Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena

The increase of energy consumption, global warming, resource depletion and the rise of policies focused on climate change and greenhouse gas emissions reductions, have promoted to countries and industries the implementation of strategies focused on increase energy efficiency and reduce GHG emissions...

Full description

Autores:
Hernández Herrera, Hernan
Silva Ortega, Jorge I
Martínez Diaz, Vicente Leonel
Sanchez, Zaid
Gomez Pons, Aliana
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6544
Acceso en línea:
https://hdl.handle.net/11323/6544
https://repositorio.cuc.edu.co/
Palabra clave:
Energy savings
Air systems
Barranquilla
Cartagena
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_932da1f74d825fffcd6d44a07c45dcb4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6544
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
title Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
spellingShingle Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
Energy savings
Air systems
Barranquilla
Cartagena
title_short Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
title_full Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
title_fullStr Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
title_full_unstemmed Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
title_sort Potential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and Cartagena
dc.creator.fl_str_mv Hernández Herrera, Hernan
Silva Ortega, Jorge I
Martínez Diaz, Vicente Leonel
Sanchez, Zaid
Gomez Pons, Aliana
dc.contributor.author.spa.fl_str_mv Hernández Herrera, Hernan
Silva Ortega, Jorge I
Martínez Diaz, Vicente Leonel
Sanchez, Zaid
Gomez Pons, Aliana
dc.subject.spa.fl_str_mv Energy savings
Air systems
Barranquilla
Cartagena
topic Energy savings
Air systems
Barranquilla
Cartagena
description The increase of energy consumption, global warming, resource depletion and the rise of policies focused on climate change and greenhouse gas emissions reductions, have promoted to countries and industries the implementation of strategies focused on increase energy efficiency and reduce GHG emissions. Compressed Air Systems (CASs) are one of the most widespread systems used in industry. In countries such as China, USA, Australia, France and Italy, CASs accounts around 10% of the overall electricity costs. In Colombia the energy used in the industrial sector, rise the 33 % of the total energy consumption, equal to 481.429 TJ/year; the electricity consumption is a 13 % of this value, equivalent to 13,3 TWh/year. This paper determine the potentials energy saving of CASs for two industrial cities of the Colombian Caribbean Coast region, showing that there is a high energy saving potential, around 50 GWh/year and a reduction of CO2 emissions of 10,702 tons of CO2/year, which can be taken in consideration by the government and organizations to develop projects focused on reduce energy consumption and mitigate CO2 emissions.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-13T18:44:29Z
dc.date.available.none.fl_str_mv 2020-07-13T18:44:29Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1757-899X
1757-8981
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6544
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1757-899X/844/1/012019
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1757-899X
1757-8981
doi:10.1088/1757-899X/844/1/012019
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6544
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Outlook, B. E. 2019 edition. London, United Kingdom2019. Available From: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/energy-outlook/bp-energy-outlook-2019.pdf. [Last accessed on 2019 Jun 28].
[2] Chikunov S O, Gutsunuk O N, Ivleva M I, Elyakova I D, Nikolaeva I V and Maramygin M S, 2018, Improving the economic performance of Russia’s energy system based on the development of alternative energy sources. IJEEP, 8(6), 382-391.
[3] UPME (2018), Balance Energético Colombiano. BECO. Available from: http://www1. upme.gov.co/ InformacionCifras/Paginas/BalanceEnergetico.aspx.[Last accessed on 2019 Jun 24].
[4] UPME (2016), Plan de acción indicativo de eficiencia energética 2017-2022, una realidad y oportunidad para Colombia (PAI Proure 2017-2022), Available from:http://www1. upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf.[Last accessed on 2019 Jun 12].
[5] Faizah S I and Husaeni U A, 2018, Development of Consumption and Supplying Energy in Indonesia’s Economy. IJEEP, 8(6), 313-321.
[6] Benedetti M, Bertini I, Introna V, and Ubertini S, 2018, Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436- 448.
[7] B Gopalakrishnan, K Ramamoorthy, E Crowe, S Chaudhari and H. Latif, 2014, A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector, Sustainable Energy Technologies and Assessments, 7, 154-165.
[8] Ocampo N, Garcia J, Ghazoul J and Etter A, 2018, Quantifying impacts of oil palm expansion on Colombia's threatened biodiversity. Biological Conservation, 224, 117-121.
[9] Berruezo J A and Jiménez J D, 2017. Situación del Convenio Marco de Naciones Unidas sobre el Cambio Climático. Resumen de las Cumbres de París, COP21 y de Marrakech, COP22. Revista de Salud Ambiental, 17(1), 34-39.
[10] Taheri K, and Gadow R, 2017, Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP-JMST, 18, 10-17.
[11] Bonfà F, Salvatori S, Benedetti M, Introna V and Ubertini S, 2017, Monitoring compressed air systems energy performance in industrial production: lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403.
[12] Annegret C and Radgen P, 2003, Efficient compressed air a successful campaign for energy efficient compressed air systems in Germany, ECEEE 2003 summer study proceedings; 2 - 7 June 2003, Saint-Raphaël, France.
[13] Dos Santos Mascarenhas J, Chowdhury H, Thirugnanasambandam M, Chowdhury T and Saidur, R, 2019, Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production, 231, 183-195.
[14] Yin Y, Zheng B, Yang C, and Zhang X, 2015. A proposed compressed air drying method using pressurized liquid desiccant and experimental verification. Applied Energy, 141, 80-89.
[15] Zahlan J, Asfour S, 2015, A multi-objective approach for determining optimal air compressor location in a manufacturing facility, Journal of Manufacturing Systems, 35, 176–190.
[16] DoE US, 1998, Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC).
[17] Šešlija D, Ignjatović I, Dudić S and Lagod B, 2011, Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645.
[18] Viholainen J, Grönman K, Jaatinen-Värri A, Grönman A, Ukkonen P, and Luoranen M, 2015, Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment. Energy conversion and Management, 101, 336-342.
[19] UPME INCOMBUSTION, 2013, Determinación del potencial de reducción del consumo energético en los subsectores manufactureros códigos CIIU 10 a 18 en Colombia. Available from: http://www1.upme.gov.co/DemandaEnergetica/INFORME_III_Caracterizacion_energetica_Ver Pub.pdf. [Last accessed on 2019 Mar 6]
[20] UPME CORPOEMA, 2014 a, Determinación y priorización de alternativas de Eficiencia Energética para los subsectores manufactureros informe final códigos CIIU 19 a 31. Vol. I. Colombia. Available from: http://www.upme. gov.co/Estudios/2014/Informe_Final_Volumen_1 .pdf. [Last accessed on 2019 Mar 8].
[21] UPME CORPOEMA, 2014 b, Determinación y priorización de alternativas de Eficiencia Energética para los subsectores manufactureros informe final códigos CIIU 19 a 31. Vol. II. Colombia. Available from: http://www1.upme.gov.co/DemandaEnergetica/ DeterminacionEficiencia/Informe_Final_Volumen_2.pdf. [Last accessed on 2019 Mar 8].
[22] Kriel C J, Marais J H and Kleingeld M. 2014, Modernising underground compressed air DSM projects to reduce operating costs. In 2014 International Conference on the Eleventh industrial and Commercial Use of Energy, 1-6.
[23] Shaw W, Mathews M and Marais J, 2019, Using specific energy as a metric to characterise compressor system performance. Sustainable Energy Technologies and Assessments, 31, 329- 338.
[24] Corsini A, De Propris L, Feudo S and Stefanato M, 2015. Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778.
[25] Mousavi S, Kara S and Kornfeld B. 2014, Energy Efficiency of Compressed Air Systems, 21st CIRP Conference on Life Cycle Engineering, Procedia CIRP, 15, 313-318.
[26] Saidur R, Rahim N A and Hasanuzzaman, M, 2010, A review on compressed-air energy use and energy saving, Renewable and Sustainable Energy Reviews, 14, 1135-1153.
[27] European Commission, 2009, Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://eippcb.jrc.ec.europa.eu/. [Last accessed on 2019 Feb 22].
[28] Yang M, 2009, Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337.
[29] Abdelaziz E A, Saidur R and Mekhilef S, 2011, A review on energy saving strategies in industrial sector, Renewable and Sustainable Energy Reviews, 15, 150-168.
