Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis

Models based on self-excluded walks have been widely used to generate random linear chains. In this work, we present an algorithm capable of generating linear strings in two and three dimensions, in a simple and efficient way. The discrete growth process of the chains takes place in a finite time, i...

Full description

Autores:
Avellaneda B., David R.
R. González, Ramón E.
Collazos-Morales, Carlos Andrés
Ariza-Colpas, Paola
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8819
Acceso en línea:
https://hdl.handle.net/11323/8819
https://doi.org/10.1007/978-3-030-86653-2_14
https://repositorio.cuc.edu.co/
Palabra clave:
Self-avoiding random walk
Linear chains
Critical exponents
Fractal dimension
Radius of gyration
End-to-end distance
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_9433ca554f7f25c8ad31b098df6dd762
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8819
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
title Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
spellingShingle Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
Self-avoiding random walk
Linear chains
Critical exponents
Fractal dimension
Radius of gyration
End-to-end distance
title_short Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
title_full Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
title_fullStr Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
title_full_unstemmed Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
title_sort Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis
dc.creator.fl_str_mv Avellaneda B., David R.
R. González, Ramón E.
Collazos-Morales, Carlos Andrés
Ariza-Colpas, Paola
dc.contributor.author.spa.fl_str_mv Avellaneda B., David R.
R. González, Ramón E.
Collazos-Morales, Carlos Andrés
Ariza-Colpas, Paola
dc.subject.spa.fl_str_mv Self-avoiding random walk
Linear chains
Critical exponents
Fractal dimension
Radius of gyration
End-to-end distance
topic Self-avoiding random walk
Linear chains
Critical exponents
Fractal dimension
Radius of gyration
End-to-end distance
description Models based on self-excluded walks have been widely used to generate random linear chains. In this work, we present an algorithm capable of generating linear strings in two and three dimensions, in a simple and efficient way. The discrete growth process of the chains takes place in a finite time, in a network without pre-established boundary conditions and without the need to explore the entire configurational space. The computational processing time and the length of the strings depending on the number of trials N′ . This number is always less than the real number of steps in the chain, N. From the statistical analysis of the characteristic distances, the radius of gyration ( Rg ), and the end-to-end distance ( Ree ), we make a morphological description of the chains and we study the dependence of this quantities on the number of steps, N. The universal critical exponent obtained are in very good agreement with previous values reported in literature. We also study fractal characteristics of the chains using two different methods, Box-Counting Dimension or Capacity Dimension and Correlation Dimension. The studies revealed essential differences between chains of different dimensions, for the two methods used, showing that three-dimensional chains are more correlated than two-dimensional chains.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-29T14:15:50Z
dc.date.available.none.fl_str_mv 2021-10-29T14:15:50Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8819
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-86653-2_14
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8819
https://doi.org/10.1007/978-3-030-86653-2_14
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)
Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Basel (1953)
Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)
Wilson, K.G., Kogut, J.: The renormalization group and the expansion. Phys. Rep. 12(2), 75–199 (1974)
Sokal, A.D.: Molecular Dynamics Simulations in Polymer Sciences. Oxford University Press, New York (1995)
Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5(3), 319–345 (2001)
Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A Math. Gen. 37(21), 5503–5524 (2004)
Li, B., Neal, M, Sokal, A.D.: Critical exponent hyper scaling, and universal amplitude ratios for two and three-dimensional self-avoiding walks. J. Stat. Phys. 80(3), 661–754 (1995)
Hara, T., Slade, G., Sokal, A.D.: New lower bounds on the self-avoiding walk connective constant. J. Stat. Phys. 72(3), 479–517 (1993)
Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A 475(2221), 20180549 (2019)
Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)
Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)
Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)
Bhattarcharjee, S.M., Giacometti, A., Maritan, A.: Flory theory for polymers. J. Phys. Condens. Matter 25, 503101 (2013)
Isaacson, J., Lubensky, T.C.: Flory exponent for generalized polymer problems. J. Phys. Lett. 41(19), 469–471 (1980)
Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and company, New York (1982)
Banerji, A., Ghosh, I.: Fractal symmetry of proteins interior: what have we learned. Cell. Mol. Life Sci. 68(16), 2711–2737 (2011)
Dewey, T.G.: Fractals in Molecular Biophysics. Oxford University Press, New York (1997)
Maritan, A.: Random walk and the ideal chain problem on self-similar structures. Phys. Rev. Lett. 62(24), 2845–2848 (1989)
Kawakatsu, T.: Statistical Physics of Polymers: An Introduction. Springer-Verlag, Heidelberg (2004)
Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and Flory approximation. J. Phys. 45(3), 389–394 (1984)
Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, New York (1990)
Feder, J.: Fractals. Physics of Solids and Liquids. Springer-US, New York (1988)
Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)
Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Sciences, Germany (2008)
Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)
Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlin. Phenom. 9(1), 189–208 (1983)
Lhuillier, D.: A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. Fr. 49(5), 705–710 (1988)
Victor, J.M., Lhuillier, D.: The gyration radius distribution of two-dimensional polymers chains in a good solvent. J. Chem. Phys. 92(2), 1362–1364 (1990)
McKenzie, D.S., Moore, M.A.: Shape of self-avoiding walk or polymer chain. J. Phys. A Gen. Phys. 4(5), L82–L85 (1971)
des Cloizeaux, J.: Lagrangian theory for self-avoiding random chain. Phys. Rev. A. 10, 1665 (1974)
des Cloizeaux, J., Jannink, G.: Polymers in solution: their modelling and structure. Oxford Science Publications. Clarendon Press, Oxford (1990)
Caracciolo, S., Causo, M.S., Pelissetto, A.: End-to-end distribution function for dilute polymers. J. Chem. Phys. 112(17), 7693–7710 (2000)
Vettorel, T., Besold, G., Kremer, K.: Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 6, 2282–2292 (2010)
Bernal, D.R.: PhD Thesis, http://www.ppgbea.ufrpe.br/sites/www.ppgbea.ufrpe.br/files/documentos/tese_david_roberto_bernal.pdf. Accessed 21 June 2021
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv International Conference on Computational Science and Its Applications
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-86653-2_14
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f4978d23-0c1c-49b5-b4d3-b7b06436aabc/download
https://repositorio.cuc.edu.co/bitstreams/fb6e65e0-70bb-49c6-ac6e-a0f6619462f0/download
https://repositorio.cuc.edu.co/bitstreams/5f7b13b0-9ead-483d-8cc4-00db60654bfd/download
https://repositorio.cuc.edu.co/bitstreams/0b107db0-60d0-47b2-8117-0627cf02f790/download
https://repositorio.cuc.edu.co/bitstreams/bf3d0e4a-aee5-460c-b042-b9ba9f229a54/download
bitstream.checksum.fl_str_mv b3bd9861df94642f2521bbea69a656b4
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
3eab5127587dd6fd583fb3217d6fa6ff
4f2e9d6c3775edf0a86f26840f121f08
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166812475326464
spelling Avellaneda B., David R.R. González, Ramón E.Collazos-Morales, Carlos AndrésAriza-Colpas, Paola2021-10-29T14:15:50Z2021-10-29T14:15:50Z2021https://hdl.handle.net/11323/8819https://doi.org/10.1007/978-3-030-86653-2_14Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Models based on self-excluded walks have been widely used to generate random linear chains. In this work, we present an algorithm capable of generating linear strings in two and three dimensions, in a simple and efficient way. The discrete growth process of the chains takes place in a finite time, in a network without pre-established boundary conditions and without the need to explore the entire configurational space. The computational processing time and the length of the strings depending on the number of trials N′ . This number is always less than the real number of steps in the chain, N. From the statistical analysis of the characteristic distances, the radius of gyration ( Rg ), and the end-to-end distance ( Ree ), we make a morphological description of the chains and we study the dependence of this quantities on the number of steps, N. The universal critical exponent obtained are in very good agreement with previous values reported in literature. We also study fractal characteristics of the chains using two different methods, Box-Counting Dimension or Capacity Dimension and Correlation Dimension. The studies revealed essential differences between chains of different dimensions, for the two methods used, showing that three-dimensional chains are more correlated than two-dimensional chains.Avellaneda B., David R.R. González, Ramón E.Collazos-Morales, Carlos AndrésAriza-Colpas, Paolaapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Conference on Computational Science and Its Applicationshttps://link.springer.com/chapter/10.1007/978-3-030-86653-2_14Self-avoiding random walkLinear chainsCritical exponentsFractal dimensionRadius of gyrationEnd-to-end distanceReasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal AnalysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionFlory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Basel (1953)Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)Wilson, K.G., Kogut, J.: The renormalization group and the expansion. Phys. Rep. 12(2), 75–199 (1974)Sokal, A.D.: Molecular Dynamics Simulations in Polymer Sciences. Oxford University Press, New York (1995)Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5(3), 319–345 (2001)Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A Math. Gen. 37(21), 5503–5524 (2004)Li, B., Neal, M, Sokal, A.D.: Critical exponent hyper scaling, and universal amplitude ratios for two and three-dimensional self-avoiding walks. J. Stat. Phys. 80(3), 661–754 (1995)Hara, T., Slade, G., Sokal, A.D.: New lower bounds on the self-avoiding walk connective constant. J. Stat. Phys. 72(3), 479–517 (1993)Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A 475(2221), 20180549 (2019)Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)Bhattarcharjee, S.M., Giacometti, A., Maritan, A.: Flory theory for polymers. J. Phys. Condens. Matter 25, 503101 (2013)Isaacson, J., Lubensky, T.C.: Flory exponent for generalized polymer problems. J. Phys. Lett. 41(19), 469–471 (1980)Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and company, New York (1982)Banerji, A., Ghosh, I.: Fractal symmetry of proteins interior: what have we learned. Cell. Mol. Life Sci. 68(16), 2711–2737 (2011)Dewey, T.G.: Fractals in Molecular Biophysics. Oxford University Press, New York (1997)Maritan, A.: Random walk and the ideal chain problem on self-similar structures. Phys. Rev. Lett. 62(24), 2845–2848 (1989)Kawakatsu, T.: Statistical Physics of Polymers: An Introduction. Springer-Verlag, Heidelberg (2004)Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and Flory approximation. J. Phys. 45(3), 389–394 (1984)Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, New York (1990)Feder, J.: Fractals. Physics of Solids and Liquids. Springer-US, New York (1988)Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Sciences, Germany (2008)Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlin. Phenom. 9(1), 189–208 (1983)Lhuillier, D.: A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. Fr. 49(5), 705–710 (1988)Victor, J.M., Lhuillier, D.: The gyration radius distribution of two-dimensional polymers chains in a good solvent. J. Chem. Phys. 92(2), 1362–1364 (1990)McKenzie, D.S., Moore, M.A.: Shape of self-avoiding walk or polymer chain. J. Phys. A Gen. Phys. 4(5), L82–L85 (1971)des Cloizeaux, J.: Lagrangian theory for self-avoiding random chain. Phys. Rev. A. 10, 1665 (1974)des Cloizeaux, J., Jannink, G.: Polymers in solution: their modelling and structure. Oxford Science Publications. Clarendon Press, Oxford (1990)Caracciolo, S., Causo, M.S., Pelissetto, A.: End-to-end distribution function for dilute polymers. J. Chem. Phys. 112(17), 7693–7710 (2000)Vettorel, T., Besold, G., Kremer, K.: Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 6, 2282–2292 (2010)Bernal, D.R.: PhD Thesis, http://www.ppgbea.ufrpe.br/sites/www.ppgbea.ufrpe.br/files/documentos/tese_david_roberto_bernal.pdf. Accessed 21 June 2021PublicationORIGINALReasonable Non.pdfReasonable Non.pdfapplication/pdf112602https://repositorio.cuc.edu.co/bitstreams/f4978d23-0c1c-49b5-b4d3-b7b06436aabc/downloadb3bd9861df94642f2521bbea69a656b4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/fb6e65e0-70bb-49c6-ac6e-a0f6619462f0/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5f7b13b0-9ead-483d-8cc4-00db60654bfd/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILReasonable Non.pdf.jpgReasonable Non.pdf.jpgimage/jpeg50400https://repositorio.cuc.edu.co/bitstreams/0b107db0-60d0-47b2-8117-0627cf02f790/download3eab5127587dd6fd583fb3217d6fa6ffMD54TEXTReasonable Non.pdf.txtReasonable Non.pdf.txttext/plain1794https://repositorio.cuc.edu.co/bitstreams/bf3d0e4a-aee5-460c-b042-b9ba9f229a54/download4f2e9d6c3775edf0a86f26840f121f08MD5511323/8819oai:repositorio.cuc.edu.co:11323/88192024-09-17 14:12:48.732http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==