Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review

The global energy industry fundamentally transformed towards renewable energy sources, driven by the sustainability paradigm. This shift was crucial in addressing the challenges of climate change and resource scarcity. Machine Learning (ML) played a pivotal role in enhancing the efficiency and relia...

Full description

Autores:
Hernandez Palma, Hugo Gaspar
Plaza Alvarado. Jonny Rafael
García Guiliany, Jesús Enrique
Dotto, Guilherme Luiz
Gindri, Claudete
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14207
Acceso en línea:
https://hdl.handle.net/11323/14207
https://repositorio.cuc.edu.co/
Palabra clave:
Machine learning
Power generation
Renewable energies
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_941170b9802b14b44a805e38cd418ee7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/14207
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
title Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
spellingShingle Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
Machine learning
Power generation
Renewable energies
title_short Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
title_full Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
title_fullStr Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
title_full_unstemmed Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
title_sort Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic review
dc.creator.fl_str_mv Hernandez Palma, Hugo Gaspar
Plaza Alvarado. Jonny Rafael
García Guiliany, Jesús Enrique
Dotto, Guilherme Luiz
Gindri, Claudete
dc.contributor.author.none.fl_str_mv Hernandez Palma, Hugo Gaspar
Plaza Alvarado. Jonny Rafael
García Guiliany, Jesús Enrique
Dotto, Guilherme Luiz
Gindri, Claudete
dc.subject.proposal.eng.fl_str_mv Machine learning
Power generation
Renewable energies
topic Machine learning
Power generation
Renewable energies
description The global energy industry fundamentally transformed towards renewable energy sources, driven by the sustainability paradigm. This shift was crucial in addressing the challenges of climate change and resource scarcity. Machine Learning (ML) played a pivotal role in enhancing the efficiency and reliability of renewable energy systems. This study conducted a comprehensive analysis of scientific production at the intersection of ML and renewable energy generation, focusing on Latin America. Employing a methodology based on documentary research and bibliometric processes, utilizing the Scopus database with the support of R and VOS viewer software, our research revealed a significant increase in interest and investment in research related to ML and renewable energies since 2020. This exponential growth scenario in this knowledge area had significant implications for Latin America and the world, fostering technological advancements and the adoption of renewable energies. Countries such as China, India, the United States, South Korea, and Saudi Arabia represented 61% of the global scientific production in this field, underscoring its global relevance. This growth indicated a growing interest and investment in ML applications in renewable energies, aligning with the 2030 Agenda for Sustainable Development. This research aligns with the Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure). It contributed to progress toward a more sustainable future, benefiting society through more efficient and sustainable energy systems, the energy industry through increased innovation and the adoption of clean technologies, and Latin America, which could leverage these findings to sustainably drive its economic and environmental development
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-03-15
dc.date.accessioned.none.fl_str_mv 2025-05-07T21:44:50Z
dc.date.available.none.fl_str_mv 2025-05-07T21:44:50Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Hernandez-Palma, H. G., Alvarado, J. R. P., Guiliany, J. E. G., Dotto, G. L., & Ramos, C. G. (2024). Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review. International Journal of Energy Economics and Policy, 14(2), 1–10. https://doi.org/10.32479/ijeep.15301
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/14207
dc.identifier.doi.none.fl_str_mv 10.32479/ijeep.15301
dc.identifier.eissn.none.fl_str_mv 2146-4553
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Hernandez-Palma, H. G., Alvarado, J. R. P., Guiliany, J. E. G., Dotto, G. L., & Ramos, C. G. (2024). Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review. International Journal of Energy Economics and Policy, 14(2), 1–10. https://doi.org/10.32479/ijeep.15301
10.32479/ijeep.15301
2146-4553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/14207
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv International Journal of Energy Economics and Policy
dc.relation.references.none.fl_str_mv Ahmad, M.W., Mourshed, M., Rezgui, Y. (2018), Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy (Oxford, England), 164, 465-474
Ak, R., Fink, O., Zio, E. (2016), Two machine learning approaches for short-term wind speed time-series prediction. IEEE Transactions on Neural Networks and Learning Systems, 27(8), 1734-1747
Alabi, T.M., Aghimien, E.I., Agbajor, F.D., Yang, Z., Lu, L., Adeoye, A.R., Gopaluni, B. (2022), A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renewable Energy, 194(1), 822-849
Aldaghi, A., Gheibi, M., Akrami, M., Hajiaghaei-Keshteli, M. (2022), A smart simulation-optimization framework for solar-powered desalination systems. Groundwater for Sustainable Development, 19, 100861
Alkesaiberi, A., Harrou, F., Sun, Y. (2022), Efficient wind power prediction using machine learning methods: A comparative study. Energies, 15(7), 2327
Alves, F. (2019), Exemplifying the Bradford’s Law: An analysis of recent research (2014-2019) on capital structure. Revista Ciências Sociais Em Perspectiva, 18(35), 92-101
Arévalo, P., Benavides, D., Tostado-Véliz, M., Aguado, J.A., Jurado, F. (2023), Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques. Renewable Energy, 205, 366-383
Aslam, M., Lee, J.M., Kim, H.S., Lee, S.J., Hong, S. (2019), Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study. Energies, 13(1), 147
Assouline, D., Mohajeri, N., Scartezzini, J.L. (2017), Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy (Phoenix, Ariz.), 141, 278-296
Assouline, D., Mohajeri, N., Scartezzini, J.L. (2018), Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Applied Energy, 217, 189-211
Aznarte, J.L., Siebert, N. (2016), Dynamic line rating using numerical weather predictions and machine learning: A case study. IEEE Transactions on Power Delivery, 32(1), 335-343
Barrera Suárez, K.V., Pinzón León, J.S., Acuña Gómez, J.S., Jiménez Barbosa, W.G. (2021), Análisis bibliométrico de las revistas científicas afines a optometría en Colombia 2014-2019. Revista Salud Bosque, 11(1), 1-20
Boar, A., Bastida, R., Marimon, F. (2020), A systematic literature review. Relationships between the sharing economy, sustainability and sustainable development goals. Sustainability, 12(17), 6744
Bochenek, B., Jurasz, J., Jaczewski, A., Stachura, G., Sekuła, P., Strzyżewski, T., Wdowikowski, M., Figurski, M. (2021), Day-ahead wind power forecasting in Poland based on numerical weather prediction. Energies, 14(8), 2164
Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., Szabó, S. (2019), A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renewable and Sustainable Energy Reviews, 114(109309), 109309
Bortoluzzi, M., Furlan, M., dos Reis Neto, J.F. (2022), Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning. Renewable Energy, 200, 1316-1326
Carneiro, T.C., Rocha, P.A., Carvalho, P.C., Fernández-Ramírez, L.M. (2022), Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain. Applied Energy, 314, 118936
Castro, A.J., Zanello, L., Lizcano, J., Daza, A. (2022), USR as atool for meeting the SDGs: A systematic review. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 17, 48-55
Chambers, J.M., Wyborn, C., Ryan, M.E., Reid, R.S., Riechers, M., Serban, A., Pickering, T. (2021), Six modes of co-production for sustainability. Nature Sustainability, 4(11), 983-996
De Freitas Viscondi, G., Alves-Souza, S.N. (2021), Solar irradiance prediction with machine learning algorithms: ABrazilian case study on photovoltaic electricity generation. Energies, 14(18), 5657
De Melo, G.C.G., Torres, I.C., de Araújo, Í.B.Q., Brito, D.B., de Andrade Barboza, E. (2021), A low-cost iot system for real-time monitoring of climatic variables and photovoltaic generation for smart grid application. Sensors (Basel), 21(9), 3293
De Santis, R.B., Costa, M.A. (2020), Extended isolation forests for fault detection in small hydroelectric plants. Sustainability, 12(16), 6421
Elmaz, F., Yücel, Ö., Mutlu, A.Y. (2020), Predictive modeling of biomass gasification with machine learning-based regression methods. Energy, 191, 116541
Flores, J.J., Garcia-Nava, J.L., Cedeno Gonzalez, J.R., Tellez, V.M., Calderon, F., Medrano, A. (2022), A machine-learning pipeline for large-scale power-quality forecasting in the mexican distribution grid. Applied Sciences, 12(17), 8423
Forootan, M.M., Larki, I., Zahedi, R., Ahmadi, A. (2022), Machine learning and deep learning in energy systems: Areview. Sustainability, 14(8), 4832
Garcia-Samper, M., Manotas, E.N., Ramírez, J., Hernández-Burgos, R. (2022), Cultura organizacional verde: Análisis desde las dimensiones de sostenibilidad corporativa. Información Tecnológica, 33(2), 99-106
Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S. (2022b), Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Applied Energy, 316(119063), 119063
Ghimire, S., Deo, R.C., Wang, H., Al-Musaylh, M.S., Casillas-Pérez, D., Salcedo-Sanz, S. (2022a), Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: A review and new modeling results. Energies, 15(3), 1061
Ghobakhloo, M., Fathi, M. (2021), Industry 4.0 and opportunities for energy sustainability. Journal of Cleaner Production, 295, 126427
Gil-Vera, V., Quintero-López, C. (2023), Predictive modeling of photovoltaic solar power generation. WSEAS Transactions on Power Systems, 18, 71-81
Golestaneh, F., Pinson, P., Gooi, H.B. (2016), Very short-term nonparametric probabilistic forecasting of renewable energy generation- with application to solar energy. IEEE transactions on power systems : A publication of the Power Engineering Society, 31(5), 3850-3863
Goliatt, L., Yaseen, Z.M. (2023), Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Systems with Applications, 212, 118295
Gonzalez-Abreu, A.D., Osornio-Rios, R.A., Elvira-Ortiz, D.A., Jaen Cuellar, A.Y., Delgado-Prieto, M., Antonino-Daviu, J.A. (2023), Power disturbance monitoring through techniques for novelty detection on wind power and photovoltaic generation. Sensors, 23(6), 2908
Gregorio-Chaviano, O., Limaymanta, C.H., López-Mesa, E.K. (2020), Análisis bibliométrico de la producción científica latinoamericana sobre COVID-19. Biomedica: Revista Del Instituto Nacional de Salud, 40(Supl 2), 104-115
Gutiérrez, L., Patiño, J., Duque-Grisales, E. (2021), A comparison of the performance of supervised learning algorithms for solar power prediction. Energies, 14(15), 4424
Huang, C.J., Kuo, P.H. (2019), Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access: Practical Innovations, Open Solutions, 7, 74822-74834
Laimon, M., Yusaf, T., Mai, T., Goh, S., Alrefae, W. (2022), A systems thinking approach to address sustainability challenges to the energy sector. International Journal of Thermofluids, 15, 100161
Li, D., Bae, J.H., Rishi, M. (2023), Sustainable development and SDG-7 in Sub-Saharan Africa: Balancing energy access, economic growth, and carbon emissions. The European Journal of Development Research, 35(1), 112-13
Li, J., Ward, J.K., Tong, J., Collins, L., Platt, G. (2016), Machine learning for solar irradiance forecasting of photovoltaic system. Renewable Energy, 90, 542-553
Lima, M.A.F., Fernández Ramírez, L.M., Carvalho, P.C., Batista, J.G., Freitas, D.M. (2022), A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain. Journal of Solar Energy Engineering, 144(1), 010802
Liu, W., Shen, Y., Aungkulanon, P., Ghalandari, M., Le, B.N., Alviz-Meza, A., Cárdenas-Escrocia, Y. (2023), Machine learning applications for photovoltaic system optimization in zero green energy buildings. Energy Reports, 9, 2787-2796
Liu, Z.F., Li, L.L., Tseng, M.L., Lim, M.K. (2020), Prediction short-term photovoltaic power using improved chicken swarm optimizer extreme learning machine model. Journal of Cleaner Production, 248, 119272
Lopez, S.A., Sanchez-Lengeling, B., de Goes Soares, J., Aspuru-Guzik, A. (2017), Design principles and top non-fullerene acceptor candidates for organic photovoltaics. Joule, 1(4), 857-870
Machado, E., Pinto, T., Guedes, V., Morais, H. (2021), Electrical load demand forecasting using feed-forward neural networks. Energies, 14(22), 7644
Mahari, W.A.W., Azwar, E., Foong, S.Y., Ahmed, A., Peng, W., Tabatabaei, M., Lam, S.S. (2021), Valorization of municipal wastes using co-pyrolysis for green energy production, energy security, and environmental sustainability: A review. Chemical Engineering Journal, 421, 129749
Manotas, E.N., Redondo, R.P., Contreras, J.L., Cardenas, M.J., Palma, H.H. (2021), Renewable energies and their advantages for the sustainability of companies in the health sector. International Journal of Energy Economics and Policy, 11(5), 531-537
Martinez-Sierra, D., García-Samper, M., Hernández-Palma, H., Niebles Nuñez, W. (2019), Gestión energética en el sector salud en Colombia: Un caso de desarrollo limpio y sostenible. Información Tecnológica, 30(5), 47-56
Martinho, A.D., Saporetti, C.M., Goliatt, L. (2023), Approaches for the short-term prediction of natural daily streamflows using hybrid machine learning enhanced with grey wolf optimization. Hydrological Sciences Journal, 68(1), 16-33
Melo, G., Torres, I.C., Araújo, Í., Brito, D., Barboza, E. (2021), A low cost IoT system for real-time monitoring of climatic variables and photovoltaic generation for smart grid application. Sensors, 21(9), 3293
Mendonça de Paiva, G., Pires Pimentel, S., Pinheiro Alvarenga, B., Gonçalves Marra, E., Mussetta, M., Leva, S. (2020), Multiple site intraday solar irradiance forecasting by machine learning algorithms: MGGP and MLP neural networks. Energies, 13(11), 3005
Moreira, T.M., de Faria, J.G. Jr., Vaz-de-Melo, P.O., Chaimowicz, L., Medeiros-Ribeiro, G. (2022), Prediction-free, real-time flexible control of tidal lagoons through proximal policy optimisation: Acase study for the Swansea Lagoon. Ocean Engineering, 247, 110657
Oliveira, M.A., Simas Filho, E.F., Albuquerque, M.C., Santos, Y.T., Da Silva, I.C., Farias, C.T. (2020), Ultrasound-based identification of damage in wind turbine blades using novelty detection. Ultrasonics, 108, 106166
Ordoñez Palacios, L.E., Bucheli Guerrero, V., Ordoñez, H. (2022) Machine learning for solar resource assessment using satellite images. Energies, 15(11), 3985
Palma, H.H., Pitre, R., Martínez, N.M.S. (2020), Nuevas tendencias para una logística sostenible con el medio ambiente. Ingeniare, (28), 63-72
Persson, C., Bacher, P., Shiga, T., Madsen, H. (2017), Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy (Phoenix, Ariz.), 150, 423-436
Ramírez-Duran, J.A., Niebles-Núñez, W., García-Tirado, J. (2023), Aplicaciones bibliométricas del estudio del capital intelectual dentro de las instituciones de educación superior desde un enfoque sostenible. Saber, Ciencia y Libertad, 18(1), 280-296
Rebouças Filho, P.P., Gomes, S.L., e Nascimento, N.M.M., Medeiros, C.M.S., Outay, F., de Albuquerque, V.H.C. (2019), Energy production predication via internet of thing based machine learning system. Future Generations Computer Systems: FGCS, 97, 180-193
Ribeiro, M.H.D.M., da Silva, R.G., Moreno, S.R., Mariani, V.C., dos Santos Coelho, L. (2022), Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting. International Journal of Electrical Power and Energy Systems, 136, 107712
Rosero, D.G., Díaz, N.L., Trujillo, C.L. (2021), Cloud and machine learning experiments applied to the energy management in a microgrid cluster. Applied Energy, 304, 117770
Samper, M.G., Florez, D.G., Borre, J.R., Ramirez, J. (2022), Industry 4.0 for sustainable supply chain management: Drivers and barriers. Procedia Computer Science, 203, 644-650
Schwanitz, V.J., Wierling, A. (2022), Toward sustainable global energy production and consumption. In: Responsible Consumption and Production. Cham: Springer International Publishing. p. 839-850
Sharifzadeh, M., Sikinioti-Lock, A., Shah, N. (2019), Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renewable and Sustainable Energy Reviews, 108, 513-538
Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., & Wen, J. (2020), Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 278, 115733
Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016), A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87, 903-910
Singh, U., Rizwan, M., Alaraj, M., Alsaidan, I. (2021), A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments. Energies, 14(16), 5196
Wang, Y., Shen, Y., Mao, S., Chen, X., Zou, H. (2018), LASSO and LSTM integrated temporal model for short-term solar intensity forecasting. IEEE Internet of Things Journal, 6(2), 2933-2944
Wentz, V.H., Maciel, J.N., Gimenez Ledesma, J.J., Ando Junior, O.H. (2022), Solar irradiance forecasting to short-term PV power: Accuracy comparison of ann and LSTM models. Energies, 15(7), 2457
Xia, M., Shao, H., Ma, X., de Silva, C.W. (2021), A stacked GRU-RNN based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Transactions on Industrial Informatics, 17(10), 7050-7059
Yeom, J.M., Deo, R.C., Adamowski, J.F., Park, S., Lee, C.S. (2020), Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environmental Research Letters, 15(9), 094025
Zhang, Y., Liu, K., Qin, L., An, X. (2016), Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Conversion and Management, 112, 208-219
dc.relation.citationendpage.none.fl_str_mv 10
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationvolume.none.fl_str_mv 14
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Latin America
dc.publisher.none.fl_str_mv Econjournals
dc.publisher.place.none.fl_str_mv Turkey
publisher.none.fl_str_mv Econjournals
dc.source.none.fl_str_mv https://econjournals.com/index.php/ijeep/article/view/15301
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0a923236-a3f6-45c7-a14b-c170d9683699/download
https://repositorio.cuc.edu.co/bitstreams/47c95469-b42c-48fb-9a9b-87f8bad512ed/download
https://repositorio.cuc.edu.co/bitstreams/d0ca6462-84a1-4b76-8b34-768267b50be8/download
https://repositorio.cuc.edu.co/bitstreams/5e755244-32eb-4a4a-92af-650766ffd74e/download
bitstream.checksum.fl_str_mv 210ba7a6d0528c04c4668e2adf3ca50b
73a5432e0b76442b22b026844140d683
cf1576866f7bb2272302fc89e903cba2
0f096d610434609f7bcd4c233b9a5c45
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1834108563107086336
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez Palma, Hugo GasparPlaza Alvarado. Jonny RafaelGarcía Guiliany, Jesús EnriqueDotto, Guilherme LuizGindri, Claudetevirtual::1158-1Latin America2025-05-07T21:44:50Z2025-05-07T21:44:50Z2024-03-15Hernandez-Palma, H. G., Alvarado, J. R. P., Guiliany, J. E. G., Dotto, G. L., & Ramos, C. G. (2024). Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review. International Journal of Energy Economics and Policy, 14(2), 1–10. https://doi.org/10.32479/ijeep.15301https://hdl.handle.net/11323/1420710.32479/ijeep.153012146-4553Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The global energy industry fundamentally transformed towards renewable energy sources, driven by the sustainability paradigm. This shift was crucial in addressing the challenges of climate change and resource scarcity. Machine Learning (ML) played a pivotal role in enhancing the efficiency and reliability of renewable energy systems. This study conducted a comprehensive analysis of scientific production at the intersection of ML and renewable energy generation, focusing on Latin America. Employing a methodology based on documentary research and bibliometric processes, utilizing the Scopus database with the support of R and VOS viewer software, our research revealed a significant increase in interest and investment in research related to ML and renewable energies since 2020. This exponential growth scenario in this knowledge area had significant implications for Latin America and the world, fostering technological advancements and the adoption of renewable energies. Countries such as China, India, the United States, South Korea, and Saudi Arabia represented 61% of the global scientific production in this field, underscoring its global relevance. This growth indicated a growing interest and investment in ML applications in renewable energies, aligning with the 2030 Agenda for Sustainable Development. This research aligns with the Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure). It contributed to progress toward a more sustainable future, benefiting society through more efficient and sustainable energy systems, the energy industry through increased innovation and the adoption of clean technologies, and Latin America, which could leverage these findings to sustainably drive its economic and environmental development10 páginasapplication/pdfengEconjournalsTurkeyhttps://econjournals.com/index.php/ijeep/article/view/15301Implications of machine learning in the generation of renewable energies in Latin America from a globalized vision: a systematic reviewArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85International Journal of Energy Economics and PolicyAhmad, M.W., Mourshed, M., Rezgui, Y. (2018), Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy (Oxford, England), 164, 465-474Ak, R., Fink, O., Zio, E. (2016), Two machine learning approaches for short-term wind speed time-series prediction. IEEE Transactions on Neural Networks and Learning Systems, 27(8), 1734-1747Alabi, T.M., Aghimien, E.I., Agbajor, F.D., Yang, Z., Lu, L., Adeoye, A.R., Gopaluni, B. (2022), A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renewable Energy, 194(1), 822-849Aldaghi, A., Gheibi, M., Akrami, M., Hajiaghaei-Keshteli, M. (2022), A smart simulation-optimization framework for solar-powered desalination systems. Groundwater for Sustainable Development, 19, 100861Alkesaiberi, A., Harrou, F., Sun, Y. (2022), Efficient wind power prediction using machine learning methods: A comparative study. Energies, 15(7), 2327Alves, F. (2019), Exemplifying the Bradford’s Law: An analysis of recent research (2014-2019) on capital structure. Revista Ciências Sociais Em Perspectiva, 18(35), 92-101Arévalo, P., Benavides, D., Tostado-Véliz, M., Aguado, J.A., Jurado, F. (2023), Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques. Renewable Energy, 205, 366-383Aslam, M., Lee, J.M., Kim, H.S., Lee, S.J., Hong, S. (2019), Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study. Energies, 13(1), 147Assouline, D., Mohajeri, N., Scartezzini, J.L. (2017), Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy (Phoenix, Ariz.), 141, 278-296Assouline, D., Mohajeri, N., Scartezzini, J.L. (2018), Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Applied Energy, 217, 189-211Aznarte, J.L., Siebert, N. (2016), Dynamic line rating using numerical weather predictions and machine learning: A case study. IEEE Transactions on Power Delivery, 32(1), 335-343Barrera Suárez, K.V., Pinzón León, J.S., Acuña Gómez, J.S., Jiménez Barbosa, W.G. (2021), Análisis bibliométrico de las revistas científicas afines a optometría en Colombia 2014-2019. Revista Salud Bosque, 11(1), 1-20Boar, A., Bastida, R., Marimon, F. (2020), A systematic literature review. Relationships between the sharing economy, sustainability and sustainable development goals. Sustainability, 12(17), 6744Bochenek, B., Jurasz, J., Jaczewski, A., Stachura, G., Sekuła, P., Strzyżewski, T., Wdowikowski, M., Figurski, M. (2021), Day-ahead wind power forecasting in Poland based on numerical weather prediction. Energies, 14(8), 2164Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., Szabó, S. (2019), A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renewable and Sustainable Energy Reviews, 114(109309), 109309Bortoluzzi, M., Furlan, M., dos Reis Neto, J.F. (2022), Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning. Renewable Energy, 200, 1316-1326Carneiro, T.C., Rocha, P.A., Carvalho, P.C., Fernández-Ramírez, L.M. (2022), Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain. Applied Energy, 314, 118936Castro, A.J., Zanello, L., Lizcano, J., Daza, A. (2022), USR as atool for meeting the SDGs: A systematic review. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 17, 48-55Chambers, J.M., Wyborn, C., Ryan, M.E., Reid, R.S., Riechers, M., Serban, A., Pickering, T. (2021), Six modes of co-production for sustainability. Nature Sustainability, 4(11), 983-996De Freitas Viscondi, G., Alves-Souza, S.N. (2021), Solar irradiance prediction with machine learning algorithms: ABrazilian case study on photovoltaic electricity generation. Energies, 14(18), 5657De Melo, G.C.G., Torres, I.C., de Araújo, Í.B.Q., Brito, D.B., de Andrade Barboza, E. (2021), A low-cost iot system for real-time monitoring of climatic variables and photovoltaic generation for smart grid application. Sensors (Basel), 21(9), 3293De Santis, R.B., Costa, M.A. (2020), Extended isolation forests for fault detection in small hydroelectric plants. Sustainability, 12(16), 6421Elmaz, F., Yücel, Ö., Mutlu, A.Y. (2020), Predictive modeling of biomass gasification with machine learning-based regression methods. Energy, 191, 116541Flores, J.J., Garcia-Nava, J.L., Cedeno Gonzalez, J.R., Tellez, V.M., Calderon, F., Medrano, A. (2022), A machine-learning pipeline for large-scale power-quality forecasting in the mexican distribution grid. Applied Sciences, 12(17), 8423Forootan, M.M., Larki, I., Zahedi, R., Ahmadi, A. (2022), Machine learning and deep learning in energy systems: Areview. Sustainability, 14(8), 4832Garcia-Samper, M., Manotas, E.N., Ramírez, J., Hernández-Burgos, R. (2022), Cultura organizacional verde: Análisis desde las dimensiones de sostenibilidad corporativa. Información Tecnológica, 33(2), 99-106Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S. (2022b), Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Applied Energy, 316(119063), 119063Ghimire, S., Deo, R.C., Wang, H., Al-Musaylh, M.S., Casillas-Pérez, D., Salcedo-Sanz, S. (2022a), Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: A review and new modeling results. Energies, 15(3), 1061Ghobakhloo, M., Fathi, M. (2021), Industry 4.0 and opportunities for energy sustainability. Journal of Cleaner Production, 295, 126427Gil-Vera, V., Quintero-López, C. (2023), Predictive modeling of photovoltaic solar power generation. WSEAS Transactions on Power Systems, 18, 71-81Golestaneh, F., Pinson, P., Gooi, H.B. (2016), Very short-term nonparametric probabilistic forecasting of renewable energy generation- with application to solar energy. IEEE transactions on power systems : A publication of the Power Engineering Society, 31(5), 3850-3863Goliatt, L., Yaseen, Z.M. (2023), Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Systems with Applications, 212, 118295Gonzalez-Abreu, A.D., Osornio-Rios, R.A., Elvira-Ortiz, D.A., Jaen Cuellar, A.Y., Delgado-Prieto, M., Antonino-Daviu, J.A. (2023), Power disturbance monitoring through techniques for novelty detection on wind power and photovoltaic generation. Sensors, 23(6), 2908Gregorio-Chaviano, O., Limaymanta, C.H., López-Mesa, E.K. (2020), Análisis bibliométrico de la producción científica latinoamericana sobre COVID-19. Biomedica: Revista Del Instituto Nacional de Salud, 40(Supl 2), 104-115Gutiérrez, L., Patiño, J., Duque-Grisales, E. (2021), A comparison of the performance of supervised learning algorithms for solar power prediction. Energies, 14(15), 4424Huang, C.J., Kuo, P.H. (2019), Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access: Practical Innovations, Open Solutions, 7, 74822-74834Laimon, M., Yusaf, T., Mai, T., Goh, S., Alrefae, W. (2022), A systems thinking approach to address sustainability challenges to the energy sector. International Journal of Thermofluids, 15, 100161Li, D., Bae, J.H., Rishi, M. (2023), Sustainable development and SDG-7 in Sub-Saharan Africa: Balancing energy access, economic growth, and carbon emissions. The European Journal of Development Research, 35(1), 112-13Li, J., Ward, J.K., Tong, J., Collins, L., Platt, G. (2016), Machine learning for solar irradiance forecasting of photovoltaic system. Renewable Energy, 90, 542-553Lima, M.A.F., Fernández Ramírez, L.M., Carvalho, P.C., Batista, J.G., Freitas, D.M. (2022), A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain. Journal of Solar Energy Engineering, 144(1), 010802Liu, W., Shen, Y., Aungkulanon, P., Ghalandari, M., Le, B.N., Alviz-Meza, A., Cárdenas-Escrocia, Y. (2023), Machine learning applications for photovoltaic system optimization in zero green energy buildings. Energy Reports, 9, 2787-2796Liu, Z.F., Li, L.L., Tseng, M.L., Lim, M.K. (2020), Prediction short-term photovoltaic power using improved chicken swarm optimizer extreme learning machine model. Journal of Cleaner Production, 248, 119272Lopez, S.A., Sanchez-Lengeling, B., de Goes Soares, J., Aspuru-Guzik, A. (2017), Design principles and top non-fullerene acceptor candidates for organic photovoltaics. Joule, 1(4), 857-870Machado, E., Pinto, T., Guedes, V., Morais, H. (2021), Electrical load demand forecasting using feed-forward neural networks. Energies, 14(22), 7644Mahari, W.A.W., Azwar, E., Foong, S.Y., Ahmed, A., Peng, W., Tabatabaei, M., Lam, S.S. (2021), Valorization of municipal wastes using co-pyrolysis for green energy production, energy security, and environmental sustainability: A review. Chemical Engineering Journal, 421, 129749Manotas, E.N., Redondo, R.P., Contreras, J.L., Cardenas, M.J., Palma, H.H. (2021), Renewable energies and their advantages for the sustainability of companies in the health sector. International Journal of Energy Economics and Policy, 11(5), 531-537Martinez-Sierra, D., García-Samper, M., Hernández-Palma, H., Niebles Nuñez, W. (2019), Gestión energética en el sector salud en Colombia: Un caso de desarrollo limpio y sostenible. Información Tecnológica, 30(5), 47-56Martinho, A.D., Saporetti, C.M., Goliatt, L. (2023), Approaches for the short-term prediction of natural daily streamflows using hybrid machine learning enhanced with grey wolf optimization. Hydrological Sciences Journal, 68(1), 16-33Melo, G., Torres, I.C., Araújo, Í., Brito, D., Barboza, E. (2021), A low cost IoT system for real-time monitoring of climatic variables and photovoltaic generation for smart grid application. Sensors, 21(9), 3293Mendonça de Paiva, G., Pires Pimentel, S., Pinheiro Alvarenga, B., Gonçalves Marra, E., Mussetta, M., Leva, S. (2020), Multiple site intraday solar irradiance forecasting by machine learning algorithms: MGGP and MLP neural networks. Energies, 13(11), 3005Moreira, T.M., de Faria, J.G. Jr., Vaz-de-Melo, P.O., Chaimowicz, L., Medeiros-Ribeiro, G. (2022), Prediction-free, real-time flexible control of tidal lagoons through proximal policy optimisation: Acase study for the Swansea Lagoon. Ocean Engineering, 247, 110657Oliveira, M.A., Simas Filho, E.F., Albuquerque, M.C., Santos, Y.T., Da Silva, I.C., Farias, C.T. (2020), Ultrasound-based identification of damage in wind turbine blades using novelty detection. Ultrasonics, 108, 106166Ordoñez Palacios, L.E., Bucheli Guerrero, V., Ordoñez, H. (2022) Machine learning for solar resource assessment using satellite images. Energies, 15(11), 3985Palma, H.H., Pitre, R., Martínez, N.M.S. (2020), Nuevas tendencias para una logística sostenible con el medio ambiente. Ingeniare, (28), 63-72Persson, C., Bacher, P., Shiga, T., Madsen, H. (2017), Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy (Phoenix, Ariz.), 150, 423-436Ramírez-Duran, J.A., Niebles-Núñez, W., García-Tirado, J. (2023), Aplicaciones bibliométricas del estudio del capital intelectual dentro de las instituciones de educación superior desde un enfoque sostenible. Saber, Ciencia y Libertad, 18(1), 280-296Rebouças Filho, P.P., Gomes, S.L., e Nascimento, N.M.M., Medeiros, C.M.S., Outay, F., de Albuquerque, V.H.C. (2019), Energy production predication via internet of thing based machine learning system. Future Generations Computer Systems: FGCS, 97, 180-193Ribeiro, M.H.D.M., da Silva, R.G., Moreno, S.R., Mariani, V.C., dos Santos Coelho, L. (2022), Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting. International Journal of Electrical Power and Energy Systems, 136, 107712Rosero, D.G., Díaz, N.L., Trujillo, C.L. (2021), Cloud and machine learning experiments applied to the energy management in a microgrid cluster. Applied Energy, 304, 117770Samper, M.G., Florez, D.G., Borre, J.R., Ramirez, J. (2022), Industry 4.0 for sustainable supply chain management: Drivers and barriers. Procedia Computer Science, 203, 644-650Schwanitz, V.J., Wierling, A. (2022), Toward sustainable global energy production and consumption. In: Responsible Consumption and Production. Cham: Springer International Publishing. p. 839-850Sharifzadeh, M., Sikinioti-Lock, A., Shah, N. (2019), Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renewable and Sustainable Energy Reviews, 108, 513-538Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., & Wen, J. (2020), Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 278, 115733Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016), A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87, 903-910Singh, U., Rizwan, M., Alaraj, M., Alsaidan, I. (2021), A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments. Energies, 14(16), 5196Wang, Y., Shen, Y., Mao, S., Chen, X., Zou, H. (2018), LASSO and LSTM integrated temporal model for short-term solar intensity forecasting. IEEE Internet of Things Journal, 6(2), 2933-2944Wentz, V.H., Maciel, J.N., Gimenez Ledesma, J.J., Ando Junior, O.H. (2022), Solar irradiance forecasting to short-term PV power: Accuracy comparison of ann and LSTM models. Energies, 15(7), 2457Xia, M., Shao, H., Ma, X., de Silva, C.W. (2021), A stacked GRU-RNN based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Transactions on Industrial Informatics, 17(10), 7050-7059Yeom, J.M., Deo, R.C., Adamowski, J.F., Park, S., Lee, C.S. (2020), Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environmental Research Letters, 15(9), 094025Zhang, Y., Liu, K., Qin, L., An, X. (2016), Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Conversion and Management, 112, 208-219101214Machine learningPower generationRenewable energiesPublication990842f9-9409-41fa-a774-a95cc10bf717virtual::1158-1990842f9-9409-41fa-a774-a95cc10bf717virtual::1158-10000-0001-8809-458Xvirtual::1158-1ORIGINAL01_IJEEP_15301_ramos_okey.cleaned.pdf01_IJEEP_15301_ramos_okey.cleaned.pdfapplication/pdf2633499https://repositorio.cuc.edu.co/bitstreams/0a923236-a3f6-45c7-a14b-c170d9683699/download210ba7a6d0528c04c4668e2adf3ca50bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/47c95469-b42c-48fb-9a9b-87f8bad512ed/download73a5432e0b76442b22b026844140d683MD52TEXT01_IJEEP_15301_ramos_okey.cleaned.pdf.txt01_IJEEP_15301_ramos_okey.cleaned.pdf.txtExtracted texttext/plain42281https://repositorio.cuc.edu.co/bitstreams/d0ca6462-84a1-4b76-8b34-768267b50be8/downloadcf1576866f7bb2272302fc89e903cba2MD53THUMBNAIL01_IJEEP_15301_ramos_okey.cleaned.pdf.jpg01_IJEEP_15301_ramos_okey.cleaned.pdf.jpgGenerated Thumbnailimage/jpeg16605https://repositorio.cuc.edu.co/bitstreams/5e755244-32eb-4a4a-92af-650766ffd74e/download0f096d610434609f7bcd4c233b9a5c45MD5411323/14207oai:repositorio.cuc.edu.co:11323/142072025-05-08 04:02:12.265https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K