Algorithms for crime prediction in smart cities through data mining

The concentration of police resources in conflict zones contributes to the reduction of crime in the region and the optimization of those resources. This paper presents the use of regression techniques to predict the number of criminal acts in Colombian municipalities. To this end, a set of data was...

Full description

Autores:
Silva, Jesús
Romero Marin, Ligia Cielo
Jiménez González, Roberto
Larios, Omar
Barrantes, Fanny
Pineda, Omar
Manotas, Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7743
Acceso en línea:
https://hdl.handle.net/11323/7743
https://doi.org/10.1007/978-981-15-4875-8_45
https://repositorio.cuc.edu.co/
Palabra clave:
Public data
Data mining
Prediction of facts
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_941a41c5e2519fe55a32f4d4defad703
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7743
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Algorithms for crime prediction in smart cities through data mining
title Algorithms for crime prediction in smart cities through data mining
spellingShingle Algorithms for crime prediction in smart cities through data mining
Public data
Data mining
Prediction of facts
title_short Algorithms for crime prediction in smart cities through data mining
title_full Algorithms for crime prediction in smart cities through data mining
title_fullStr Algorithms for crime prediction in smart cities through data mining
title_full_unstemmed Algorithms for crime prediction in smart cities through data mining
title_sort Algorithms for crime prediction in smart cities through data mining
dc.creator.fl_str_mv Silva, Jesús
Romero Marin, Ligia Cielo
Jiménez González, Roberto
Larios, Omar
Barrantes, Fanny
Pineda, Omar
Manotas, Alberto
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Romero Marin, Ligia Cielo
Jiménez González, Roberto
Larios, Omar
Barrantes, Fanny
Pineda, Omar
Manotas, Alberto
dc.subject.spa.fl_str_mv Public data
Data mining
Prediction of facts
topic Public data
Data mining
Prediction of facts
description The concentration of police resources in conflict zones contributes to the reduction of crime in the region and the optimization of those resources. This paper presents the use of regression techniques to predict the number of criminal acts in Colombian municipalities. To this end, a set of data was generated merging the data from the Guardia Civil with public data on the demographic structure and voting trends in the municipalities. The best regressor obtained (Random Forests) achieves a RRSE (Root Relative Squared Error) of 40.12% and opens the way to keep incorporating public data of another type with greater predictive power. In addition, M5Rules were used to interpret the results.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-21T13:40:27Z
dc.date.available.none.fl_str_mv 2021-01-21T13:40:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7743
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_45
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7743
https://doi.org/10.1007/978-981-15-4875-8_45
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Comm. ACM 59(11), 56–65 (2016)
2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp. 487–499 (1994)
3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)
4. Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)
5. Alves, L.G.A., Ribeiro, H.V., Rodrigues, F.A.: Crime prediction through urban metrics and statistical learning. Phys. A Stat. Mech. Appl. 505, 435–443 (2018)
6. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4(2–3), 163–192 (2000)
7. Amelec, V., Carmen, V.: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)
8. Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019)
9. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018)
10. Erlandsson, F., Brodka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016)
11. Baculo, M.J.C., Marzan, C.S. de Dios Bulos, R., Ruiz, C.: Geospatial-temporal analysis and classification of criminal data in Manila. In: Proceedings of 2nd IEEE International Conference on Computational Intelligence and Applications, pp. 6–11. IEEE (2017)
12. Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)
13. Clougherty, E., Clougherty, J., Liu, X., Brown, D.: Spatial and temporal analysis of sex crimes in Charlottesville, Virginia. In: Proceedings of IEEE Systems and Information Engineering Design Symposium, pp. 69–74. IEEE (2015)
14. Pineda, C.J.: Apuntes críticos: Visión Colombia 2019. Institución Universitaria Politécnico Grancolombiano (2016)
15. Torres, A.X.O.: Los derechos de los colombianos en el extranjero y de los extranjeros en Colombia. En mora de un enfoque integral. Vniversitas 57(117), 357–376 (2008)
16. Drucker, H.: Improving regressors using boosting techniques. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97, San Francisco, CA, USA, pp. 107–115. Morgan Kaufmann Publishers Inc. (1997)
17. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
19. Kang, H.-W., Kang, H.-B.: Prediction of crime occurrence from multimodal data using deep learning. PLoS ONE 12(4), e0176244 (2017)
20. Kianmehr, K., Alhajj, R.: Effectiveness of support vector machine for crime hot-spots prediction. Appl. Artif. Intell. 22(5), 433–458 (2008)
21. Leitão, J.C., Miotto, J.M., Gerlach, M., Altmann, E.G.: Is this scaling nonlinear? R. Soc. Open Sci. 3(7) (2016)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_45
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/98a5bdd2-9f05-46fb-9ac3-d3a4e6f22c49/download
https://repositorio.cuc.edu.co/bitstreams/c012ea3c-a9af-4c55-b257-25c0f45ecc41/download
https://repositorio.cuc.edu.co/bitstreams/2a6680b6-06cd-47f9-b2a1-cfe5ac354705/download
https://repositorio.cuc.edu.co/bitstreams/c1cf4825-a547-4cd5-be76-7d513b35a334/download
https://repositorio.cuc.edu.co/bitstreams/0ad96b64-9e38-4956-8614-8b960aefb9af/download
bitstream.checksum.fl_str_mv c632f3e63f5a5f735d305c5cb1aa0d01
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
e38972b7506a64294b7232ddb781f959
01d62e3b0080b6b8dc08707372ca69c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760768602865664
spelling Silva, JesúsRomero Marin, Ligia CieloJiménez González, RobertoLarios, OmarBarrantes, FannyPineda, OmarManotas, Alberto2021-01-21T13:40:27Z2021-01-21T13:40:27Z2020https://hdl.handle.net/11323/7743https://doi.org/10.1007/978-981-15-4875-8_45Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The concentration of police resources in conflict zones contributes to the reduction of crime in the region and the optimization of those resources. This paper presents the use of regression techniques to predict the number of criminal acts in Colombian municipalities. To this end, a set of data was generated merging the data from the Guardia Civil with public data on the demographic structure and voting trends in the municipalities. The best regressor obtained (Random Forests) achieves a RRSE (Root Relative Squared Error) of 40.12% and opens the way to keep incorporating public data of another type with greater predictive power. In addition, M5Rules were used to interpret the results.Silva, JesúsRomero Marin, Ligia Cielo-will be generated-orcid-0000-0002-1216-4489-600Jiménez González, RobertoLarios, OmarBarrantes, FannyPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Manotas, Albertoapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_45Public dataData miningPrediction of factsAlgorithms for crime prediction in smart cities through data miningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Comm. ACM 59(11), 56–65 (2016)2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp. 487–499 (1994)3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)4. Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)5. Alves, L.G.A., Ribeiro, H.V., Rodrigues, F.A.: Crime prediction through urban metrics and statistical learning. Phys. A Stat. Mech. Appl. 505, 435–443 (2018)6. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4(2–3), 163–192 (2000)7. Amelec, V., Carmen, V.: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)8. Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019)9. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018)10. Erlandsson, F., Brodka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016)11. Baculo, M.J.C., Marzan, C.S. de Dios Bulos, R., Ruiz, C.: Geospatial-temporal analysis and classification of criminal data in Manila. In: Proceedings of 2nd IEEE International Conference on Computational Intelligence and Applications, pp. 6–11. IEEE (2017)12. Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)13. Clougherty, E., Clougherty, J., Liu, X., Brown, D.: Spatial and temporal analysis of sex crimes in Charlottesville, Virginia. In: Proceedings of IEEE Systems and Information Engineering Design Symposium, pp. 69–74. IEEE (2015)14. Pineda, C.J.: Apuntes críticos: Visión Colombia 2019. Institución Universitaria Politécnico Grancolombiano (2016)15. Torres, A.X.O.: Los derechos de los colombianos en el extranjero y de los extranjeros en Colombia. En mora de un enfoque integral. Vniversitas 57(117), 357–376 (2008)16. Drucker, H.: Improving regressors using boosting techniques. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97, San Francisco, CA, USA, pp. 107–115. Morgan Kaufmann Publishers Inc. (1997)17. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)19. Kang, H.-W., Kang, H.-B.: Prediction of crime occurrence from multimodal data using deep learning. PLoS ONE 12(4), e0176244 (2017)20. Kianmehr, K., Alhajj, R.: Effectiveness of support vector machine for crime hot-spots prediction. Appl. Artif. Intell. 22(5), 433–458 (2008)21. Leitão, J.C., Miotto, J.M., Gerlach, M., Altmann, E.G.: Is this scaling nonlinear? R. Soc. Open Sci. 3(7) (2016)PublicationORIGINALAlgorithms for crime prediction in smart cities through data mining.pdfAlgorithms for crime prediction in smart cities through data mining.pdfapplication/pdf113075https://repositorio.cuc.edu.co/bitstreams/98a5bdd2-9f05-46fb-9ac3-d3a4e6f22c49/downloadc632f3e63f5a5f735d305c5cb1aa0d01MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/c012ea3c-a9af-4c55-b257-25c0f45ecc41/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/2a6680b6-06cd-47f9-b2a1-cfe5ac354705/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAlgorithms for crime prediction in smart cities through data mining.pdf.jpgAlgorithms for crime prediction in smart cities through data mining.pdf.jpgimage/jpeg27798https://repositorio.cuc.edu.co/bitstreams/c1cf4825-a547-4cd5-be76-7d513b35a334/downloade38972b7506a64294b7232ddb781f959MD54TEXTAlgorithms for crime prediction in smart cities through data mining.pdf.txtAlgorithms for crime prediction in smart cities through data mining.pdf.txttext/plain993https://repositorio.cuc.edu.co/bitstreams/0ad96b64-9e38-4956-8614-8b960aefb9af/download01d62e3b0080b6b8dc08707372ca69c6MD5511323/7743oai:repositorio.cuc.edu.co:11323/77432024-09-17 11:03:36.397http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==