolyte. Regeneration efficiencies (REs) of up to 76% ± 2 were achieved with a current density of 6 mA·cm-2 during 24 h of reaction, and a specific electric energy consumption of 1530 kWh ton-1 of GAC was obtained. The best results were obtained using the packed bed reactor with a divided cell and the GAC in the cathodic compartment. The present results were attributed to an improvement in the desorption caused by the local alkaline pH in the cathodic compartment, to the contribution of the electrochemical oxidation by the hydroxyl radical, and, in parallel, to the chemical oxidation of the organic compounds by the oxidizing species formed from the chloride ion. It was also found that the electrochemical regeneration process has a negative effect on the GAC integrity after three cycles of continuous regeneration |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-05-27 |
dc.date.accessioned.none.fl_str_mv |
2021-03-26T15:35:29Z |
dc.date.available.none.fl_str_mv |
2021-03-26T15:35:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
22133437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8075 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2020.104074 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
22133437 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8075 https://doi.org/10.1016/j.jece.2020.104074 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desalin. Water Treat. 57 (2016) 518–544. [2] L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J. 155 (2009) 763–768. doi:10.1016/j.cej.2009.09.020. [3] X. Liu, G. Yu, W. Han, Granular activated carbon adsorption and microwave regeneration for the treatment of 2 , 4 , 5-trichlorobiphenyl in simulated soil-washing solution, 147 (2007) 746–751. doi:10.1016/j.jhazmat.2007.01.076 [4] X. Quan, X.L. Ã, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7- exhausted granular activated carbons with microwave irradiation, 38 (2004) 4484– 4490. doi:10.1016/j.watres.2004.08.031. [5] J.-L. Lim, M. Okada, Regeneration of granular activated carbon using ultrasound., Ultrason. Sonochem. 12 (2005) 277–282. doi:10.1016/j.ultsonch.2004.02.003 [6] P.M. Alvarez, F.J. Beltran, V. Gomez-Serrano, J. Jaramillo, E.M. Rodriguez, Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res. 38 (2004) 2155–2165. doi:10.1016/j.watres.2004.01.030. [7] R.M. Narbaitz, A. Karimi‐ Jashni, Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter, Environ. Technol. 30 (2009) 27–36. doi:10.1080/09593330802422803 [8] I. Benhamed, L. Barthe, R. Kessas, C. Julcour, H. Delmas, Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation, Appl. Catal. B Environ. 187 (2016) 228–237. doi:10.1016/j.apcatb.2016.01.016. [9] D. Feng, H. Tan, J.S.J. Van Deventer, Ultrasonic elution of gold from activated Journal Pre-proof 26 carbon, Miner. Eng. 16 (2003) 257–264 [10] K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon, Bioresour. Technol. 119 (2012) 41–47. doi:10.1016/j.biortech.2012.05.061. [11] Q. Zhang, S. Cheng, H. Xia, L. Zhang, Removal of Congo red and methylene blue using H2O2 modified activated carbon by microwave regeneration: isotherm and kinetic studies, Mater. Res. Express. 6 (2019) 0–22. [12] Y. Sun, B. Zhang, T. Zheng, P. Wang, Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation, Chem. Eng. J. 320 (2017) 264–270. doi:10.1016/j.cej.2017.03.007. [13] M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of activated carbon: A comprehensive review, Sep. Purif. Technol. 197 (2018) 345– 359. doi:10.1016/j.seppur.2018.01.015. [14] Y. Zhang, D. Yang, P. Ning, Y. Li, S. Tian, J. Gu, Regeneration of Phenol-Saturated Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal Catalysts, J. Environ. Eng. (United States). 145 (2019) 1–10. doi:10.1061/(ASCE)EE.1943-7870.0001601 [15] Y. Ito, I. Ushiki, Y. Sato, H. Inomata, Influence of Heat Treatment in Exhaust Treatment Process on Activated Carbon Regeneration using Supercritical Carbon Dioxide, KAGAKU KOGAKU RONBUNSHU. 45 (2019) 133–139. doi:10.1252/kakoronbunshu.45.133. [16] Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod. 86 (2015) 424–431. doi:10.1016/j.jclepro.2014.08.008. [17] R.M. Narbaitz, A. Karimi-Jashni, Electrochemical reactivation of granular activated Journal Pre-proof 27 carbon: Impact of reactor configuration, Chem. Eng. J. 197 (2012) 414–423. doi:10.1016/j.cej.2012.05.049 [18] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere. 65 (2006) 1197–1203. doi:10.1016/j.chemosphere.2006.03.054. [19] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium, Carbon N. Y. 48 (2010) 2734–2745. doi:10.1016/j.carbon.2010.03.071. [20] M. Garcia-Oton, F. Montilla, M.A. Lillo-Rodenas, E. Morallón, J.L. Vazquez, Electrochemical Regeneration of Activated Carbon Saturated with Toluene, J. Appl. Electrochem. 35 (2005) 319–325. doi:10.1007/s10800-004-7470-3. [21] H. Zhang, Regeneration of exhausted activated carbon by electrochemical method, 85 (2002) 81–85. doi:https://doi.org/10.1016/S1385-8947(01)00176-0. [22] C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol. 64 (2008) 227–236. doi:10.1016/j.seppur.2008.10.006. [23] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014) [24] D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30 (2000) 1345–1350. doi:10.1023/A:1026526729357. [25] A.A. Najafpoor, M. Davoudi, E. Rahmanpour Salmani, Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator, J. Environ. Heal. Sci. Eng. 15 (2017) 1–11. doi:10.1186/s40201-017-0273-3. [26] M.H. Zhou, L.C. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta. 51 (2006) 4489–4496. doi:10.1016/j.electacta.2005.12.028. [27] R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res. 31 (1997) 2532–2542. doi:10.1016/S0043-1354(97)00085-7 [28] T.C. An, X.H. Zhu, Y. Xiong, Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor, Chemosphere. 46 (2002) 897–903. doi:10.1016/S0045-6535(01)00157-6. [29] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8. doi:10.1016/j.seppur.2016.11.020. [30] C. a. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B Environ. 87 (2009) 105–145. doi:10.1016/j.apcatb.2008.09.017. [31] C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: A general review, Chem. Eng. J. 228 (2013) 455–467. doi:10.1016/j.cej.2013.05.033 Review. [32] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454. doi:10.1016/j.rser.2015.10.139. [33] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn ( OH ) 6 Photocatalyst for Methylene Blue Degradation : Electrolyte-Dependent Morphology and Performance, (2018) 10849–10856. doi:10.1002/slct.201802195. [34] F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater. 165 (2009) 291–299. doi:10.1016/j.jhazmat.2008.09.106. [35] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973. doi:10.1002/aic.690190245. [36] R. V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: A review, J. Hazard. Mater. 355 (2018) 34–49 doi:10.1016/j.jhazmat.2018.04.079 [37] B. Liu, H. Cang, L. Cui, H. Zhang, Electrochemical polymerization of methylene blue on glassy carbon electrode, Int. J. Electrochem. Sci. 12 (2017) 9907–9913. doi:10.20964/2017.10.49 [38] S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, 284 (2005) 440–446. doi:10.1016/j.jcis.2004.10.050 [39] R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res. 28 (1994) 1771–1778. doi:10.1016/0043-1354(94)90250-X [40] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical reactivation of granular activated carbon: pH dependence, J. Environ. Eng. Sci. 4 (2005) 187–194. doi:10.1139/s04-055. [41] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical Reactivation of Granular Activated Carbon: Effect of Electrolyte Mixing, J. Environ. Eng. 131 (2005) 443– 449. doi:10.1061/(ASCE)0733-9372(2005)131:3(443). [42] C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199. doi:10.1016/j.diamond.2019.02.018 [43] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260. doi:10.1021/ie401571p. [44] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Applied Catalysis B : Environmental Electrochemical oxidation of ofloxacin using a TiO 2 -based kinetics and mass transfer impact, "Applied Catal. B, Environ. 203 (2017) 515–525. doi:10.1016/j.apcatb.2016.10.057. [45] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89. doi:10.1016/j.elecom.2019.01.025. [46] J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption, Chemosphere. 171 (2017) 332–338. doi:10.1016/j.chemosphere.2016.12.065. [47] J. Muff, H. Jepsen, E. Søgaard, Bench-Scale Study of Electrochemical Oxidation for On-Site Treatment of Polluted Groundwater, J. Environ. Eng. 138 (2012) 915–922. Journal Pre-proof 31 doi:10.1061/(ASCE)EE.1943-7870.0000561. [48] P.J. Tauetsile, E.A. Oraby, J.J. Eksteen, Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 1: Isotherms, Hydrometallurgy. 178 (2018) 202–208. doi:10.1016/j.hydromet.2018.04.015. [49] B. Karabacakoğlu, O. Savlak, Electrochemical Regeneration of Cr (VI) Saturated Granular and Powder Activated Carbon : Comparison of Regeneration Efficiency, Ind. Eng. Chem. Res. 53 (2014). doi:dx.doi.org/10.1021/ie500161d [50] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559. doi:10.1016/j.jhazmat.2009.05.057. [51] J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. Und Stoffuebertragung. 42 (2006) 279–310. doi:10.1007/s00231-005-0019-0. [52] N. ‐ W Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution, AIChE J. 31 (1985) 277–288. doi:10.1002/aic.690310215 [53] D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (2005) 6947–6957. doi:10.1016/j.ces.2005.05.068. [54] Mintek, Energy efficient Minfurn TM for regeneration of activated carbon, (n.d.) 1. http://www.mintek.co.za/wp-content/uploads/2014/10/The-MinfurnTM-energyefficient-carbon-furnace-2014.pdf (accessed December 14, 2015). [55] S. Bradshaw, E. Van Wyk, J. De Swardt, Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process, J. Microw. Power Electromagn. Energy. 32 (1997) 131–144. http://cat.inist.fr/?aModele=afficheN&cpsidt=10861378. [56] Condias, DIACHEM® DIAMOND ELECTRODES, (n.d.). https://condias.de/en/products/diachem/ (accessed January 26, 2020). [57] X.R. Lu, M.H. Ding, C. Zhang, W.Z. Tang, Comparative study on stability of boron doped diamond coated titanium and niobium electrodes, Diam. Relat. Mater. 93 (2019) 26–33. doi:10.1016/j.diamond.2019.01.010. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.researchgate.net/publication/341534206_Evaluation_of_electrolytic_reactor_configuration_for_the_regeneration_of_granular_activated_carbon_saturated_with_methylene_blue |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7b1b3540-1a70-4336-8244-57ec7499699f/download https://repositorio.cuc.edu.co/bitstreams/9b33bf96-1b66-4275-9b67-56f261743cba/download https://repositorio.cuc.edu.co/bitstreams/8fd58892-3bea-45f6-b5b0-ce3a1a07203a/download https://repositorio.cuc.edu.co/bitstreams/59f0abfd-99bc-42ec-a115-f4e4065f3011/download https://repositorio.cuc.edu.co/bitstreams/279c84d7-fb89-4f5a-85fd-09d08c330869/download |
bitstream.checksum.fl_str_mv |
a3e5784dcad08522c70c3a8e126c7cac 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 046eb008ba1d3e5a6901f185c1e58336 7910a629ebcf1c5e1f5ece69987a01f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166884681318400 |
spelling |
Acuña Bedoya, Jawer DavidComas Cabrales, Jovannis AlexanderAlvarez Pugliese, Christian EduardoMarriaga-Cabrales, Nilson2021-03-26T15:35:29Z2021-03-26T15:35:29Z2020-05-2722133437https://hdl.handle.net/11323/8075https://doi.org/10.1016/j.jece.2020.104074Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor: fluidized bed, packed bed with a divided cell and packed bed with an undivided cell. The GAC used was previously saturated with a synthetic solution of methylene blue (MB). The effects of three operational parameters were evaluated: current density, initial pH and reaction time, and NaCl as the electrolyte. Regeneration efficiencies (REs) of up to 76% ± 2 were achieved with a current density of 6 mA·cm-2 during 24 h of reaction, and a specific electric energy consumption of 1530 kWh ton-1 of GAC was obtained. The best results were obtained using the packed bed reactor with a divided cell and the GAC in the cathodic compartment. The present results were attributed to an improvement in the desorption caused by the local alkaline pH in the cathodic compartment, to the contribution of the electrochemical oxidation by the hydroxyl radical, and, in parallel, to the chemical oxidation of the organic compounds by the oxidizing species formed from the chloride ion. It was also found that the electrochemical regeneration process has a negative effect on the GAC integrity after three cycles of continuous regenerationAcuña Bedoya, Jawer David-will be generated-orcid-0000-0002-2707-3010-600Comas Cabrales, Jovannis Alexander-will be generated-orcid-0000-0003-4519-522X-600Alvarez Pugliese, Christian Eduardo-will be generated-orcid-0000-0003-3177-0086-600Marriaga-Cabrales, Nilson-will be generated-orcid-0000-0002-5046-9371-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.researchgate.net/publication/341534206_Evaluation_of_electrolytic_reactor_configuration_for_the_regeneration_of_granular_activated_carbon_saturated_with_methylene_blueBDDAdsorptionElectrolytic regenerationWastewaterEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blueArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desalin. Water Treat. 57 (2016) 518–544.[2] L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J. 155 (2009) 763–768. doi:10.1016/j.cej.2009.09.020.[3] X. Liu, G. Yu, W. Han, Granular activated carbon adsorption and microwave regeneration for the treatment of 2 , 4 , 5-trichlorobiphenyl in simulated soil-washing solution, 147 (2007) 746–751. doi:10.1016/j.jhazmat.2007.01.076[4] X. Quan, X.L. Ã, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7- exhausted granular activated carbons with microwave irradiation, 38 (2004) 4484– 4490. doi:10.1016/j.watres.2004.08.031.[5] J.-L. Lim, M. Okada, Regeneration of granular activated carbon using ultrasound., Ultrason. Sonochem. 12 (2005) 277–282. doi:10.1016/j.ultsonch.2004.02.003[6] P.M. Alvarez, F.J. Beltran, V. Gomez-Serrano, J. Jaramillo, E.M. Rodriguez, Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res. 38 (2004) 2155–2165. doi:10.1016/j.watres.2004.01.030.[7] R.M. Narbaitz, A. Karimi‐ Jashni, Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter, Environ. Technol. 30 (2009) 27–36. doi:10.1080/09593330802422803[8] I. Benhamed, L. Barthe, R. Kessas, C. Julcour, H. Delmas, Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation, Appl. Catal. B Environ. 187 (2016) 228–237. doi:10.1016/j.apcatb.2016.01.016.[9] D. Feng, H. Tan, J.S.J. Van Deventer, Ultrasonic elution of gold from activated Journal Pre-proof 26 carbon, Miner. Eng. 16 (2003) 257–264[10] K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon, Bioresour. Technol. 119 (2012) 41–47. doi:10.1016/j.biortech.2012.05.061.[11] Q. Zhang, S. Cheng, H. Xia, L. Zhang, Removal of Congo red and methylene blue using H2O2 modified activated carbon by microwave regeneration: isotherm and kinetic studies, Mater. Res. Express. 6 (2019) 0–22.[12] Y. Sun, B. Zhang, T. Zheng, P. Wang, Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation, Chem. Eng. J. 320 (2017) 264–270. doi:10.1016/j.cej.2017.03.007.[13] M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of activated carbon: A comprehensive review, Sep. Purif. Technol. 197 (2018) 345– 359. doi:10.1016/j.seppur.2018.01.015.[14] Y. Zhang, D. Yang, P. Ning, Y. Li, S. Tian, J. Gu, Regeneration of Phenol-Saturated Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal Catalysts, J. Environ. Eng. (United States). 145 (2019) 1–10. doi:10.1061/(ASCE)EE.1943-7870.0001601[15] Y. Ito, I. Ushiki, Y. Sato, H. Inomata, Influence of Heat Treatment in Exhaust Treatment Process on Activated Carbon Regeneration using Supercritical Carbon Dioxide, KAGAKU KOGAKU RONBUNSHU. 45 (2019) 133–139. doi:10.1252/kakoronbunshu.45.133.[16] Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod. 86 (2015) 424–431. doi:10.1016/j.jclepro.2014.08.008.[17] R.M. Narbaitz, A. Karimi-Jashni, Electrochemical reactivation of granular activated Journal Pre-proof 27 carbon: Impact of reactor configuration, Chem. Eng. J. 197 (2012) 414–423. doi:10.1016/j.cej.2012.05.049[18] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere. 65 (2006) 1197–1203. doi:10.1016/j.chemosphere.2006.03.054.[19] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium, Carbon N. Y. 48 (2010) 2734–2745. doi:10.1016/j.carbon.2010.03.071.[20] M. Garcia-Oton, F. Montilla, M.A. Lillo-Rodenas, E. Morallón, J.L. Vazquez, Electrochemical Regeneration of Activated Carbon Saturated with Toluene, J. Appl. Electrochem. 35 (2005) 319–325. doi:10.1007/s10800-004-7470-3.[21] H. Zhang, Regeneration of exhausted activated carbon by electrochemical method, 85 (2002) 81–85. doi:https://doi.org/10.1016/S1385-8947(01)00176-0.[22] C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol. 64 (2008) 227–236. doi:10.1016/j.seppur.2008.10.006.[23] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014)[24] D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30 (2000) 1345–1350. doi:10.1023/A:1026526729357.[25] A.A. Najafpoor, M. Davoudi, E. Rahmanpour Salmani, Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator, J. Environ. Heal. Sci. Eng. 15 (2017) 1–11. doi:10.1186/s40201-017-0273-3.[26] M.H. Zhou, L.C. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta. 51 (2006) 4489–4496. doi:10.1016/j.electacta.2005.12.028.[27] R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res. 31 (1997) 2532–2542. doi:10.1016/S0043-1354(97)00085-7[28] T.C. An, X.H. Zhu, Y. Xiong, Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor, Chemosphere. 46 (2002) 897–903. doi:10.1016/S0045-6535(01)00157-6.[29] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8. doi:10.1016/j.seppur.2016.11.020.[30] C. a. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B Environ. 87 (2009) 105–145. doi:10.1016/j.apcatb.2008.09.017.[31] C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: A general review, Chem. Eng. J. 228 (2013) 455–467. doi:10.1016/j.cej.2013.05.033 Review.[32] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454. doi:10.1016/j.rser.2015.10.139.[33] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn ( OH ) 6 Photocatalyst for Methylene Blue Degradation : Electrolyte-Dependent Morphology and Performance, (2018) 10849–10856. doi:10.1002/slct.201802195.[34] F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater. 165 (2009) 291–299. doi:10.1016/j.jhazmat.2008.09.106.[35] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973. doi:10.1002/aic.690190245.[36] R. V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: A review, J. Hazard. Mater. 355 (2018) 34–49 doi:10.1016/j.jhazmat.2018.04.079[37] B. Liu, H. Cang, L. Cui, H. Zhang, Electrochemical polymerization of methylene blue on glassy carbon electrode, Int. J. Electrochem. Sci. 12 (2017) 9907–9913. doi:10.20964/2017.10.49[38] S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, 284 (2005) 440–446. doi:10.1016/j.jcis.2004.10.050[39] R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res. 28 (1994) 1771–1778. doi:10.1016/0043-1354(94)90250-X[40] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical reactivation of granular activated carbon: pH dependence, J. Environ. Eng. Sci. 4 (2005) 187–194. doi:10.1139/s04-055.[41] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical Reactivation of Granular Activated Carbon: Effect of Electrolyte Mixing, J. Environ. Eng. 131 (2005) 443– 449. doi:10.1061/(ASCE)0733-9372(2005)131:3(443).[42] C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199. doi:10.1016/j.diamond.2019.02.018[43] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260. doi:10.1021/ie401571p.[44] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Applied Catalysis B : Environmental Electrochemical oxidation of ofloxacin using a TiO 2 -based kinetics and mass transfer impact, "Applied Catal. B, Environ. 203 (2017) 515–525. doi:10.1016/j.apcatb.2016.10.057.[45] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89. doi:10.1016/j.elecom.2019.01.025.[46] J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption, Chemosphere. 171 (2017) 332–338. doi:10.1016/j.chemosphere.2016.12.065.[47] J. Muff, H. Jepsen, E. Søgaard, Bench-Scale Study of Electrochemical Oxidation for On-Site Treatment of Polluted Groundwater, J. Environ. Eng. 138 (2012) 915–922. Journal Pre-proof 31 doi:10.1061/(ASCE)EE.1943-7870.0000561.[48] P.J. Tauetsile, E.A. Oraby, J.J. Eksteen, Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 1: Isotherms, Hydrometallurgy. 178 (2018) 202–208. doi:10.1016/j.hydromet.2018.04.015.[49] B. Karabacakoğlu, O. Savlak, Electrochemical Regeneration of Cr (VI) Saturated Granular and Powder Activated Carbon : Comparison of Regeneration Efficiency, Ind. Eng. Chem. Res. 53 (2014). doi:dx.doi.org/10.1021/ie500161d[50] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559. doi:10.1016/j.jhazmat.2009.05.057.[51] J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. Und Stoffuebertragung. 42 (2006) 279–310. doi:10.1007/s00231-005-0019-0.[52] N. ‐ W Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution, AIChE J. 31 (1985) 277–288. doi:10.1002/aic.690310215[53] D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (2005) 6947–6957. doi:10.1016/j.ces.2005.05.068.[54] Mintek, Energy efficient Minfurn TM for regeneration of activated carbon, (n.d.) 1. http://www.mintek.co.za/wp-content/uploads/2014/10/The-MinfurnTM-energyefficient-carbon-furnace-2014.pdf (accessed December 14, 2015).[55] S. Bradshaw, E. Van Wyk, J. De Swardt, Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process, J. Microw. Power Electromagn. Energy. 32 (1997) 131–144. http://cat.inist.fr/?aModele=afficheN&cpsidt=10861378.[56] Condias, DIACHEM® DIAMOND ELECTRODES, (n.d.). https://condias.de/en/products/diachem/ (accessed January 26, 2020).[57] X.R. Lu, M.H. Ding, C. Zhang, W.Z. Tang, Comparative study on stability of boron doped diamond coated titanium and niobium electrodes, Diam. Relat. Mater. 93 (2019) 26–33. doi:10.1016/j.diamond.2019.01.010.PublicationORIGINALEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdfEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdfapplication/pdf3832436https://repositorio.cuc.edu.co/bitstreams/7b1b3540-1a70-4336-8244-57ec7499699f/downloada3e5784dcad08522c70c3a8e126c7cacMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9b33bf96-1b66-4275-9b67-56f261743cba/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8fd58892-3bea-45f6-b5b0-ce3a1a07203a/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdf.jpgEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdf.jpgimage/jpeg25377https://repositorio.cuc.edu.co/bitstreams/59f0abfd-99bc-42ec-a115-f4e4065f3011/download046eb008ba1d3e5a6901f185c1e58336MD54TEXTEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdf.txtEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue.pdf.txttext/plain50053https://repositorio.cuc.edu.co/bitstreams/279c84d7-fb89-4f5a-85fd-09d08c330869/download7910a629ebcf1c5e1f5ece69987a01f7MD5511323/8075oai:repositorio.cuc.edu.co:11323/80752024-09-17 14:21:58.255http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |