Periodogram Connectivity of EEG Signals for the Detection of Dyslexia
Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to ex...
- Autores:
-
Martinez-Murcia, F. J.
Ortiz, A.
Morales-Ortega, R.
López, P. J.
Duque, J. L.
Castillo-Barnes, D.
Segovia, F.
Illan, I. A.
Ortega, J.
Ramírez, J.
Gorriz, J. M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7473
- Acceso en línea:
- https://hdl.handle.net/11323/7473
https://doi.org/10.1007/978-3-030-19591-5_36
https://repositorio.cuc.edu.co/
- Palabra clave:
- Periodogram
EEG
Connectivity
Principal Component Analysis
Dyslexia
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_94d2d7de0c4e7805d0db5a24085f94e7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7473 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
title |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
spellingShingle |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia Periodogram EEG Connectivity Principal Component Analysis Dyslexia |
title_short |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
title_full |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
title_fullStr |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
title_full_unstemmed |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
title_sort |
Periodogram Connectivity of EEG Signals for the Detection of Dyslexia |
dc.creator.fl_str_mv |
Martinez-Murcia, F. J. Ortiz, A. Morales-Ortega, R. López, P. J. Duque, J. L. Castillo-Barnes, D. Segovia, F. Illan, I. A. Ortega, J. Ramírez, J. Gorriz, J. M. |
dc.contributor.author.spa.fl_str_mv |
Martinez-Murcia, F. J. Ortiz, A. Morales-Ortega, R. López, P. J. Duque, J. L. Castillo-Barnes, D. Segovia, F. Illan, I. A. Ortega, J. Ramírez, J. Gorriz, J. M. |
dc.subject.spa.fl_str_mv |
Periodogram EEG Connectivity Principal Component Analysis Dyslexia |
topic |
Periodogram EEG Connectivity Principal Component Analysis Dyslexia |
description |
Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among the spectral density at each channel. This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine. The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-11-24T16:32:31Z |
dc.date.available.none.fl_str_mv |
2020-11-24T16:32:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7473 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-19591-5_36 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7473 https://doi.org/10.1007/978-3-030-19591-5_36 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.compbiomed.2017.09.017 2. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018) 3. Flanagan, S., Goswami, U.: The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. J. Acoust. Soc. Am. 143, 1366–1375 (2018). https://ezproxy.cuc.edu.co:2067/10.1121/1.5026239 4. De la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl.-Based Syst. 71, 322–338 (2014) 5. Illán, I., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), 903–916 (2011) 6. Lafuente, V., Gorriz, J.M., Ramirez, J., Gonzalez, E.: P300 brainwave extraction from EEG signals: an unsupervised approach. Expert Syst. Appl. 74, 1–10 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.eswa.2016.12.038 7. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004). https://ezproxy.cuc.edu.co:2067/10.1016/s0047-259x(03)00096-4 8. Markiewicz, P., Matthews, J., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485 (2009). http://ezproxy.cuc.edu.co:2053/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d00 9. Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012). https://ezproxy.cuc.edu.co:2067/10.1016/j.eswa.2012.02.153 10. Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-60964-5_36 11. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012) 12. Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011). https://ezproxy.cuc.edu.co:2067/10.1016/j.compbiomed.2011.06.020 13. Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009). https://ezproxy.cuc.edu.co:2067/10.1002/hbm.20745 14. Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-540-30136-3_80 15. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowling, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol. Psychiatry 56(9), 976–987 (2015) 16. Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://ezproxy.cuc.edu.co:2067/10.1109/tau.1967.1161901 17. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008). https://ezproxy.cuc.edu.co:2067/10.1016/j.ins.2007.11.012 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Lecture Notes in Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-19591-5_36 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/bb4f88f0-cddd-480f-b337-dacfafa7e70c/download https://repositorio.cuc.edu.co/bitstreams/6ec5a6b3-8234-4a24-95b8-92c469664f81/download https://repositorio.cuc.edu.co/bitstreams/63bd1a35-2c08-424a-84f0-2cdfe5f15601/download https://repositorio.cuc.edu.co/bitstreams/63419d01-860c-464b-bd9d-977ebc7d3609/download https://repositorio.cuc.edu.co/bitstreams/393aaa48-0294-44d2-966d-bdcc5eca9889/download |
