Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium
Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds...
- Autores:
-
Hernandes, Paola T
Pfingsten Franco, Dison Stracke
georgin, jordana
P. G. Salau, Nina
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9339
- Acceso en línea:
- https://hdl.handle.net/11323/9339
https://doi.org/10.1016/j.jece.2022.107408.
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption
Atrazine
Biochar
Pesticides
River water
- Rights
- embargoedAccess
- License
- © 2022 Elsevier Ltd. All rights reserved.
id |
RCUC2_956b15ed09814814f90a77ac3e882918 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9339 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
spellingShingle |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium Adsorption Atrazine Biochar Pesticides River water |
title_short |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_full |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_fullStr |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_full_unstemmed |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_sort |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
dc.creator.fl_str_mv |
Hernandes, Paola T Pfingsten Franco, Dison Stracke georgin, jordana P. G. Salau, Nina Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Hernandes, Paola T Pfingsten Franco, Dison Stracke georgin, jordana P. G. Salau, Nina Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Atrazine Biochar Pesticides River water |
topic |
Adsorption Atrazine Biochar Pesticides River water |
description |
Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal. © 2022 Elsevier Ltd. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-07T13:23:23Z |
dc.date.available.none.fl_str_mv |
2022-07-07T13:23:23Z 2024 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Paola T. Hernandes, Dison S.P. Franco, Jordana Georgin, Nina P.G. Salau, Guilherme L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, Journal of Environmental Chemical Engineering, Volume 10, Issue 3, 2022, 107408, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.107408. |
dc.identifier.issn.spa.fl_str_mv |
2213-3437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9339 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2022.107408. |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.jece.2022.107408. |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Paola T. Hernandes, Dison S.P. Franco, Jordana Georgin, Nina P.G. Salau, Guilherme L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, Journal of Environmental Chemical Engineering, Volume 10, Issue 3, 2022, 107408, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.107408. 2213-3437 10.1016/j.jece.2022.107408. Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9339 https://doi.org/10.1016/j.jece.2022.107408. https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
dc.relation.references.spa.fl_str_mv |
Hayes, T.B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A.A., Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (8), pp. 5476-5480. Cited 888 times. www.pnas.org doi: 10.1073/pnas.082121499 Lasserre, J.-P., Fack, F., Revets, D., Planchon, S., Renaut, J., Hoffmann, L., Gutleb, A.C., (...), Bohn, T. Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells (2009) Journal of Proteome Research, 8 (12), pp. 5485-5496. Cited 84 times. http://pubs.acs.org/doi/pdfplus/10.1021/pr900480f doi: 10.1021/pr900480f Rostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., (...), Dehghani, M. Current methods and technologies for degradation of atrazine in contaminated soil and water: A review (2021) Environmental Technology and Innovation, 24, art. no. 102019. Cited 4 times. http://www.journals.elsevier.com/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2021.102019 Shirmardi, M., Alavi, N., Lima, E.C., Takdastan, A., Mahvi, A.H., Babaei, A.A. Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study (2016) Process Safety and Environmental Protection, Part A 103, pp. 23-35. Cited 60 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2016.06.014 Graymore, M., Stagnitti, F., Allinson, G. Impacts of atrazine in aquatic ecosystems (2001) Environment International, 26 (7-8), pp. 483-495. Cited 448 times. www.elsevier.com/locate/envint doi: 10.1016/S0160-4120(01)00031-9 Stratton, G.W. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms (1984) Archives of Environmental Contamination and Toxicology, 13 (1), pp. 35-42. Cited 112 times. doi: 10.1007/BF01055644 Shamsollahi, Z., Partovinia, A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review (2019) Journal of Environmental Management, 246, pp. 314-323. Cited 78 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/7/1/index.htt doi: 10.1016/j.jenvman.2019.05.145 Sun, S., Zhu, J., Zheng, Z., Li, J., Gan, M. Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption (2019) Powder Technology, 342, pp. 181-192. Cited 26 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.09.072 Pang, H., Diao, Z., Wang, X., Ma, Y., Yu, S., Zhu, H., Chen, Z., (...), Wang, X. Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater (2019) Chemical Engineering Journal, 366, pp. 368-377. Cited 127 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.02.098 Qu, J., Yuan, Y., Meng, Q., Zhang, G., Deng, F., Wang, L., Tao, Y., (...), Zhang, Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration (2020) Journal of Hazardous Materials, 400, art. no. 123142. Cited 40 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.123142 Wu, L., Li, B., Liu, M. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars (2018) Chemosphere, 210, pp. 239-246. Cited 11 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2018.07.003 Dai, Y., Zhang, N., Xing, C., Cui, Q., Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review (2019) Chemosphere, 223, pp. 12-27. Cited 297 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2019.01.161 Lazarotto, J.S., da Boit Martinello, K., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Silva, L.F.O., (...), Dotto, G.L. Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4- ichlorophenoxyacetic herbicide (2021) Journal of Environmental Chemical Engineering, 9 (6), art. no. 106843. Cited 4 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.106843 Salomón, Y.L., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Pinto, D., (...), Dotto, G.L. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon (2022) Journal of Molecular Liquids, 347, art. no. 117990. Cited 3 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117990 Mohd Noor Hazrin, H.M., Lim, A., Li, C., Chew, J.J., Sunarso, J. Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: Isotherm and kinetic studies at acidic, ambient condition (2022) Materials Today: Proceedings http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2021.09.461 Rambabu, K., AlYammahi, J., Bharath, G., Thanigaivelan, A., Sivarajasekar, N., Banat, F. Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide (2021) Chemosphere, 282, art. no. 131103. Cited 15 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2021.131103 Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies (2018) Bioresource Technology, 261, pp. 329-341. Cited 131 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.04.005 Wei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060 Sellaoui, L., Silva, L.F.O., Badawi, M., Ali, J., Favarin, N., Dotto, G.L., Erto, A., (...), Chen, Z. Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: A combined experimental and theoretical study (2021) Journal of Molecular Liquids, 333, art. no. 115906. Cited 11 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.115906 Sellaoui, L., Dhaouadi, F., Li, Z., Cadaval, T.R.S., Igansi, A.V., Pinto, L.A.A., Dotto, G.L., (...), Chen, Z. Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105516. Cited 15 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105516 Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M.K., Ben Lamine, A., (...), Li, Q. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis (2022) Chemical Engineering Journal, Part 2 430, art. no. 132801. Cited 29 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2021.132801 Wei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060 Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins (2021) Environmental Science and Pollution Research, 28 (27), pp. 36453-36463. Cited 5 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-021-12813-0 Georgin, J., Franco, D.S.P., Grassi, P., Tonato, D., Piccilli, D.G.A., Meili, L., Dotto, G.L. Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents (2019) Environmental Science and Pollution Research, 26 (19), pp. 19207-19219. Cited 31 times. http://www.springerlink.com/content/0944-1344 doi: 10.1007/s11356-019-05321-9 Freundlich, H. Über die adsorption in lösungen (1907) Z. Phys. Chem., 57 U. Cited 13526 times. Bering, B.P., Gordeeva, V.A., Dubinin, M.M., Efimova, L.I., Serpinskii, V.V. Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - Communication 4. Differential heats and entropies of adsorption (1971) Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 20 (1), pp. 17-22. Cited 14 times. doi: 10.1007/BF00849310 View at Publisher Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of the American Chemical Society, 40 (9), pp. 1361-1403. Cited 16258 times. doi: 10.1021/ja02242a004 Lima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment (2021) Green Technologies for the Defluoridation of Water, pp. 41-88. Cited 12 times. https://www.sciencedirect.com/book/9780323857680 ISBN: 978-032385768-0 doi: 10.1016/B978-0-323-85768-0.00004-X Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption (2019) Journal of Molecular Liquids, 273, pp. 425-434. Cited 643 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2018.10.048 Glueckauf, E. Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography (1955) Transactions of the Faraday Society, 51, pp. 1540-1551. Cited 776 times. doi: 10.1039/TF9555101540 Rehrah, D., Bansode, R.R., Hassan, O., Ahmedna, M. Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment (2016) Journal of Analytical and Applied Pyrolysis, 118, pp. 42-53. Cited 54 times. doi: 10.1016/j.jaap.2015.12.022 Sbizzaro, M., César Sampaio, S., Rinaldo dos Reis, R., de Assis Beraldi, F., Medina Rosa, D., Maria Branco de Freitas Maia, C., Saramago de Carvalho Marques dos Santos Cordovil, C., (...), Eduardo Borba, C. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems (2021) Journal of Molecular Liquids, 343, art. no. 117667. Cited 5 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117667 Goswami, R., Shim, J., Deka, S., Kumari, D., Kataki, R., Kumar, M. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures (2016) Ecological Engineering, 97, pp. 444-451. Cited 93 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.10.007 Xia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., Zheng, Y., (...), Wang, Y. ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal (2016) Applied Surface Science, 377, pp. 361-369. Cited 90 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.03.109 Cougnaud, A., Faur, C., Le Cloirec, P. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties (2005) Environmental Technology, 26 (8), pp. 857-866. Cited 22 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593332608618497 Zhao, C., Ma, J., Li, Z., Xia, H., Liu, H., Yang, Y. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants (2020) RSC Advances, 10 (9), pp. 5066-5076. Cited 21 times. http://pubs.rsc.org/en/journals/journal/ra doi: 10.1039/c9ra09208k Luo, M., Lin, H., He, Y., Zhang, Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil (2020) Science of the Total Environment, 717, art. no. 137014. Cited 49 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2020.137014 Lammirato, C., Miltner, A., Kaestner, M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger (2011) Soil Biology and Biochemistry, 43 (9), pp. 1936-1942. Cited 112 times. doi: 10.1016/j.soilbio.2011.05.021 Li, Z., Jin, Y., Chen, T., Tang, F., Cai, J., Ma, J. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity (2021) Separation and Purification Technology, 272, art. no. 118659. Cited 11 times. http://www.journals.elsevier.com/separation-and-purification-technology/ doi: 10.1016/j.seppur.2021.118659 Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure and Applied Chemistry, 87 (9-10), pp. 1051-1069. Cited 7679 times. http://www.degruyter.com/view/j/pac doi: 10.1515/pac-2014-1117 Hollister, C.C., Bisogni, J.J., Lehmann, J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (zea mays l.) and oak wood (quercus spp.) (2013) Journal of Environmental Quality, 42 (1), pp. 137-144. Cited 127 times. https://www.agronomy.org/publications/jeq/pdfs/42/1/137 doi: 10.2134/jeq2012.0033 Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water (2012) Bioresource Technology, 118, pp. 536-544. Cited 771 times. doi: 10.1016/j.biortech.2012.05.042 Peng, P., Lang, Y.-H., Wang, X.-M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms (2016) Ecological Engineering, 90, pp. 225-233. Cited 113 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.01.039 Mahdi, Z., Hanandeh, A.E., Yu, Q. Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass (2017) Waste and Biomass Valorization, 8 (6), pp. 2061-2073. Cited 51 times. http://www.springer.com/engineering/journal/12649 doi: 10.1007/s12649-016-9714-y Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar (2018) Journal of Cleaner Production, 174, pp. 977-987. Cited 322 times. doi: 10.1016/j.jclepro.2017.11.013 Keiluweit, M., Nico, P.S., Johnson, M., Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar) (2010) Environmental Science and Technology, 44 (4), pp. 1247-1253. Cited 1848 times. doi: 10.1021/es9031419 Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., (...), Erto, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling (2019) Progress in Biophysics and Molecular Biology, 141, pp. 60-71. Cited 77 times. www.elsevier.com/inca/publications/store/4/0/8 doi: 10.1016/j.pbiomolbio.2018.07.011 Zhou, J., Zhu, W., Yu, J., Zhang, H., Zhang, Y., Lin, X., Luo, X. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide (2018) Applied Surface Science, 435, pp. 920-927. Cited 75 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2017.11.108 Salvestrini, S., Sagliano, P., Iovino, P., Capasso, S., Colella, C. Atrazine adsorption by acid-activated zeolite-rich tuffs (2010) Applied Clay Science, 49 (3), pp. 330-335. Cited 82 times. doi: 10.1016/j.clay.2010.04.008 Lladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M., Dorado, A.D. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics(2015) Process Safety and Environmental Protection, 95, pp. 51-59. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2015.02.013 Cuerda-Correa, E.M., Domínguez-Vargas, J.R., Olivares-Marín, F.J., de Heredia, J.B. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water (2010) Journal of Hazardous Materials, 177 (1-3), pp. 1046-1053. Cited 95 times. doi: 10.1016/j.jhazmat.2010.01.026 Alahabadi, A., Moussavi, G. Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling (2017) Journal of Molecular Liquids, 242, pp. 40-52. Cited 39 times. doi: 10.1016/j.molliq.2017.06.116 Chabalala, M.B., Al-Abri, M.Z., Mamba, B.B., Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes (2021) Chemical Engineering Research and Design, 169, pp. 19-32. Cited 17 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1016/j.cherd.2021.02.010 Cao, Y., Jiang, S., Zhang, Y., Xu, J., Qiu, L., Wang, L. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105727. Cited 10 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105727 Allam, E.A., Ali, A.S.M., Elsharkawy, R.M., Mahmoud, M.E. Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: Kinetic and adsorption studies (2021) Environmental Nanotechnology, Monitoring and Management, 16, art. no. 100481. Cited 9 times. http://www.journals.elsevier.com/environmental-nanotechnology-monitoring-and-management/ doi: 10.1016/j.enmm.2021.100481 Bayati, M., Numaan, M., Kadhem, A., Salahshoor, Z., Qasim, S., Deng, H., Lin, J., (...), Fidalgo De Cortalezzi, M. Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement (2020) Journal of Environmental Chemical Engineering, 8 (5), art. no. 104407. Cited 8 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104407 Yue, L., Ge, C., Feng, D., Yu, H., Deng, H., Fu, B. Adsorption–desorption behavior of atrazine on agricultural soils in China (2017) Journal of Environmental Sciences (China), 57, pp. 180-189. Cited 93 times. http://www.journals.elsevier.com/journal-of-environmental-sciences/ doi: 10.1016/j.jes.2016.11.002 Wei, X., Wu, Z., Du, C., Wu, Z., Ye, B.-C., Cravotto, G. Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating (2017) Journal of the Taiwan Institute of Chemical Engineers, 77, pp. 257-262. Cited 19 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/715607/description#description doi: 10.1016/j.jtice.2017.04.004 Toledo-Jaldin, H.P., Blanco-Flores, A., Sánchez-Mendieta, V., Martín-Hernández, O. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions (2018) Environmental Technology (United Kingdom), 39 (20), pp. 2679-2690. Cited 8 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593330.2017.1365097 Machado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon (2011) Journal of Hazardous Materials, 192 (3), pp. 1122-1131. Cited 292 times. doi: 10.1016/j.jhazmat.2011.06.020 Georgin, J., Franco, D.S.P., Schadeck Netto, M., Allasia, D., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L. Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide (2021) Journal of Environmental Chemical Engineering, 9 (1), art. no. 104574. Cited 27 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104574 Georgin, J., Franco, D.S.P., Netto, M.S., de Salomón, Y.L.O., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina (2021) Environmental Science and Pollution Research, 28 (16), pp. 20854-20868. Cited 3 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-020-11957-9 Franco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species (2021) Journal of Environmental Chemical Engineering, 9 (5), art. no. 105927. Cited 16 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105927 Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., (...), Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol (2020) Journal of Hazardous Materials, 398, art. no. 122903. Cited 45 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.122903 Kennedy, C.R., Lin, S., Jacobsen, E.N. The Cation–π Interaction in Small-Molecule Catalysis (2016) Angewandte Chemie - International Edition, 55 (41), pp. 12596-12624. Cited 130 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773 doi: 10.1002/anie.201600547 |
dc.relation.citationendpage.spa.fl_str_mv |
10 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationvolume.spa.fl_str_mv |
10 |
dc.rights.spa.fl_str_mv |
© 2022 Elsevier Ltd. All rights reserved. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2022 Elsevier Ltd. All rights reserved. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343722002810#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d865f69f-1597-4435-87b4-584c969c8310/download https://repositorio.cuc.edu.co/bitstreams/0aced101-0a49-48a3-9158-b0eecdc56778/download https://repositorio.cuc.edu.co/bitstreams/d115f685-5f0b-4eba-83b2-f98ad9545681/download https://repositorio.cuc.edu.co/bitstreams/96f36505-3e18-4a8d-ab9a-809fa39c612f/download |
bitstream.checksum.fl_str_mv |
dac9d277b2d97fe6fbe0794615a71dcd e30e9215131d99561d40d6b0abbe9bad 76dd4819b3c17964ed93734249f79735 4af3475caa8c91cfd3eae3245b7ed67f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166836637663232 |
spelling |
Hernandes, Paola TPfingsten Franco, Dison Strackegeorgin, jordanaP. G. Salau, NinaDotto, Guilherme Luiz2022-07-07T13:23:23Z20242022-07-07T13:23:23Z2022Paola T. Hernandes, Dison S.P. Franco, Jordana Georgin, Nina P.G. Salau, Guilherme L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, Journal of Environmental Chemical Engineering, Volume 10, Issue 3, 2022, 107408, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.107408.2213-3437https://hdl.handle.net/11323/9339https://doi.org/10.1016/j.jece.2022.107408.10.1016/j.jece.2022.107408.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal. © 2022 Elsevier Ltd.10 páginasapplication/pdfengElsevier BVUnited Kingdom© 2022 Elsevier Ltd. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous mediumArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S2213343722002810#!Journal of Environmental Chemical EngineeringHayes, T.B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A.A., Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (8), pp. 5476-5480. Cited 888 times. www.pnas.org doi: 10.1073/pnas.082121499Lasserre, J.-P., Fack, F., Revets, D., Planchon, S., Renaut, J., Hoffmann, L., Gutleb, A.C., (...), Bohn, T. Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells (2009) Journal of Proteome Research, 8 (12), pp. 5485-5496. Cited 84 times. http://pubs.acs.org/doi/pdfplus/10.1021/pr900480f doi: 10.1021/pr900480fRostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., (...), Dehghani, M. Current methods and technologies for degradation of atrazine in contaminated soil and water: A review (2021) Environmental Technology and Innovation, 24, art. no. 102019. Cited 4 times. http://www.journals.elsevier.com/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2021.102019Shirmardi, M., Alavi, N., Lima, E.C., Takdastan, A., Mahvi, A.H., Babaei, A.A. Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study (2016) Process Safety and Environmental Protection, Part A 103, pp. 23-35. Cited 60 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2016.06.014Graymore, M., Stagnitti, F., Allinson, G. Impacts of atrazine in aquatic ecosystems (2001) Environment International, 26 (7-8), pp. 483-495. Cited 448 times. www.elsevier.com/locate/envint doi: 10.1016/S0160-4120(01)00031-9Stratton, G.W. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms (1984) Archives of Environmental Contamination and Toxicology, 13 (1), pp. 35-42. Cited 112 times. doi: 10.1007/BF01055644Shamsollahi, Z., Partovinia, A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review (2019) Journal of Environmental Management, 246, pp. 314-323. Cited 78 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/7/1/index.htt doi: 10.1016/j.jenvman.2019.05.145Sun, S., Zhu, J., Zheng, Z., Li, J., Gan, M. Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption (2019) Powder Technology, 342, pp. 181-192. Cited 26 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.09.072Pang, H., Diao, Z., Wang, X., Ma, Y., Yu, S., Zhu, H., Chen, Z., (...), Wang, X. Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater (2019) Chemical Engineering Journal, 366, pp. 368-377. Cited 127 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.02.098Qu, J., Yuan, Y., Meng, Q., Zhang, G., Deng, F., Wang, L., Tao, Y., (...), Zhang, Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration (2020) Journal of Hazardous Materials, 400, art. no. 123142. Cited 40 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.123142Wu, L., Li, B., Liu, M. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars (2018) Chemosphere, 210, pp. 239-246. Cited 11 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2018.07.003Dai, Y., Zhang, N., Xing, C., Cui, Q., Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review (2019) Chemosphere, 223, pp. 12-27. Cited 297 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2019.01.161Lazarotto, J.S., da Boit Martinello, K., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Silva, L.F.O., (...), Dotto, G.L. Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4- ichlorophenoxyacetic herbicide (2021) Journal of Environmental Chemical Engineering, 9 (6), art. no. 106843. Cited 4 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.106843Salomón, Y.L., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Pinto, D., (...), Dotto, G.L. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon (2022) Journal of Molecular Liquids, 347, art. no. 117990. Cited 3 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117990Mohd Noor Hazrin, H.M., Lim, A., Li, C., Chew, J.J., Sunarso, J. Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: Isotherm and kinetic studies at acidic, ambient condition (2022) Materials Today: Proceedings http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2021.09.461Rambabu, K., AlYammahi, J., Bharath, G., Thanigaivelan, A., Sivarajasekar, N., Banat, F. Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide (2021) Chemosphere, 282, art. no. 131103. Cited 15 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2021.131103Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies (2018) Bioresource Technology, 261, pp. 329-341. Cited 131 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.04.005Wei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060Sellaoui, L., Silva, L.F.O., Badawi, M., Ali, J., Favarin, N., Dotto, G.L., Erto, A., (...), Chen, Z. Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: A combined experimental and theoretical study (2021) Journal of Molecular Liquids, 333, art. no. 115906. Cited 11 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.115906Sellaoui, L., Dhaouadi, F., Li, Z., Cadaval, T.R.S., Igansi, A.V., Pinto, L.A.A., Dotto, G.L., (...), Chen, Z. Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105516. Cited 15 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105516Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M.K., Ben Lamine, A., (...), Li, Q. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis (2022) Chemical Engineering Journal, Part 2 430, art. no. 132801. Cited 29 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2021.132801Wei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins (2021) Environmental Science and Pollution Research, 28 (27), pp. 36453-36463. Cited 5 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-021-12813-0Georgin, J., Franco, D.S.P., Grassi, P., Tonato, D., Piccilli, D.G.A., Meili, L., Dotto, G.L. Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents (2019) Environmental Science and Pollution Research, 26 (19), pp. 19207-19219. Cited 31 times. http://www.springerlink.com/content/0944-1344 doi: 10.1007/s11356-019-05321-9Freundlich, H. Über die adsorption in lösungen (1907) Z. Phys. Chem., 57 U. Cited 13526 times.Bering, B.P., Gordeeva, V.A., Dubinin, M.M., Efimova, L.I., Serpinskii, V.V. Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - Communication 4. Differential heats and entropies of adsorption (1971) Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 20 (1), pp. 17-22. Cited 14 times. doi: 10.1007/BF00849310 View at PublisherLangmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of the American Chemical Society, 40 (9), pp. 1361-1403. Cited 16258 times. doi: 10.1021/ja02242a004Lima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment (2021) Green Technologies for the Defluoridation of Water, pp. 41-88. Cited 12 times. https://www.sciencedirect.com/book/9780323857680 ISBN: 978-032385768-0 doi: 10.1016/B978-0-323-85768-0.00004-XLima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption (2019) Journal of Molecular Liquids, 273, pp. 425-434. Cited 643 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2018.10.048Glueckauf, E. Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography (1955) Transactions of the Faraday Society, 51, pp. 1540-1551. Cited 776 times. doi: 10.1039/TF9555101540Rehrah, D., Bansode, R.R., Hassan, O., Ahmedna, M. Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment (2016) Journal of Analytical and Applied Pyrolysis, 118, pp. 42-53. Cited 54 times. doi: 10.1016/j.jaap.2015.12.022Sbizzaro, M., César Sampaio, S., Rinaldo dos Reis, R., de Assis Beraldi, F., Medina Rosa, D., Maria Branco de Freitas Maia, C., Saramago de Carvalho Marques dos Santos Cordovil, C., (...), Eduardo Borba, C. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems (2021) Journal of Molecular Liquids, 343, art. no. 117667. Cited 5 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117667Goswami, R., Shim, J., Deka, S., Kumari, D., Kataki, R., Kumar, M. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures (2016) Ecological Engineering, 97, pp. 444-451. Cited 93 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.10.007Xia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., Zheng, Y., (...), Wang, Y. ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal (2016) Applied Surface Science, 377, pp. 361-369. Cited 90 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.03.109Cougnaud, A., Faur, C., Le Cloirec, P. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties (2005) Environmental Technology, 26 (8), pp. 857-866. Cited 22 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593332608618497Zhao, C., Ma, J., Li, Z., Xia, H., Liu, H., Yang, Y. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants (2020) RSC Advances, 10 (9), pp. 5066-5076. Cited 21 times. http://pubs.rsc.org/en/journals/journal/ra doi: 10.1039/c9ra09208kLuo, M., Lin, H., He, Y., Zhang, Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil (2020) Science of the Total Environment, 717, art. no. 137014. Cited 49 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2020.137014Lammirato, C., Miltner, A., Kaestner, M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger (2011) Soil Biology and Biochemistry, 43 (9), pp. 1936-1942. Cited 112 times. doi: 10.1016/j.soilbio.2011.05.021Li, Z., Jin, Y., Chen, T., Tang, F., Cai, J., Ma, J. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity (2021) Separation and Purification Technology, 272, art. no. 118659. Cited 11 times. http://www.journals.elsevier.com/separation-and-purification-technology/ doi: 10.1016/j.seppur.2021.118659Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure and Applied Chemistry, 87 (9-10), pp. 1051-1069. Cited 7679 times. http://www.degruyter.com/view/j/pac doi: 10.1515/pac-2014-1117Hollister, C.C., Bisogni, J.J., Lehmann, J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (zea mays l.) and oak wood (quercus spp.) (2013) Journal of Environmental Quality, 42 (1), pp. 137-144. Cited 127 times. https://www.agronomy.org/publications/jeq/pdfs/42/1/137 doi: 10.2134/jeq2012.0033Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water (2012) Bioresource Technology, 118, pp. 536-544. Cited 771 times. doi: 10.1016/j.biortech.2012.05.042Peng, P., Lang, Y.-H., Wang, X.-M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms (2016) Ecological Engineering, 90, pp. 225-233. Cited 113 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.01.039Mahdi, Z., Hanandeh, A.E., Yu, Q. Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass (2017) Waste and Biomass Valorization, 8 (6), pp. 2061-2073. Cited 51 times. http://www.springer.com/engineering/journal/12649 doi: 10.1007/s12649-016-9714-yZhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar (2018) Journal of Cleaner Production, 174, pp. 977-987. Cited 322 times. doi: 10.1016/j.jclepro.2017.11.013Keiluweit, M., Nico, P.S., Johnson, M., Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar) (2010) Environmental Science and Technology, 44 (4), pp. 1247-1253. Cited 1848 times. doi: 10.1021/es9031419Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., (...), Erto, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling (2019) Progress in Biophysics and Molecular Biology, 141, pp. 60-71. Cited 77 times. www.elsevier.com/inca/publications/store/4/0/8 doi: 10.1016/j.pbiomolbio.2018.07.011Zhou, J., Zhu, W., Yu, J., Zhang, H., Zhang, Y., Lin, X., Luo, X. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide (2018) Applied Surface Science, 435, pp. 920-927. Cited 75 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2017.11.108Salvestrini, S., Sagliano, P., Iovino, P., Capasso, S., Colella, C. Atrazine adsorption by acid-activated zeolite-rich tuffs (2010) Applied Clay Science, 49 (3), pp. 330-335. Cited 82 times. doi: 10.1016/j.clay.2010.04.008Lladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M., Dorado, A.D. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics(2015) Process Safety and Environmental Protection, 95, pp. 51-59. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2015.02.013Cuerda-Correa, E.M., Domínguez-Vargas, J.R., Olivares-Marín, F.J., de Heredia, J.B. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water (2010) Journal of Hazardous Materials, 177 (1-3), pp. 1046-1053. Cited 95 times. doi: 10.1016/j.jhazmat.2010.01.026Alahabadi, A., Moussavi, G. Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling (2017) Journal of Molecular Liquids, 242, pp. 40-52. Cited 39 times. doi: 10.1016/j.molliq.2017.06.116Chabalala, M.B., Al-Abri, M.Z., Mamba, B.B., Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes (2021) Chemical Engineering Research and Design, 169, pp. 19-32. Cited 17 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1016/j.cherd.2021.02.010Cao, Y., Jiang, S., Zhang, Y., Xu, J., Qiu, L., Wang, L. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105727. Cited 10 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105727Allam, E.A., Ali, A.S.M., Elsharkawy, R.M., Mahmoud, M.E. Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: Kinetic and adsorption studies (2021) Environmental Nanotechnology, Monitoring and Management, 16, art. no. 100481. Cited 9 times. http://www.journals.elsevier.com/environmental-nanotechnology-monitoring-and-management/ doi: 10.1016/j.enmm.2021.100481Bayati, M., Numaan, M., Kadhem, A., Salahshoor, Z., Qasim, S., Deng, H., Lin, J., (...), Fidalgo De Cortalezzi, M. Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement (2020) Journal of Environmental Chemical Engineering, 8 (5), art. no. 104407. Cited 8 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104407Yue, L., Ge, C., Feng, D., Yu, H., Deng, H., Fu, B. Adsorption–desorption behavior of atrazine on agricultural soils in China (2017) Journal of Environmental Sciences (China), 57, pp. 180-189. Cited 93 times. http://www.journals.elsevier.com/journal-of-environmental-sciences/ doi: 10.1016/j.jes.2016.11.002Wei, X., Wu, Z., Du, C., Wu, Z., Ye, B.-C., Cravotto, G. Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating (2017) Journal of the Taiwan Institute of Chemical Engineers, 77, pp. 257-262. Cited 19 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/715607/description#description doi: 10.1016/j.jtice.2017.04.004Toledo-Jaldin, H.P., Blanco-Flores, A., Sánchez-Mendieta, V., Martín-Hernández, O. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions (2018) Environmental Technology (United Kingdom), 39 (20), pp. 2679-2690. Cited 8 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593330.2017.1365097Machado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon (2011) Journal of Hazardous Materials, 192 (3), pp. 1122-1131. Cited 292 times. doi: 10.1016/j.jhazmat.2011.06.020Georgin, J., Franco, D.S.P., Schadeck Netto, M., Allasia, D., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L. Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide (2021) Journal of Environmental Chemical Engineering, 9 (1), art. no. 104574. Cited 27 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104574Georgin, J., Franco, D.S.P., Netto, M.S., de Salomón, Y.L.O., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina (2021) Environmental Science and Pollution Research, 28 (16), pp. 20854-20868. Cited 3 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-020-11957-9Franco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species (2021) Journal of Environmental Chemical Engineering, 9 (5), art. no. 105927. Cited 16 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105927Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., (...), Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol (2020) Journal of Hazardous Materials, 398, art. no. 122903. Cited 45 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.122903Kennedy, C.R., Lin, S., Jacobsen, E.N. The Cation–π Interaction in Small-Molecule Catalysis (2016) Angewandte Chemie - International Edition, 55 (41), pp. 12596-12624. Cited 130 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773 doi: 10.1002/anie.201600547101310AdsorptionAtrazineBiocharPesticidesRiver waterPublicationORIGINALInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdfInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdfapplication/pdf2943597https://repositorio.cuc.edu.co/bitstreams/d865f69f-1597-4435-87b4-584c969c8310/downloaddac9d277b2d97fe6fbe0794615a71dcdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0aced101-0a49-48a3-9158-b0eecdc56778/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.txtInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.txttext/plain57537https://repositorio.cuc.edu.co/bitstreams/d115f685-5f0b-4eba-83b2-f98ad9545681/download76dd4819b3c17964ed93734249f79735MD53THUMBNAILInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.jpgInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.jpgimage/jpeg15320https://repositorio.cuc.edu.co/bitstreams/96f36505-3e18-4a8d-ab9a-809fa39c612f/download4af3475caa8c91cfd3eae3245b7ed67fMD5411323/9339oai:repositorio.cuc.edu.co:11323/93392024-09-17 14:16:11.134https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |