Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon

In this work, Diospyros kaki fruit waste was employed as a precursor material to develop a high surface area activated carbon, which efficiently removed the toxic herbicide atrazine (ATZ) from synthetic water solutions and river waters. The alternative activated carbon presented excellent characteri...

Full description

Autores:
de O. Salomón, Yamil L.
georgin, jordana
P. Franco, Dison S.
Netto, Matias S.
A. Piccilli, Daniel G.
Foletto, Edson
Pinto, Diana
S. Oliveira, Marcos L.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9220
Acceso en línea:
https://hdl.handle.net/11323/9220
https://doi.org/10.1016/j.molliq.2021.117990
https://repositorio.cuc.edu.co/
Palabra clave:
Diospyros
kaki
Adsorption
Atrazine
Isotherms
Thermodynamics
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_9346eb0b4e59e7cb9aff71e040b9f980
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9220
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
title Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
spellingShingle Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
Diospyros
kaki
Adsorption
Atrazine
Isotherms
Thermodynamics
title_short Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
title_full Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
title_fullStr Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
title_full_unstemmed Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
title_sort Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon
dc.creator.fl_str_mv de O. Salomón, Yamil L.
georgin, jordana
P. Franco, Dison S.
Netto, Matias S.
A. Piccilli, Daniel G.
Foletto, Edson
Pinto, Diana
S. Oliveira, Marcos L.
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv de O. Salomón, Yamil L.
georgin, jordana
P. Franco, Dison S.
Netto, Matias S.
A. Piccilli, Daniel G.
Foletto, Edson
Pinto, Diana
S. Oliveira, Marcos L.
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Diospyros
kaki
Adsorption
Atrazine
Isotherms
Thermodynamics
topic Diospyros
kaki
Adsorption
Atrazine
Isotherms
Thermodynamics
description In this work, Diospyros kaki fruit waste was employed as a precursor material to develop a high surface area activated carbon, which efficiently removed the toxic herbicide atrazine (ATZ) from synthetic water solutions and river waters. The alternative activated carbon presented excellent characteristics and structure, including high values of specific surface area (1067 m2 g 1) and pore volume (0.530 cm3 g 1) and some important functional groups on the surface. The temperature positively influenced the adsorption capacity, from 194.20 to 211.51 mg g 1. The Freundlich model was the proper one to represent the equilibrium data. Thermodynamic parameters confirmed the endothermic nature of the adsorption process. Kinetic studies confirmed that equilibrium was reached until 240 min, regardless of ATZ initial concentration. The LDF model adjusted well to the kinetic data, resulting in a diffusion coefficient ranging from 0.89x10-9 to 1.63x10-9 cm2 s 1 as the ATZ concentration increased. The activated carbon also decreased 85% of the ATZ concentration in a river water sample. Overall, the activated carbon developed from Diospyros kaki fruit waste presented an efficient ATZ removal from aqueous matrices.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-10
dc.date.accessioned.none.fl_str_mv 2022-06-08T12:33:01Z
dc.date.available.none.fl_str_mv 2022-11-10
2022-06-08T12:33:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Yamil L. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Diana Pinto, Marcos L.S. Oliveira, Guilherme L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, Journal of Molecular Liquids, Volume 347, 2022, 117990, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.117990 (https://www.sciencedirect.com/science/article/pii/S016773222102715X)
dc.identifier.issn.spa.fl_str_mv 0167-7322
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9220
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.molliq.2021.117990
dc.identifier.doi.spa.fl_str_mv 10.1016/j.molliq.2021.117990
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Yamil L. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Diana Pinto, Marcos L.S. Oliveira, Guilherme L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, Journal of Molecular Liquids, Volume 347, 2022, 117990, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.117990 (https://www.sciencedirect.com/science/article/pii/S016773222102715X)
0167-7322
10.1016/j.molliq.2021.117990
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9220
https://doi.org/10.1016/j.molliq.2021.117990
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv [1] I. Akpinar, A.O. Yazaydin, Adsorption of Atrazine from Water in Metal-Organic Framework Materials, J. Chem. Eng. Data. 63 (7) (2018) 2368–2375, https://doi. org/10.1021/acs.jced.7b0093010.1021/acs.jced.7b00930.s001.
[2] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control, J. Hazard. Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079.
[3] V. Kumar, P. Jha, Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains, Crop Prot. 71 (2015) 144–149, https://doi.org/10.1016/j. cropro.2015.02.016.
[4] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust, Environ. Res. 172 (2019) 561–568, https://doi.org/10.1016/j.envres.2019.03.010.
[5] P. Vanraes, G. Willems, A. Nikiforov, P. Surmont, F. Lynen, J. Vandamme, J. Van Durme, Y.P. Verheust, S.W.H. Van Hulle, A. Dumoulin, C. Leys, Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge, J. Hazard. Mater. 299 (2015) 647–655, https://doi.org/10.1016/j. jhazmat.2015.07.075.
[6] M. Kica, S. Ronka, The Removal of Atrazine from Water using Specific Polymeric Adsorbent, Sep. Sci. Technol. 49 (11) (2014) 1634–1642, https:// doi.org/10.1080/01496395.2014.906461.
[7] S.S. Caldas, J.L.O. Arias, C. Rombaldi, L.L. Mello, M.B.R. Cerqueira, A.F. Martins, E. G. Primel, Occurrence of pesticides and PPCPs in surface and drinking water in southern Brazil: Data on 4-year monitoring, J. Braz. Chem. Soc. 30 (2019) 71– 80, https://doi.org/10.21577/0103-5053.20180154.
[8] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/ j.jece:2020.103988.
[9] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (3) (2010) 330–335, https://doi.org/10.1016/j.clay.2010.04.008.
[10] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (1) (2008) 30–38, https://doi.org/10.1016/j.jcis.2008.01.047.
[11] Y. Jia, R. Wang, A.G. Fane, Atrazine adsorption from aqueous solution using powdered activated carbon - Improved mass transfer by air bubbling agitation, Chem. Eng. J. 116 (2006) 53–59, https://doi.org/10.1016/j. cej.2005.10.014.
[12] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model, Chem. Eng. J. 382 (2020) 122952, https://doi.org/10.1016/j.cej.2019.122952.
[13] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination. 280 (1-3) (2011) 1–13, https://doi.org/10.1016/j. desal.2011.07.019.
[14] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448.
[15] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res. 91 (2016) 156–173, https://doi.org/10.1016/j.watres.2016.01.008.
[16] N. Eibisch, R. Schroll, R. Fuß, R. Mikutta, M. Helfrich, H. Flessa, Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil, Chemosphere. 119 (2015) 155–162, https://doi.org/10.1016/j. chemosphere.2014.05.059.
[17] Y.J. Liu, C.Y. Hu, S.L. Lo, Direct and indirect electrochemical oxidation of aminecontaining pharmaceuticals using graphite electrodes, J. Hazard. Mater. 366 (2019) 592–605, https://doi.org/10.1016/j.jhazmat.2018.12.037.
[18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.
[19] E. Tchikuala, P. Mourão, J. Nabais, Valorisation of Natural Fibres from African Baobab Wastes by the Production of Activated Carbons for Adsorption of Diuron, Procedia Eng. 200 (2017) 399–407, https://doi.org/10.1016/j. proeng.2017.07.056.
[20] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021) 104911, https://doi.org/10.1016/j.jece:2020.104911.
[21] Q.A. Binh, H.-H. Nguyen, Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar, Bioresour. Technol. Reports. 11 (2020) 100520, https://doi.org/ 10.1016/j.biteb.2020.100520.
[22] C. Guan, P. Zhang, M. Wu, M. Zeng, S. Chachar, X. Ruan, R. Wang, Y. Yang, Discovery of a millennial androecious germplasm and its potential in persimmon (Diospyros kaki Thunb.) breeding, Sci. Hortic. (Amsterdam). 269 (2020) 109392, https://doi.org/10.1016/j.scienta.2020.109392.
[23] H. Ko, G. Huh, S.H. Jung, H. Kwon, Y. Jeon, Y.N. Park, Y.-J. Kim, Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma, Food Chem. Toxicol. 142 (2020) 111475, https://doi. org/10.1016/j.fct.2020.111475.
[24] Y. Zhang, L. Zhao, S.W. Huang, W. Wang, S.J. Song, Triterpene saponins with neuroprotective effects from the leaves of Diospyros kaki Thunb, Fitoterapia. 129 (2018) 138–144, https://doi.org/10.1016/j.fitote.2018.06.023.
[25] M.P. Cano, A. Gómez-Maqueo, R. Fernández-López, J. Welti-Chanes, T. GarcíaCayuela, Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante), Food Res. Int. 123 (2019) 538–549, https://doi.org/10.1016/j.foodres.2019.05.017.
[26] C. Ancillotti, S. Orlandini, L. Ciofi, B. Pasquini, C. Caprini, C. Droandi, S. Furlanetto, M. Del Bubba, Quality by design compliant strategy for the development of a liquid chromatography–tandem mass spectrometry method for the determination of selected polyphenols in Diospyros kaki, J. Chromatogr. A. 1569 (2018) 79–90, https://doi.org/10.1016/j.chroma.2018.07.046.
[27] H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie. 57U (1907). https://doi.org/10.1515/zpch-1907-5723.
[28] M.M. Dubinin, V.A. Astakhov, Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (1971) 3–7, https://doi.org/10.1007/ BF00849307.
[29] M. Temkin, V. Pyzhev, Kinetics of the synthesis of ammonia on promoted iron catalysts, Jour. Phys. Chem. (U.S.S.R.). 13 (1939) 851–867.
[30] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/ 10.1021/ja02242a004.
[31] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
[32] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (0) (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.
[33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014- 1117.
[34] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019) 123966, https://doi.org/10.1016/ j.colsurfa.2019.123966.
[35] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L. P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J. Clean. Prod. 197 (2018) 919–929, https://doi.org/ 10.1016/j.jclepro.2018.06.146.
[36] A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res. 25 (8) (2018) 7647–7661, https://doi. org/10.1007/s11356-017-1105-9.
[37] J. Georgin, D. Franco, F.C.F.C. Drumm, P. Grassi, M.S.M.S. Netto, D. Allasia, G.L.G. L. Dotto, Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/j. powtec.2020.01.064.
[38] J. Georgin, Y.L. de O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, G.L. Dotto, Successful adsorption of bright blue and methylene blue on modified pods of Caesalpinia echinata in discontinuous system, Environ. Sci. Pollut. Res. 28 (7) (2021) 8407–8420, https://doi.org/10.1007/s11356-020- 11210-3.
[39] Y.L. de O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S. Oliveira, D.S.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (26) (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.
[40] A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn cob for methylene blue adsorption, Appl. Surf. Sci. Adv. 3 (2021) 100037, https://doi.org/10.1016/j.apsadv.2020.100037.
[41] M. Bounaas, A. Bouguettoucha, D. Chebli, J.M. Gatica, H. Vidal, Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue, Arab. J. Sci. Eng. 46 (1) (2021) 325–341, https://doi.org/10.1007/s13369-020-04739-5.
[42] H.N. Tran, S.J. You, H.P. Chao, Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method, J. Environ. Manage. 188 (2017) 322–336, https://doi.org/10.1016/ j.jenvman.2016.12.003.
[43] N.L.I. Zailuddin, S. Husseinsyah, F.N. Hahary, H. Ismail, Treatment of oil palm empty fruit bunch regenerated cellulose biocomposite films using methacrylic acid, BioResources. 11 (2016) 873–885. https://doi.org/10.15376/biores.11.1. 873-885.
[44] X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline, Carbon N. Y. 77 (2014) 627–636, https://doi.org/10.1016/j.carbon.2014.05.067.
[45] K. Le Van, T.T. Luong Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog. Nat. Sci. Mater. Int. 24 (3) (2014) 191–198, https://doi.org/10.1016/j.pnsc.2014.05.012.
[46] J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng. 4 (1) (2016) 266–275, https://doi.org/10.1016/ j.jece:2015.11.018.
[47] M.A. Ahmad, N.A. Ahmad Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resour, Ind. 6 (2014) 18–35, https://doi.org/10.1016/j.wri.2014.06.002.
[48] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/10.1016/j.jclepro.2017.10.007.
[49] L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo, Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron, Sci. African. 9 (2020) e00476, https://doi.org/10.1016/j.sciaf.2020.e00476.
[50] Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology, J. Chem. 2014 (2014) 1–9, https://doi.org/10.1155/2014/491912.
[51] Y. Cui, A. Masud, N. Aich, J.D. Atkinson, Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: Characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites, J. Hazard. Mater. 368 (2019) 477–486, https://doi.org/10.1016/j. jhazmat.2019.01.075.
[52] A.C. Lua, T. Yang, J. Guo, Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells, J. Anal. Appl. Pyrolysis. 72 (2) (2004) 279–287, https://doi.org/10.1016/j.jaap.2004.08.001.
[53] G.F. De Oliveira, R.C. De Andrade, M.A.G. Trindade, H.M.C. Andrade, C.T. De Carvalho, Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu, Quim. Nova. 40 (2017) 284–292. https://doi.org/10.21577/0100-4042.20160191.
[54] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (5) (2019) 103396, https://doi.org/10.1016/j.jece:2019.103396.
[55] N.K. Niazi, I. Bibi, M. Shahid, Y.S. Ok, S.M. Shaheen, J. Rinklebe, H. Wang, B. Murtaza, E. Islam, M. Farrakh Nawaz, A. Lüttge, Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques, Sci. Total Environ. 621 (2018) 1642–1651, https://doi.org/10.1016/j. scitotenv.2017.10.063.
[56] H.B. Quesada, T.P. de Araújo, L.F. Cusioli, M.A.S.D. de Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ Chem. Eng. 9 (1) (2021) 104914, https://doi.org/10.1016/j.jece:2020.104914.
[57] Y. Wang, S.-L. Wang, T. Xie, J. Cao, Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant, Bioresour. Technol. 316 (2020) 123929, https://doi.org/ 10.1016/j.biortech.2020.123929.
[58] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Cham (2017), https://doi.org/10.1007/978-3-319-58136-1.
[59] G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des. 89 (10) (2011) 2182–2189, https://doi.org/10.1016/j.cherd.2010.11.024.
[60] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017) 40–52, https://doi.org/10.1016/j.molliq.2017.06.116.
[61] P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J. Colloid Interface Sci. 302 (2) (2006) 408– 416, https://doi.org/10.1016/j.jcis.2006.06.065.
[62] N.W. Brown, E.P.L. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka, Atrazine removal using adsorption and electrochemical regeneration, Water Res. 38 (13) (2004) 3067–3074, https://doi.org/10.1016/j.watres.2004.04.043.
[63] I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica, J. Colloid Interface Sci. 356 (1) (2011) 277–285, https://doi.org/10.1016/j.jcis.2011.01.002.
[64] D.L.D. Lima, C.P. Silva, R.J. Schneider, V.I. Esteves, Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil, Talanta. 85 (3) (2011) 1494–1499, https://doi.org/10.1016/ j.talanta.2011.06.024.
[65] J. Li, Y. Li, J. Lu, Adsorption of herbicides 2,4-D and acetochlor on inorganicorganic bentonites, Appl. Clay Sci. 46 (3) (2009) 314–318, https://doi.org/ 10.1016/j.clay.2009.08.032.
[66] Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater. 241– 242 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.09.050.
[67] J. Lladó, C. Lao-Luque, B. Ruiz, E. Fuente, M. Solé-Sardans, A.D. Dorado, Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59, https://doi.org/10.1016/j.psep.2015.02.013.
[68] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. (China) 57 (2017) 180– 189, https://doi.org/10.1016/j.jes.2016.11.002.
[69] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.
[70] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/ 10.1016/j.apsusc.2017.07.237.
[71] B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere. 76 (1) (2009) 127–133, https://doi.org/10.1016/j.chemosphere.2009.02.004.
[72] X. Zhao, J. Chen, F. Chen, X. Wang, Q. Zhu, Q. Ao, Surface characterization of corn stalk superfine powder studied by FTIR and XRD, Colloids Surfaces B Biointerfaces. 104 (2013) 207–212, https://doi.org/10.1016/ j.colsurfb.2012.12.003.
[73] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sánchez-Mendieta, O. MartínHernández, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. (United Kingdom). 39 (20) (2018) 2679–2690, https://doi.org/10.1080/ 09593330.2017.1365097.
[74] Y. Tao, S. Hu, S. Han, H. Shi, Y. Yang, H. Li, Y. Jiao, Q. Zhang, M.S. Akindolie, M. Ji, Z. Chen, Y. Zhang, Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32, Sci. Total Environ. 682 (2019) 59–69, https://doi.org/10.1016/j.scitotenv.2019.05.134.
[75] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (3) (2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020.
[76] M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere. 150 (2016) 781–789, https://doi.org/10.1016/j.chemosphere.2015.11.002.
[77] A. Zuorro, G. Maffei, R. Lavecchia, Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica, J. Environ. Chem. Eng. 5 (4) (2017) 4121–4127, https://doi.org/10.1016/j.jece:2017.07.078.
[78] J. Moreno-Pérez, P.S. Pauletto, A.M. Cunha, Á. Bonilla-Petriciolet, N.P.G. Salau, G.L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surfaces A Physicochem. Eng. Asp. 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170.
[79] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.
[80] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101, https://doi.org/10.1016/j.cej.2019.122101.
[81] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.B. Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid phase Equilib. 387 (2015) 103–110, https://doi.org/10.1016/j.fluid.2014.12.018.
[82] A. Nakbi, M. Bouzid, F. Ayachi, F. Aouaini, A. Ben Lamine, Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response, Prog. Biophys. Mol. Biol. 149 (2019) 70–85, https://doi.org/10.1016/j.pbiomolbio.2018.12.013.
[83] A. Nakbi, M. Bouzid, F. Ayachi, N. Bouaziz, A. Ben Lamine, Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on b-cyclodextrin and a putative biological sucrose adsorption from sucrose d, J. Mol. Liq. 298 (2020), https://doi.org/10.1016/ j.molliq.2019.111950 111950.
dc.relation.citationstartpage.spa.fl_str_mv 117990
dc.relation.citationvolume.spa.fl_str_mv 347
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
2021 Elsevier B.V. All rights reserved.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
2021 Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S016773222102715X?via%3Dihub#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7781e71f-bf2f-4046-a09a-23af2de53d45/download
https://repositorio.cuc.edu.co/bitstreams/44ed3651-69a0-41a3-921d-59eb59af61c0/download
https://repositorio.cuc.edu.co/bitstreams/f42edec2-796d-4ab0-b719-7283d5de3f6f/download
https://repositorio.cuc.edu.co/bitstreams/49dd2f21-031c-42fb-b4a6-7dec38abe0ae/download
bitstream.checksum.fl_str_mv 30042949cae85ecec3f523f7e18b4611
e30e9215131d99561d40d6b0abbe9bad
494afca7e60ccce4ddbe66b794a10876
960f1a763ab940ba0c1450db98259fb6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760794169245696
spelling de O. Salomón, Yamil L.georgin, jordanaP. Franco, Dison S.Netto, Matias S.A. Piccilli, Daniel G.Foletto, EdsonPinto, DianaS. Oliveira, Marcos L.Dotto, Guilherme Luiz2022-06-08T12:33:01Z2022-11-102022-06-08T12:33:01Z2021-11-10Yamil L. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Diana Pinto, Marcos L.S. Oliveira, Guilherme L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, Journal of Molecular Liquids, Volume 347, 2022, 117990, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.117990 (https://www.sciencedirect.com/science/article/pii/S016773222102715X)0167-7322https://hdl.handle.net/11323/9220https://doi.org/10.1016/j.molliq.2021.11799010.1016/j.molliq.2021.117990Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, Diospyros kaki fruit waste was employed as a precursor material to develop a high surface area activated carbon, which efficiently removed the toxic herbicide atrazine (ATZ) from synthetic water solutions and river waters. The alternative activated carbon presented excellent characteristics and structure, including high values of specific surface area (1067 m2 g 1) and pore volume (0.530 cm3 g 1) and some important functional groups on the surface. The temperature positively influenced the adsorption capacity, from 194.20 to 211.51 mg g 1. The Freundlich model was the proper one to represent the equilibrium data. Thermodynamic parameters confirmed the endothermic nature of the adsorption process. Kinetic studies confirmed that equilibrium was reached until 240 min, regardless of ATZ initial concentration. The LDF model adjusted well to the kinetic data, resulting in a diffusion coefficient ranging from 0.89x10-9 to 1.63x10-9 cm2 s 1 as the ATZ concentration increased. The activated carbon also decreased 85% of the ATZ concentration in a river water sample. Overall, the activated carbon developed from Diospyros kaki fruit waste presented an efficient ATZ removal from aqueous matrices.12 páginasapplication/pdfengElsevierNetherlandsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2021 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAdsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbonArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S016773222102715X?via%3Dihub#!Journal of Molecular Liquids[1] I. Akpinar, A.O. Yazaydin, Adsorption of Atrazine from Water in Metal-Organic Framework Materials, J. Chem. Eng. Data. 63 (7) (2018) 2368–2375, https://doi. org/10.1021/acs.jced.7b0093010.1021/acs.jced.7b00930.s001.[2] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control, J. Hazard. Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079.[3] V. Kumar, P. Jha, Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains, Crop Prot. 71 (2015) 144–149, https://doi.org/10.1016/j. cropro.2015.02.016.[4] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust, Environ. Res. 172 (2019) 561–568, https://doi.org/10.1016/j.envres.2019.03.010.[5] P. Vanraes, G. Willems, A. Nikiforov, P. Surmont, F. Lynen, J. Vandamme, J. Van Durme, Y.P. Verheust, S.W.H. Van Hulle, A. Dumoulin, C. Leys, Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge, J. Hazard. Mater. 299 (2015) 647–655, https://doi.org/10.1016/j. jhazmat.2015.07.075.[6] M. Kica, S. Ronka, The Removal of Atrazine from Water using Specific Polymeric Adsorbent, Sep. Sci. Technol. 49 (11) (2014) 1634–1642, https:// doi.org/10.1080/01496395.2014.906461.[7] S.S. Caldas, J.L.O. Arias, C. Rombaldi, L.L. Mello, M.B.R. Cerqueira, A.F. Martins, E. G. Primel, Occurrence of pesticides and PPCPs in surface and drinking water in southern Brazil: Data on 4-year monitoring, J. Braz. Chem. Soc. 30 (2019) 71– 80, https://doi.org/10.21577/0103-5053.20180154.[8] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/ j.jece:2020.103988.[9] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (3) (2010) 330–335, https://doi.org/10.1016/j.clay.2010.04.008.[10] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (1) (2008) 30–38, https://doi.org/10.1016/j.jcis.2008.01.047.[11] Y. Jia, R. Wang, A.G. Fane, Atrazine adsorption from aqueous solution using powdered activated carbon - Improved mass transfer by air bubbling agitation, Chem. Eng. J. 116 (2006) 53–59, https://doi.org/10.1016/j. cej.2005.10.014.[12] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model, Chem. Eng. J. 382 (2020) 122952, https://doi.org/10.1016/j.cej.2019.122952.[13] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination. 280 (1-3) (2011) 1–13, https://doi.org/10.1016/j. desal.2011.07.019.[14] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448.[15] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res. 91 (2016) 156–173, https://doi.org/10.1016/j.watres.2016.01.008.[16] N. Eibisch, R. Schroll, R. Fuß, R. Mikutta, M. Helfrich, H. Flessa, Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil, Chemosphere. 119 (2015) 155–162, https://doi.org/10.1016/j. chemosphere.2014.05.059.[17] Y.J. Liu, C.Y. Hu, S.L. Lo, Direct and indirect electrochemical oxidation of aminecontaining pharmaceuticals using graphite electrodes, J. Hazard. Mater. 366 (2019) 592–605, https://doi.org/10.1016/j.jhazmat.2018.12.037.[18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.[19] E. Tchikuala, P. Mourão, J. Nabais, Valorisation of Natural Fibres from African Baobab Wastes by the Production of Activated Carbons for Adsorption of Diuron, Procedia Eng. 200 (2017) 399–407, https://doi.org/10.1016/j. proeng.2017.07.056.[20] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021) 104911, https://doi.org/10.1016/j.jece:2020.104911.[21] Q.A. Binh, H.-H. Nguyen, Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar, Bioresour. Technol. Reports. 11 (2020) 100520, https://doi.org/ 10.1016/j.biteb.2020.100520.[22] C. Guan, P. Zhang, M. Wu, M. Zeng, S. Chachar, X. Ruan, R. Wang, Y. Yang, Discovery of a millennial androecious germplasm and its potential in persimmon (Diospyros kaki Thunb.) breeding, Sci. Hortic. (Amsterdam). 269 (2020) 109392, https://doi.org/10.1016/j.scienta.2020.109392.[23] H. Ko, G. Huh, S.H. Jung, H. Kwon, Y. Jeon, Y.N. Park, Y.-J. Kim, Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma, Food Chem. Toxicol. 142 (2020) 111475, https://doi. org/10.1016/j.fct.2020.111475.[24] Y. Zhang, L. Zhao, S.W. Huang, W. Wang, S.J. Song, Triterpene saponins with neuroprotective effects from the leaves of Diospyros kaki Thunb, Fitoterapia. 129 (2018) 138–144, https://doi.org/10.1016/j.fitote.2018.06.023.[25] M.P. Cano, A. Gómez-Maqueo, R. Fernández-López, J. Welti-Chanes, T. GarcíaCayuela, Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante), Food Res. Int. 123 (2019) 538–549, https://doi.org/10.1016/j.foodres.2019.05.017.[26] C. Ancillotti, S. Orlandini, L. Ciofi, B. Pasquini, C. Caprini, C. Droandi, S. Furlanetto, M. Del Bubba, Quality by design compliant strategy for the development of a liquid chromatography–tandem mass spectrometry method for the determination of selected polyphenols in Diospyros kaki, J. Chromatogr. A. 1569 (2018) 79–90, https://doi.org/10.1016/j.chroma.2018.07.046.[27] H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie. 57U (1907). https://doi.org/10.1515/zpch-1907-5723.[28] M.M. Dubinin, V.A. Astakhov, Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (1971) 3–7, https://doi.org/10.1007/ BF00849307.[29] M. Temkin, V. Pyzhev, Kinetics of the synthesis of ammonia on promoted iron catalysts, Jour. Phys. Chem. (U.S.S.R.). 13 (1939) 851–867.[30] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/ 10.1021/ja02242a004.[31] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[32] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (0) (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.[33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014- 1117.[34] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019) 123966, https://doi.org/10.1016/ j.colsurfa.2019.123966.[35] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L. P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J. Clean. Prod. 197 (2018) 919–929, https://doi.org/ 10.1016/j.jclepro.2018.06.146.[36] A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res. 25 (8) (2018) 7647–7661, https://doi. org/10.1007/s11356-017-1105-9.[37] J. Georgin, D. Franco, F.C.F.C. Drumm, P. Grassi, M.S.M.S. Netto, D. Allasia, G.L.G. L. Dotto, Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/j. powtec.2020.01.064.[38] J. Georgin, Y.L. de O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, G.L. Dotto, Successful adsorption of bright blue and methylene blue on modified pods of Caesalpinia echinata in discontinuous system, Environ. Sci. Pollut. Res. 28 (7) (2021) 8407–8420, https://doi.org/10.1007/s11356-020- 11210-3.[39] Y.L. de O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S. Oliveira, D.S.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (26) (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.[40] A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn cob for methylene blue adsorption, Appl. Surf. Sci. Adv. 3 (2021) 100037, https://doi.org/10.1016/j.apsadv.2020.100037.[41] M. Bounaas, A. Bouguettoucha, D. Chebli, J.M. Gatica, H. Vidal, Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue, Arab. J. Sci. Eng. 46 (1) (2021) 325–341, https://doi.org/10.1007/s13369-020-04739-5.[42] H.N. Tran, S.J. You, H.P. Chao, Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method, J. Environ. Manage. 188 (2017) 322–336, https://doi.org/10.1016/ j.jenvman.2016.12.003.[43] N.L.I. Zailuddin, S. Husseinsyah, F.N. Hahary, H. Ismail, Treatment of oil palm empty fruit bunch regenerated cellulose biocomposite films using methacrylic acid, BioResources. 11 (2016) 873–885. https://doi.org/10.15376/biores.11.1. 873-885.[44] X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline, Carbon N. Y. 77 (2014) 627–636, https://doi.org/10.1016/j.carbon.2014.05.067.[45] K. Le Van, T.T. Luong Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog. Nat. Sci. Mater. Int. 24 (3) (2014) 191–198, https://doi.org/10.1016/j.pnsc.2014.05.012.[46] J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng. 4 (1) (2016) 266–275, https://doi.org/10.1016/ j.jece:2015.11.018.[47] M.A. Ahmad, N.A. Ahmad Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resour, Ind. 6 (2014) 18–35, https://doi.org/10.1016/j.wri.2014.06.002.[48] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/10.1016/j.jclepro.2017.10.007.[49] L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo, Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron, Sci. African. 9 (2020) e00476, https://doi.org/10.1016/j.sciaf.2020.e00476.[50] Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology, J. Chem. 2014 (2014) 1–9, https://doi.org/10.1155/2014/491912.[51] Y. Cui, A. Masud, N. Aich, J.D. Atkinson, Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: Characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites, J. Hazard. Mater. 368 (2019) 477–486, https://doi.org/10.1016/j. jhazmat.2019.01.075.[52] A.C. Lua, T. Yang, J. Guo, Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells, J. Anal. Appl. Pyrolysis. 72 (2) (2004) 279–287, https://doi.org/10.1016/j.jaap.2004.08.001.[53] G.F. De Oliveira, R.C. De Andrade, M.A.G. Trindade, H.M.C. Andrade, C.T. De Carvalho, Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu, Quim. Nova. 40 (2017) 284–292. https://doi.org/10.21577/0100-4042.20160191.[54] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (5) (2019) 103396, https://doi.org/10.1016/j.jece:2019.103396.[55] N.K. Niazi, I. Bibi, M. Shahid, Y.S. Ok, S.M. Shaheen, J. Rinklebe, H. Wang, B. Murtaza, E. Islam, M. Farrakh Nawaz, A. Lüttge, Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques, Sci. Total Environ. 621 (2018) 1642–1651, https://doi.org/10.1016/j. scitotenv.2017.10.063.[56] H.B. Quesada, T.P. de Araújo, L.F. Cusioli, M.A.S.D. de Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ Chem. Eng. 9 (1) (2021) 104914, https://doi.org/10.1016/j.jece:2020.104914.[57] Y. Wang, S.-L. Wang, T. Xie, J. Cao, Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant, Bioresour. Technol. 316 (2020) 123929, https://doi.org/ 10.1016/j.biortech.2020.123929.[58] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Cham (2017), https://doi.org/10.1007/978-3-319-58136-1.[59] G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des. 89 (10) (2011) 2182–2189, https://doi.org/10.1016/j.cherd.2010.11.024.[60] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017) 40–52, https://doi.org/10.1016/j.molliq.2017.06.116.[61] P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J. Colloid Interface Sci. 302 (2) (2006) 408– 416, https://doi.org/10.1016/j.jcis.2006.06.065.[62] N.W. Brown, E.P.L. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka, Atrazine removal using adsorption and electrochemical regeneration, Water Res. 38 (13) (2004) 3067–3074, https://doi.org/10.1016/j.watres.2004.04.043.[63] I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica, J. Colloid Interface Sci. 356 (1) (2011) 277–285, https://doi.org/10.1016/j.jcis.2011.01.002.[64] D.L.D. Lima, C.P. Silva, R.J. Schneider, V.I. Esteves, Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil, Talanta. 85 (3) (2011) 1494–1499, https://doi.org/10.1016/ j.talanta.2011.06.024.[65] J. Li, Y. Li, J. Lu, Adsorption of herbicides 2,4-D and acetochlor on inorganicorganic bentonites, Appl. Clay Sci. 46 (3) (2009) 314–318, https://doi.org/ 10.1016/j.clay.2009.08.032.[66] Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater. 241– 242 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.09.050.[67] J. Lladó, C. Lao-Luque, B. Ruiz, E. Fuente, M. Solé-Sardans, A.D. Dorado, Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59, https://doi.org/10.1016/j.psep.2015.02.013.[68] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. (China) 57 (2017) 180– 189, https://doi.org/10.1016/j.jes.2016.11.002.[69] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.[70] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/ 10.1016/j.apsusc.2017.07.237.[71] B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere. 76 (1) (2009) 127–133, https://doi.org/10.1016/j.chemosphere.2009.02.004.[72] X. Zhao, J. Chen, F. Chen, X. Wang, Q. Zhu, Q. Ao, Surface characterization of corn stalk superfine powder studied by FTIR and XRD, Colloids Surfaces B Biointerfaces. 104 (2013) 207–212, https://doi.org/10.1016/ j.colsurfb.2012.12.003.[73] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sánchez-Mendieta, O. MartínHernández, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. (United Kingdom). 39 (20) (2018) 2679–2690, https://doi.org/10.1080/ 09593330.2017.1365097.[74] Y. Tao, S. Hu, S. Han, H. Shi, Y. Yang, H. Li, Y. Jiao, Q. Zhang, M.S. Akindolie, M. Ji, Z. Chen, Y. Zhang, Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32, Sci. Total Environ. 682 (2019) 59–69, https://doi.org/10.1016/j.scitotenv.2019.05.134.[75] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (3) (2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020.[76] M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere. 150 (2016) 781–789, https://doi.org/10.1016/j.chemosphere.2015.11.002.[77] A. Zuorro, G. Maffei, R. Lavecchia, Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica, J. Environ. Chem. Eng. 5 (4) (2017) 4121–4127, https://doi.org/10.1016/j.jece:2017.07.078.[78] J. Moreno-Pérez, P.S. Pauletto, A.M. Cunha, Á. Bonilla-Petriciolet, N.P.G. Salau, G.L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surfaces A Physicochem. Eng. Asp. 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170.[79] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.[80] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101, https://doi.org/10.1016/j.cej.2019.122101.[81] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.B. Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid phase Equilib. 387 (2015) 103–110, https://doi.org/10.1016/j.fluid.2014.12.018.[82] A. Nakbi, M. Bouzid, F. Ayachi, F. Aouaini, A. Ben Lamine, Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response, Prog. Biophys. Mol. Biol. 149 (2019) 70–85, https://doi.org/10.1016/j.pbiomolbio.2018.12.013.[83] A. Nakbi, M. Bouzid, F. Ayachi, N. Bouaziz, A. Ben Lamine, Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on b-cyclodextrin and a putative biological sucrose adsorption from sucrose d, J. Mol. Liq. 298 (2020), https://doi.org/10.1016/ j.molliq.2019.111950 111950.117990347DiospyroskakiAdsorptionAtrazineIsothermsThermodynamicsPublicationORIGINAL1-s2.0-S016773222102715X-main.pdf1-s2.0-S016773222102715X-main.pdfapplication/pdf2380253https://repositorio.cuc.edu.co/bitstreams/7781e71f-bf2f-4046-a09a-23af2de53d45/download30042949cae85ecec3f523f7e18b4611MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/44ed3651-69a0-41a3-921d-59eb59af61c0/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S016773222102715X-main.pdf.txt1-s2.0-S016773222102715X-main.pdf.txttext/plain59162https://repositorio.cuc.edu.co/bitstreams/f42edec2-796d-4ab0-b719-7283d5de3f6f/download494afca7e60ccce4ddbe66b794a10876MD53THUMBNAIL1-s2.0-S016773222102715X-main.pdf.jpg1-s2.0-S016773222102715X-main.pdf.jpgimage/jpeg16225https://repositorio.cuc.edu.co/bitstreams/49dd2f21-031c-42fb-b4a6-7dec38abe0ae/download960f1a763ab940ba0c1450db98259fb6MD5411323/9220oai:repositorio.cuc.edu.co:11323/92202024-09-17 12:44:04.899https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==