bitstream.checksum.fl_str_mv |
e19b84c8e5383031053d363f83f7c361 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 28c387227ae5358373be7ce79915a59a f5771fea930e9873a9cdc84a0fb9124f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760843387305984 |
spelling |
Martinez-Murcia, F. J.Ortiz, A.Morales-Ortega, R.López, P. J.Duque, J. L.Castillo-Barnes, D.Segovia, F.Illan, I. A.Ortega, J.Ramírez, J.Gorriz, J. M.2020-11-24T16:32:31Z2020-11-24T16:32:31Z2019https://hdl.handle.net/11323/7473https://doi.org/10.1007/978-3-030-19591-5_36Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among the spectral density at each channel. This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine. The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis.Martinez-Murcia, F. J.Ortiz, A.Morales-Ortega, R.López, P. J.Duque, J. L.Castillo-Barnes, D.Segovia, F.Illan, I. A.Ortega, J.Ramírez, J.Gorriz, J. M.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Sciencehttps://link.springer.com/chapter/10.1007/978-3-030-19591-5_36PeriodogramEEGConnectivityPrincipal Component AnalysisDyslexiaPeriodogram Connectivity of EEG Signals for the Detection of DyslexiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.compbiomed.2017.09.0172. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)3. Flanagan, S., Goswami, U.: The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. J. Acoust. Soc. Am. 143, 1366–1375 (2018). https://ezproxy.cuc.edu.co:2067/10.1121/1.50262394. De la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl.-Based Syst. 71, 322–338 (2014)5. Illán, I., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), 903–916 (2011)6. Lafuente, V., Gorriz, J.M., Ramirez, J., Gonzalez, E.: P300 brainwave extraction from EEG signals: an unsupervised approach. Expert Syst. Appl. 74, 1–10 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.eswa.2016.12.0387. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004). https://ezproxy.cuc.edu.co:2067/10.1016/s0047-259x(03)00096-48. Markiewicz, P., Matthews, J., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485 (2009). http://ezproxy.cuc.edu.co:2053/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d009. Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012). https://ezproxy.cuc.edu.co:2067/10.1016/j.eswa.2012.02.15310. Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-60964-5_3611. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)12. Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011). https://ezproxy.cuc.edu.co:2067/10.1016/j.compbiomed.2011.06.02013. Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009). https://ezproxy.cuc.edu.co:2067/10.1002/hbm.2074514. Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-540-30136-3_8015. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowling, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol. Psychiatry 56(9), 976–987 (2015)16. Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://ezproxy.cuc.edu.co:2067/10.1109/tau.1967.116190117. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008). https://ezproxy.cuc.edu.co:2067/10.1016/j.ins.2007.11.012PublicationORIGINALPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdfPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdfapplication/pdf88919https://repositorio.cuc.edu.co/bitstreams/bb4f88f0-cddd-480f-b337-dacfafa7e70c/downloade19b84c8e5383031053d363f83f7c361MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/6ec5a6b3-8234-4a24-95b8-92c469664f81/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/63bd1a35-2c08-424a-84f0-2cdfe5f15601/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdf.jpgPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdf.jpgimage/jpeg36745https://repositorio.cuc.edu.co/bitstreams/63419d01-860c-464b-bd9d-977ebc7d3609/download28c387227ae5358373be7ce79915a59aMD54TEXTPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdf.txtPeriodogram Connectivity of EEG Signals for the Detection of Dyslexia.pdf.txttext/plain1411https://repositorio.cuc.edu.co/bitstreams/393aaa48-0294-44d2-966d-bdcc5eca9889/downloadf5771fea930e9873a9cdc84a0fb9124fMD5511323/7473oai:repositorio.cuc.edu.co:11323/74732024-09-17 14:09:29.802http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |