Wind missing data arrangement using wavelet based techniques for getting maximum likelihood

Long time series of wind data can have data gaps that may lead to errors in the subsequent analyses of the time series. This study proposes using the wavelet transform as a system to verify that a data completion technique is correct and that the data series behaves correctly, enabling the user to i...

Full description

Autores:
Zapata-Sierra, Antonio Jesús
Cama-Pinto, Alejandro
Montoya, Francisco Gil
Alcayde, Alfredo
Manzano-Agugliaro, Francisco
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4586
Acceso en línea:
https://hdl.handle.net/11323/4586
https://repositorio.cuc.edu.co/
Palabra clave:
Wind data
Wavelet transform
FFT
Missing data
Renewable energy
Data filling
Datos del viento
Transformada de wavelet
FFT
Datos perdidos
Energía renovable
Relleno de datos
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id RCUC2_938392a9f7cbdbdaed245585bf140059
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4586
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
dc.title.translated.spa.fl_str_mv Disposición de datos faltantes del viento usando técnicas basadas en wavelets para obtener la máxima probabilidad
title Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
spellingShingle Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
Wind data
Wavelet transform
FFT
Missing data
Renewable energy
Data filling
Datos del viento
Transformada de wavelet
FFT
Datos perdidos
Energía renovable
Relleno de datos
title_short Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
title_full Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
title_fullStr Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
title_full_unstemmed Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
title_sort Wind missing data arrangement using wavelet based techniques for getting maximum likelihood
dc.creator.fl_str_mv Zapata-Sierra, Antonio Jesús
Cama-Pinto, Alejandro
Montoya, Francisco Gil
Alcayde, Alfredo
Manzano-Agugliaro, Francisco
dc.contributor.author.spa.fl_str_mv Zapata-Sierra, Antonio Jesús
Cama-Pinto, Alejandro
Montoya, Francisco Gil
Alcayde, Alfredo
Manzano-Agugliaro, Francisco
dc.subject.spa.fl_str_mv Wind data
Wavelet transform
FFT
Missing data
Renewable energy
Data filling
Datos del viento
Transformada de wavelet
FFT
Datos perdidos
Energía renovable
Relleno de datos
topic Wind data
Wavelet transform
FFT
Missing data
Renewable energy
Data filling
Datos del viento
Transformada de wavelet
FFT
Datos perdidos
Energía renovable
Relleno de datos
description Long time series of wind data can have data gaps that may lead to errors in the subsequent analyses of the time series. This study proposes using the wavelet transform as a system to verify that a data completion technique is correct and that the data series behaves correctly, enabling the user to infer the expected results. Wind speed data from three weather stations located in southern Europe were used to test the proposed method. The series consist of data measured every 10 min for 11 years. Various techniques are used to complete the data of one of the series; the wavelet transform is used as the control method, and its scalogram is used to visualize it. If the representation in the scalogram has zero magnitude, it shows the absence of data, so that if the data are properly filled in, then they have similar magnitudes to the rest of the series. The proposed method has shown that in case of data series inconsistencies, the wavelet transform can identify the lack of accuracy of the natural periodicity of these data. This result can be visually checked using the WT’s scalogram. Additionally, the scalograms provide valuable information on the variables studied, e.g. periods of higher wind speed. In summary, the wavelet transform has proven to be an excellent analysis tool that reveals the seasonal pattern of wind speed in periodograms at various scales.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-05-21T12:42:10Z
dc.date.available.none.fl_str_mv 2019-05-21T12:42:10Z
dc.date.issued.none.fl_str_mv 2019-02-25
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 01968904
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4586
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 01968904
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4586
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Hernández-Escobedo Q, Perea-Moreno A-J, Manzano-Agugliaro F. Wind energy research in Mexico. Renewable Energy 2018;123:719–29. Manzano-Agugliaro F, Alcayde A, Montoya F, Zapata-Sierra A, Gil C. Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 2013;18:134–43. Kiplangat D, Asokan K, Kumar K. Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition. Renewable Energy 2016;93:38–44. https://doi.org/10.1016/j.renene.2016.02.054. Clancy J, Gaffney F, Deane J, Curtis J, Gallachir B. Fossil fuel and co2 emissions savings on a high renewable electricity system – a single year case study for Ireland. Energy Policy 2015;83:151–64. https://doi.org/10.1016/j.enpol.2015.04.011. Nicholson M, Biegler T, Brook B. How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy 2011;36(1):305–13. https://doi.org/10.1016/j.energy.2010.10.039. Gentils T, Wang L, Kolios A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy 2017;199:187–204. https://doi.org/10.1016/j.apenergy.2017.05.009. Chitsaz H, Amjady N, Zareipour H. Wind power forecast using wavelet neural network trained by improved clonal selection algorithm. Energy Convers Manage 2015;89:588–98. https://doi.org/10.1016/j.enconman.2014.10.001. Dai J, Tan Y, Yang W, Wen L, Shen X. Investigation of wind resource characteristics in mountain wind farm using multiple-unit scada data in chenzhou: a case study. Energy Convers Manage 2017;148:378–93. Yan J, Ouyang T. Advanced wind power prediction based on data-driven error correction. Energy Convers Manage 2019;180:302–11. Okumus I, Dinler A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers Manage 2016;123:362–71. Claridge DE, Chen H. Missing data estimation for 1–6 h gaps in energy use and weather data using different statistical methods. Int J Energy Res 2006;30(13):1075–91. hler AT, Kirshner S, Ghil M, Robertson AW, Smyth P. Graphical models for statistical inference and data assimilation. Physica D 2007;230(1–2):72–87. i W, Chan C, Loh J, Choo F, Chen L. Solar radiation prediction using statistical approaches. In: Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on, IEEE; 2009. p. 1–5. Segura JGL. Influence of mountains on extreme rainfall in semi-arid areas of europe: The sierra de los filabres (se spain) a case of study. J Food Agric Environ 2013;11(3–4):2458–60. Hernández-Escobedo Q, Manzano-Agugliaro F, Zapata-Sierra A. The wind power of mexico. Renew Sustain Energy Rev 2010;14(9):2830–40. Hernandez-Escobedo Q, Saldaña-Flores R, Rodríguez-García E, Manzano-Agugliaro F. Wind energy resource in northern Mexico. Renew Sustain Energy Rev 2014;32:890–914. Hubbard KG, You J. Sensitivity analysis of quality assurance using the spatial regression approach-a case study of the maximum/minimum air temperature. J Atmos Oceanic Technol 2005;22(10):1520–30. Ekhtesasi M, Gohari Z. Determining area affected by dust storms in different wind speeds, using satellite images. Desert 2012;17(2):193–202. McVicar T, Li L, Van Niel T, Hutchinson M, Mu X, Liu Z. Spatially distributing 21 years of monthly hydrometeorological data in china: Spatio-temporal analysis of fao-56 crop reference evapotranspiration and pan evaporation in the context of climate change. Luo W, Taylor M, Parker S. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and wales. Int J Climatol 2008;28(7):947–59. Cressie N. Fitting variogram models by weighted least squares. J Int Assoc Math Geol 1985;17(5):563–86. Arslan T, Acitas S, Senoglu B. Generalized lindley and power lindley distributions for modeling the wind speed data. Energy Convers Manage 2017;152:300–11. Alam MM, Rehman S, Al-Hadhrami LM, Meyer JP. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustainable Dev 2014;22:34–47. Falamarzi Y, Palizdan N, Huang Y, Lee T. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNS). Agric Water Manage 2014;140:26–36. https://doi.org/10.1016/j.agwat. 2014.03.014. Chellali F, Khellaf A, Belouchrani A. Wavelet spectral analysis of the temperature and wind speed data at adrar, algeria. Renewable Energy 2010;35(6):1214–9. Janajreh I, Su L, Alan F. Wind energy assessment: Masdar city case study. Renewable Energy 2013;52:8–15. Avdakovic S, Lukac A, Nuhanovic A, Music M. Wind speed data analysis using wavelet transform. Int J Eng Appl Sci 2011;7:116–20. Liu H, Mi X-W, Li Y-F. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Convers Manage 2018;156:498–514. Anh ND, et al. Orthogonal-based wavelet analysis of wind turbulence and correlation between turbulence and forces. Vietnam J Mech 2007;29(2):73–82. Mi X-W, Liu H, Li Y-F. Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm. Energy Convers Manage 2017;151:709–22. Liu H, Mi X, Li Y. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Convers Manage 2018;166:120–31. Morlet J, Arens G, Fourgeau E, Glard D. Wave propagation and sampling theorypart I: complex signal and scattering in multilayered media. Geophysics 1982;47(2):203–21. Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 1984;15(4):723–36. Graps A. An introduction to wavelets. IEEE Comput Sci Eng 1995;2(2):50–61. Wang W, McFadden P. Application of wavelets to gearbox vibration signals for fault detection. J Sound Vibr 1996;192(5):927–39. Butler-Purry KL, Bagriyanik M. Characterization of transients in transformers using discrete wavelet transforms. IEEE Trans Power Syst 2003;18(2):648–56. Strang G. Wavelet transforms versus fourier transforms. Bull Am Math Soc 1993;28(2):288–305. https://doi.org/10.1090/S0273-0979-1993-00390-2. Bayram D, Seker S. Redundancy-based predictive fault detection on electric motors by stationary wavelet transform. IEEE Trans Ind Appl 2017;53(3):2997–3004. https://doi.org/10.1109/TIA.2016.2622231. Santoso S, Powers EJ, Grady W. Power quality disturbance data compression using wavelet transform methods. IEEE Trans Power Delivery 1997;12(3):1250–7. Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 2000;9(9):1532–46. Reissell L-M. Wavelet multiresolution representation of curves and surfaces. Graphical Models Image Process 1996;58(3):198–217. Kumar M, Pachori RB, Acharya UR. An efficient automated technique for cad diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst Appl 2016;63:165–72. Lin H-D. Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image Vis Comput 2007;25(11):1785–801. Lin C-K. Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans Fuzzy Syst 2006;14(6):849–59. Santhosh M, Venkaiah C, Kumar DV. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction. Energy Convers Manage 2018;168:482–93. Singh H, Mehra R. Discrete wavelet transform method for high flux nγdiscrimination with liquid scintillators. IEEE Trans Nucl Sci 2017;64(7):1927–33. https://doi.org/10.1109/TNS.2017.2708602. Chang T-P, Liu F-J, Ko H-H, Huang M-C. Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis. Appl Energy 2017;190:650–7. https://doi.org/10.1016/j.apenergy.2016.12.149. Liu H, Tian H-Q, Li Y-F. Comparison of new hybrid feemd-mlp, feemd-anfis, wavelet packet-mlp and wavelet packet-anfis for wind speed predictions. Energy Convers Manage 2015;89:1–11. Fei S-W, He Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 2015;73:625–31. https://doi.org/10.1016/j.ijepes.2015. 04.019. Shao H, Wei H, Deng X, Xing S. Short-term wind speed forecasting using wavelet transformation and adaboosting neural networks in yunnan wind farm. IET Renew Power Gener 2017;11(4):374–81. https://doi.org/10.1049/iet-rpg.2016.0118. Mladenović I, Marković D, Milovančević M, Nikolić M. Extreme learning approach with wavelet transform function for forecasting wind turbine wake effect to improve wind farm efficiency. Adv Eng Softw 2016;96:91–5. https://doi.org/10. 1016/j.advengsoft.2016.02.011. Alam M, Rehman S, Al-Hadhrami L, Meyer J. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustainable Dev 2014;22(1):34–47. https://doi.org/10.1016/j.esd.2014.02.004. Alam M, Moriya M, Sakamoto H. Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. J Fluids Struct 2003;18(3–4):325–46. https://doi.org/10.1016/j.jfluidstructs. 2003.07.005. Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. A review on the young history of the wind power short-term prediction. Renew Sustain Energy Rev 2008;12(6):1725–44. https://doi.org/10.1016/j.rser.2007.01.015. Dai H, Zheng Z, Wang W. A new fractional wavelet transform. Commun Nonlinear Sci Numer Simul 2017;44:19–36. https://doi.org/10.1016/j.cnsns.2016.06.034. Sukiennik P, Bialasiewicz J. Cross-correlation of bio-signals using continuous wavelet transform and genetic algorithm. J Neurosci Methods 2015;247:13–22. https://doi.org/10.1016/j.jneumeth.2015.03.002. Li H, Xu F, Liu H, Zhang X. Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram. Measurement: J Int Meas Confederation 2015;65:1–10. https://doi.org/10.1016/j. measurement.2014.12.032. He Y, Liu Y. Experimental research into time-frequency characteristics of cavitation noise using wavelet scalogram. Appl Acoust 2011;72(10):721–31. https://doi.org/ 10.1016/j.apacoust.2011.03.008. Tokumitsu M, Hasegawa K, Ishida Y. Toward resilient sensor networks with spatiotemporal interpolation of missing data: An example of space weather forecasting. Procedia Comput Sci 2015;60(1):1585–94. https://doi.org/10.1016/j.procs.2015. 08.268. Razavi-Far R, Zio E, Palade V. Efficient residuals pre-processing for diagnosing multi-class faults in a doubly fed induction generator, under missing data scenarios. Expert Syst Appl 2014;41(14):6386–99. https://doi.org/10.1016/j.eswa.2014.03. 056. Yang Z, Liu Y, Li C. Interpolation of missing wind data based on anfis. Renewable Energy 2011;36(3):993–8. https://doi.org/10.1016/j.renene.2010.08.033. Petrović P, Damljanović N. New procedure for harmonics estimation based on hilbert transformation. Electr Eng 2017;99(1):313–23. https://doi.org/10.1007/ s00202-016-0434-x. Kanarachos S, Christopoulos S-R, Chroneos A, Fitzpatrick M. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform. Expert Syst Appl 2017;85:292–304. https://doi.org/10. 1016/j.eswa.2017.04.028. Yu C, Li Y, Zhang M. An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network. Energy Convers Manage 2017;148:895–904. https://doi.org/10.1016/j.enconman.2017.05.063. Fornero S, Kehtarnavaz N, Swaminadham M, Phillips DA. Fourier and wavelet transform features for whirl tower diagnostics 4 (1999) 2267–2270. vol 4.https:// doi.org/10.1109/ICASSP.1999.758389. Jowder FA. Weibull and rayleigh distribution functions of wind speeds in kingdom of bahrain. Wind Eng 2006;30(5):439–45. Ahmed S, Mahammed H. A statistical analysis of wind power density based on the weibull and rayleigh models of penjwen region sulaimani/iraq. Jordan J Mech Ind Eng 2012;6(2):135–40. German-Sallo Z, German-Sallo M. Multiscale analysing methods in electrocardiogram signal processing and interpretation. Procedia Eng 2017;181:583–7. https://doi.org/10.1016/j.proeng.2017.02.437. Jung C, Schindler D. Sensitivity analysis of the system of wind speed distributions. Energy Convers Manage 2018;177:376–84. Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mech Syst Signal Process 2002;16(2–3):447–57. Singh RR, Mishra R. Benefits of dual tree complex wavelet transform over discrete wavelet transform for image fusion. Int J Innovative Res Sci Technol 2015;1(11):259–63. Harkat A, Benzid R, Saidi L. Features extraction and classification of ecg beats using CWT combined to RBF neural network optimized by cuckoo search via levy flight. In: Electrical Engineering (ICEE), 2015 4th International Conference on, IEEE; 2015. p. 1–4. Nair S, Paul Joseph K. Wavelet based electroretinographic signal analysis for diagnosis. Biomed Signal Process Control 2014;9(1):37–44. https://doi.org/10.1016/ j.bspc.2013.09.008. Watson SJ, Xiang BJ, Yang W, Tavner PJ, Crabtree CJ. Condition monitoring of the power output of wind turbine generators using wavelets. IEEE Trans Energy Convers 2010;25(3):715–21. Liu H, Huang W, Wang S, Zhu Z. Adaptive spectral kurtosis filtering based on morlet wavelet and its application for signal transients detection. Signal Process 2014;96:118–24. Cohen MX. A better way to define and describe morlet wavelets for time-frequency analysis. bioRxiv 2018:397182 . Yaman S, Ozturk N, Çomelekoglu U, Degirmenci E. Determination of dichlorvos effect on uterine contractility using wavelet transform. IRBM 2016;37(5–6):264–70. https://doi.org/10.1016/j.irbm.2016.09.002. Grinsted A, Moore J, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical times series. Nonlinear Processes Geophys 2004;11(5–6):561–6. Montoya FG, Manzano-Agugliaro F, López-Márquez S, Hernández-Escobedo Q, Gil C. Wind turbine selection for wind farm layout using multi-objective evolutionary algorithms. Expert Syst Appl 2014;41(15):6585–95.
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f4c79464-a152-49c0-884f-b7ab82e74e26/download
https://repositorio.cuc.edu.co/bitstreams/609bf20c-682d-4b4a-97cc-8fbdb50b61e3/download
https://repositorio.cuc.edu.co/bitstreams/d4c4eb40-a0a6-4fee-94c6-72bd77aa5793/download
https://repositorio.cuc.edu.co/bitstreams/b9a6962d-5449-496c-9b9a-68437d10344f/download
https://repositorio.cuc.edu.co/bitstreams/6bb67843-e260-495b-82e1-2d1f735bb0a1/download
bitstream.checksum.fl_str_mv ac4225c30ab9716af9ecbf0fdc691a83
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
9594495fd42bb506775f315d9ddea55e
9d7038a600de29b5bc81fd838a7a4cf4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760734137221120
spelling Zapata-Sierra, Antonio JesúsCama-Pinto, AlejandroMontoya, Francisco GilAlcayde, AlfredoManzano-Agugliaro, Francisco2019-05-21T12:42:10Z2019-05-21T12:42:10Z2019-02-2501968904https://hdl.handle.net/11323/4586Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Long time series of wind data can have data gaps that may lead to errors in the subsequent analyses of the time series. This study proposes using the wavelet transform as a system to verify that a data completion technique is correct and that the data series behaves correctly, enabling the user to infer the expected results. Wind speed data from three weather stations located in southern Europe were used to test the proposed method. The series consist of data measured every 10 min for 11 years. Various techniques are used to complete the data of one of the series; the wavelet transform is used as the control method, and its scalogram is used to visualize it. If the representation in the scalogram has zero magnitude, it shows the absence of data, so that if the data are properly filled in, then they have similar magnitudes to the rest of the series. The proposed method has shown that in case of data series inconsistencies, the wavelet transform can identify the lack of accuracy of the natural periodicity of these data. This result can be visually checked using the WT’s scalogram. Additionally, the scalograms provide valuable information on the variables studied, e.g. periods of higher wind speed. In summary, the wavelet transform has proven to be an excellent analysis tool that reveals the seasonal pattern of wind speed in periodograms at various scales.Zapata-Sierra, Antonio JesúsCama-Pinto, AlejandroMontoya, Francisco GilAlcayde, AlfredoManzano-Agugliaro, FranciscoengUniversidad de la Costahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wind dataWavelet transformFFTMissing dataRenewable energyData fillingDatos del vientoTransformada de waveletFFTDatos perdidosEnergía renovableRelleno de datosWind missing data arrangement using wavelet based techniques for getting maximum likelihoodDisposición de datos faltantes del viento usando técnicas basadas en wavelets para obtener la máxima probabilidadArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionHernández-Escobedo Q, Perea-Moreno A-J, Manzano-Agugliaro F. Wind energy research in Mexico. Renewable Energy 2018;123:719–29. Manzano-Agugliaro F, Alcayde A, Montoya F, Zapata-Sierra A, Gil C. Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 2013;18:134–43. Kiplangat D, Asokan K, Kumar K. Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition. Renewable Energy 2016;93:38–44. https://doi.org/10.1016/j.renene.2016.02.054. Clancy J, Gaffney F, Deane J, Curtis J, Gallachir B. Fossil fuel and co2 emissions savings on a high renewable electricity system – a single year case study for Ireland. Energy Policy 2015;83:151–64. https://doi.org/10.1016/j.enpol.2015.04.011. Nicholson M, Biegler T, Brook B. How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy 2011;36(1):305–13. https://doi.org/10.1016/j.energy.2010.10.039. Gentils T, Wang L, Kolios A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy 2017;199:187–204. https://doi.org/10.1016/j.apenergy.2017.05.009. Chitsaz H, Amjady N, Zareipour H. Wind power forecast using wavelet neural network trained by improved clonal selection algorithm. Energy Convers Manage 2015;89:588–98. https://doi.org/10.1016/j.enconman.2014.10.001. Dai J, Tan Y, Yang W, Wen L, Shen X. Investigation of wind resource characteristics in mountain wind farm using multiple-unit scada data in chenzhou: a case study. Energy Convers Manage 2017;148:378–93. Yan J, Ouyang T. Advanced wind power prediction based on data-driven error correction. Energy Convers Manage 2019;180:302–11. Okumus I, Dinler A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers Manage 2016;123:362–71. Claridge DE, Chen H. Missing data estimation for 1–6 h gaps in energy use and weather data using different statistical methods. Int J Energy Res 2006;30(13):1075–91. hler AT, Kirshner S, Ghil M, Robertson AW, Smyth P. Graphical models for statistical inference and data assimilation. Physica D 2007;230(1–2):72–87. i W, Chan C, Loh J, Choo F, Chen L. Solar radiation prediction using statistical approaches. In: Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on, IEEE; 2009. p. 1–5. Segura JGL. Influence of mountains on extreme rainfall in semi-arid areas of europe: The sierra de los filabres (se spain) a case of study. J Food Agric Environ 2013;11(3–4):2458–60. Hernández-Escobedo Q, Manzano-Agugliaro F, Zapata-Sierra A. The wind power of mexico. Renew Sustain Energy Rev 2010;14(9):2830–40. Hernandez-Escobedo Q, Saldaña-Flores R, Rodríguez-García E, Manzano-Agugliaro F. Wind energy resource in northern Mexico. Renew Sustain Energy Rev 2014;32:890–914. Hubbard KG, You J. Sensitivity analysis of quality assurance using the spatial regression approach-a case study of the maximum/minimum air temperature. J Atmos Oceanic Technol 2005;22(10):1520–30. Ekhtesasi M, Gohari Z. Determining area affected by dust storms in different wind speeds, using satellite images. Desert 2012;17(2):193–202. McVicar T, Li L, Van Niel T, Hutchinson M, Mu X, Liu Z. Spatially distributing 21 years of monthly hydrometeorological data in china: Spatio-temporal analysis of fao-56 crop reference evapotranspiration and pan evaporation in the context of climate change. Luo W, Taylor M, Parker S. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and wales. Int J Climatol 2008;28(7):947–59. Cressie N. Fitting variogram models by weighted least squares. J Int Assoc Math Geol 1985;17(5):563–86. Arslan T, Acitas S, Senoglu B. Generalized lindley and power lindley distributions for modeling the wind speed data. Energy Convers Manage 2017;152:300–11. Alam MM, Rehman S, Al-Hadhrami LM, Meyer JP. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustainable Dev 2014;22:34–47. Falamarzi Y, Palizdan N, Huang Y, Lee T. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNS). Agric Water Manage 2014;140:26–36. https://doi.org/10.1016/j.agwat. 2014.03.014. Chellali F, Khellaf A, Belouchrani A. Wavelet spectral analysis of the temperature and wind speed data at adrar, algeria. Renewable Energy 2010;35(6):1214–9. Janajreh I, Su L, Alan F. Wind energy assessment: Masdar city case study. Renewable Energy 2013;52:8–15. Avdakovic S, Lukac A, Nuhanovic A, Music M. Wind speed data analysis using wavelet transform. Int J Eng Appl Sci 2011;7:116–20. Liu H, Mi X-W, Li Y-F. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Convers Manage 2018;156:498–514. Anh ND, et al. Orthogonal-based wavelet analysis of wind turbulence and correlation between turbulence and forces. Vietnam J Mech 2007;29(2):73–82. Mi X-W, Liu H, Li Y-F. Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm. Energy Convers Manage 2017;151:709–22. Liu H, Mi X, Li Y. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Convers Manage 2018;166:120–31. Morlet J, Arens G, Fourgeau E, Glard D. Wave propagation and sampling theorypart I: complex signal and scattering in multilayered media. Geophysics 1982;47(2):203–21. Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 1984;15(4):723–36. Graps A. An introduction to wavelets. IEEE Comput Sci Eng 1995;2(2):50–61. Wang W, McFadden P. Application of wavelets to gearbox vibration signals for fault detection. J Sound Vibr 1996;192(5):927–39. Butler-Purry KL, Bagriyanik M. Characterization of transients in transformers using discrete wavelet transforms. IEEE Trans Power Syst 2003;18(2):648–56. Strang G. Wavelet transforms versus fourier transforms. Bull Am Math Soc 1993;28(2):288–305. https://doi.org/10.1090/S0273-0979-1993-00390-2. Bayram D, Seker S. Redundancy-based predictive fault detection on electric motors by stationary wavelet transform. IEEE Trans Ind Appl 2017;53(3):2997–3004. https://doi.org/10.1109/TIA.2016.2622231. Santoso S, Powers EJ, Grady W. Power quality disturbance data compression using wavelet transform methods. IEEE Trans Power Delivery 1997;12(3):1250–7. Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 2000;9(9):1532–46. Reissell L-M. Wavelet multiresolution representation of curves and surfaces. Graphical Models Image Process 1996;58(3):198–217. Kumar M, Pachori RB, Acharya UR. An efficient automated technique for cad diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst Appl 2016;63:165–72. Lin H-D. Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image Vis Comput 2007;25(11):1785–801. Lin C-K. Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans Fuzzy Syst 2006;14(6):849–59. Santhosh M, Venkaiah C, Kumar DV. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction. Energy Convers Manage 2018;168:482–93. Singh H, Mehra R. Discrete wavelet transform method for high flux nγdiscrimination with liquid scintillators. IEEE Trans Nucl Sci 2017;64(7):1927–33. https://doi.org/10.1109/TNS.2017.2708602. Chang T-P, Liu F-J, Ko H-H, Huang M-C. Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis. Appl Energy 2017;190:650–7. https://doi.org/10.1016/j.apenergy.2016.12.149. Liu H, Tian H-Q, Li Y-F. Comparison of new hybrid feemd-mlp, feemd-anfis, wavelet packet-mlp and wavelet packet-anfis for wind speed predictions. Energy Convers Manage 2015;89:1–11. Fei S-W, He Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 2015;73:625–31. https://doi.org/10.1016/j.ijepes.2015. 04.019. Shao H, Wei H, Deng X, Xing S. Short-term wind speed forecasting using wavelet transformation and adaboosting neural networks in yunnan wind farm. IET Renew Power Gener 2017;11(4):374–81. https://doi.org/10.1049/iet-rpg.2016.0118. Mladenović I, Marković D, Milovančević M, Nikolić M. Extreme learning approach with wavelet transform function for forecasting wind turbine wake effect to improve wind farm efficiency. Adv Eng Softw 2016;96:91–5. https://doi.org/10. 1016/j.advengsoft.2016.02.011. Alam M, Rehman S, Al-Hadhrami L, Meyer J. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustainable Dev 2014;22(1):34–47. https://doi.org/10.1016/j.esd.2014.02.004. Alam M, Moriya M, Sakamoto H. Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. J Fluids Struct 2003;18(3–4):325–46. https://doi.org/10.1016/j.jfluidstructs. 2003.07.005. Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. A review on the young history of the wind power short-term prediction. Renew Sustain Energy Rev 2008;12(6):1725–44. https://doi.org/10.1016/j.rser.2007.01.015. Dai H, Zheng Z, Wang W. A new fractional wavelet transform. Commun Nonlinear Sci Numer Simul 2017;44:19–36. https://doi.org/10.1016/j.cnsns.2016.06.034. Sukiennik P, Bialasiewicz J. Cross-correlation of bio-signals using continuous wavelet transform and genetic algorithm. J Neurosci Methods 2015;247:13–22. https://doi.org/10.1016/j.jneumeth.2015.03.002. Li H, Xu F, Liu H, Zhang X. Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram. Measurement: J Int Meas Confederation 2015;65:1–10. https://doi.org/10.1016/j. measurement.2014.12.032. He Y, Liu Y. Experimental research into time-frequency characteristics of cavitation noise using wavelet scalogram. Appl Acoust 2011;72(10):721–31. https://doi.org/ 10.1016/j.apacoust.2011.03.008. Tokumitsu M, Hasegawa K, Ishida Y. Toward resilient sensor networks with spatiotemporal interpolation of missing data: An example of space weather forecasting. Procedia Comput Sci 2015;60(1):1585–94. https://doi.org/10.1016/j.procs.2015. 08.268. Razavi-Far R, Zio E, Palade V. Efficient residuals pre-processing for diagnosing multi-class faults in a doubly fed induction generator, under missing data scenarios. Expert Syst Appl 2014;41(14):6386–99. https://doi.org/10.1016/j.eswa.2014.03. 056. Yang Z, Liu Y, Li C. Interpolation of missing wind data based on anfis. Renewable Energy 2011;36(3):993–8. https://doi.org/10.1016/j.renene.2010.08.033. Petrović P, Damljanović N. New procedure for harmonics estimation based on hilbert transformation. Electr Eng 2017;99(1):313–23. https://doi.org/10.1007/ s00202-016-0434-x. Kanarachos S, Christopoulos S-R, Chroneos A, Fitzpatrick M. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform. Expert Syst Appl 2017;85:292–304. https://doi.org/10. 1016/j.eswa.2017.04.028. Yu C, Li Y, Zhang M. An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network. Energy Convers Manage 2017;148:895–904. https://doi.org/10.1016/j.enconman.2017.05.063. Fornero S, Kehtarnavaz N, Swaminadham M, Phillips DA. Fourier and wavelet transform features for whirl tower diagnostics 4 (1999) 2267–2270. vol 4.https:// doi.org/10.1109/ICASSP.1999.758389. Jowder FA. Weibull and rayleigh distribution functions of wind speeds in kingdom of bahrain. Wind Eng 2006;30(5):439–45. Ahmed S, Mahammed H. A statistical analysis of wind power density based on the weibull and rayleigh models of penjwen region sulaimani/iraq. Jordan J Mech Ind Eng 2012;6(2):135–40. German-Sallo Z, German-Sallo M. Multiscale analysing methods in electrocardiogram signal processing and interpretation. Procedia Eng 2017;181:583–7. https://doi.org/10.1016/j.proeng.2017.02.437. Jung C, Schindler D. Sensitivity analysis of the system of wind speed distributions. Energy Convers Manage 2018;177:376–84. Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mech Syst Signal Process 2002;16(2–3):447–57. Singh RR, Mishra R. Benefits of dual tree complex wavelet transform over discrete wavelet transform for image fusion. Int J Innovative Res Sci Technol 2015;1(11):259–63. Harkat A, Benzid R, Saidi L. Features extraction and classification of ecg beats using CWT combined to RBF neural network optimized by cuckoo search via levy flight. In: Electrical Engineering (ICEE), 2015 4th International Conference on, IEEE; 2015. p. 1–4. Nair S, Paul Joseph K. Wavelet based electroretinographic signal analysis for diagnosis. Biomed Signal Process Control 2014;9(1):37–44. https://doi.org/10.1016/ j.bspc.2013.09.008. Watson SJ, Xiang BJ, Yang W, Tavner PJ, Crabtree CJ. Condition monitoring of the power output of wind turbine generators using wavelets. IEEE Trans Energy Convers 2010;25(3):715–21. Liu H, Huang W, Wang S, Zhu Z. Adaptive spectral kurtosis filtering based on morlet wavelet and its application for signal transients detection. Signal Process 2014;96:118–24. Cohen MX. A better way to define and describe morlet wavelets for time-frequency analysis. bioRxiv 2018:397182 . Yaman S, Ozturk N, Çomelekoglu U, Degirmenci E. Determination of dichlorvos effect on uterine contractility using wavelet transform. IRBM 2016;37(5–6):264–70. https://doi.org/10.1016/j.irbm.2016.09.002. Grinsted A, Moore J, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical times series. Nonlinear Processes Geophys 2004;11(5–6):561–6. Montoya FG, Manzano-Agugliaro F, López-Márquez S, Hernández-Escobedo Q, Gil C. Wind turbine selection for wind farm layout using multi-objective evolutionary algorithms. Expert Syst Appl 2014;41(15):6585–95.PublicationORIGINALWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdfWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdfapplication/pdf6810https://repositorio.cuc.edu.co/bitstreams/f4c79464-a152-49c0-884f-b7ab82e74e26/downloadac4225c30ab9716af9ecbf0fdc691a83MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/609bf20c-682d-4b4a-97cc-8fbdb50b61e3/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d4c4eb40-a0a6-4fee-94c6-72bd77aa5793/download8a4605be74aa9ea9d79846c1fba20a33MD57THUMBNAILWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdf.jpgWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdf.jpgimage/jpeg47112https://repositorio.cuc.edu.co/bitstreams/b9a6962d-5449-496c-9b9a-68437d10344f/download9594495fd42bb506775f315d9ddea55eMD59TEXTWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdf.txtWIND MISSING DATA ARRANGEMENT USING WAVELET BASED TECHNIQUES FOR GETTING MAXIMUM LIKELIHOOD.pdf.txttext/plain1464https://repositorio.cuc.edu.co/bitstreams/6bb67843-e260-495b-82e1-2d1f735bb0a1/download9d7038a600de29b5bc81fd838a7a4cf4MD51011323/4586oai:repositorio.cuc.edu.co:11323/45862024-09-17 10:53:00.989http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=