[30] Vittorini D and Cipollone R, 2016, Energy saving potential in existing industrial compressors. Energy, 102, 502-515.
[31] Cloete S, le Roux D and Buhrmann T, 2013, Reducing Compressed Air Wastage By Installing New Technology in Underground Mines. In: 2013 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE, 1-6.
[32] Nehler T, 2018, Linking energy efficiency measures in industrial compressed air systems with non-energy benefits–A review. Renewable and Sustainable Energy Reviews, 89, 72-87.
[33] Fleiter T, Hirzel S and Worrell E, 2012, The characteristics of energy-efficiency measures a neglected dimension. Energy Policy, 51, 502–513.
[34] Broniszewski M, and Werle S, 2018, The study on the heat recovery from air compressors. In E3S Web of Conferences, 70, p 03001, EDP Sciences.
[35] Neale J R, and Kamp P J, 2009, Compressed air system best practice programmes: what needs to change to secure long term energy savings for New Zealand, Energy Policy, 37,3400–3408.
[36] Kaya D, Phelan P, Chau D and Ibrahim H, 2002, Energy conservation in compressed‐air systems. International Journal of Energy Research, 26(9), 837-849.
[37] Radgen P and Blaustein E, 2001, Compressed air systems in the European Union: energy, emissions, savings potential and policy actions. LOG_X Verlag GmbH, Stuttgart, Germany.
[38] United Nations, 2018, International Standard Industrial Classification off all Economics Activities (ISIC) Revision 4, ISBN: 978-92-1-161518-0, United Nations, New York.
[39] DANE, 2018, Clasificación industrial Internacional uniforme de todas las actividades Económicas, Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv IOP Conference Series: Materials Science and Engineering
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8d1381fc-49a4-44df-afb1-125b961a46d2/download
https://repositorio.cuc.edu.co/bitstreams/4831a128-826f-4370-9363-c09d9d7bfea5/download
https://repositorio.cuc.edu.co/bitstreams/fbeff516-e658-4ef8-a51a-d894cd52d172/download
https://repositorio.cuc.edu.co/bitstreams/79240108-4347-448a-9111-94a5f87e302e/download
https://repositorio.cuc.edu.co/bitstreams/905de434-bb73-45d0-b99e-a5b3fa8b8764/download
bitstream.checksum.fl_str_mv d1711bc2a42c57b350e624a8e148dfad
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d3763f9e3a1e9e749e811d4da1249fae
32859b71c301b3bf538a48eac5f92aff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760787641860096
spelling Hernández Herrera, HernanSilva Ortega, Jorge IMartínez Diaz, Vicente LeonelSanchez, ZaidGomez Pons, Aliana2020-07-13T18:44:29Z2020-07-13T18:44:29Z20201757-899X1757-8981https://hdl.handle.net/11323/6544doi:10.1088/1757-899X/844/1/012019Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The increase of energy consumption, global warming, resource depletion and the rise of policies focused on climate change and greenhouse gas emissions reductions, have promoted to countries and industries the implementation of strategies focused on increase energy efficiency and reduce GHG emissions. Compressed Air Systems (CASs) are one of the most widespread systems used in industry. In countries such as China, USA, Australia, France and Italy, CASs accounts around 10% of the overall electricity costs. In Colombia the energy used in the industrial sector, rise the 33 % of the total energy consumption, equal to 481.429 TJ/year; the electricity consumption is a 13 % of this value, equivalent to 13,3 TWh/year. This paper determine the potentials energy saving of CASs for two industrial cities of the Colombian Caribbean Coast region, showing that there is a high energy saving potential, around 50 GWh/year and a reduction of CO2 emissions of 10,702 tons of CO2/year, which can be taken in consideration by the government and organizations to develop projects focused on reduce energy consumption and mitigate CO2 emissions.Hernández Herrera, Hernan-will be generated-orcid-0000-0002-6035-245X-600Silva Ortega, Jorge I-will be generated-orcid-0000-0002-7813-0142-600Martínez Diaz, Vicente LeonelSanchez, Zaid-will be generated-orcid-0000-0001-6898-6572-600Gomez Pons, AlianaengIOP Conference Series: Materials Science and EngineeringCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy savingsAir systemsBarranquillaCartagenaPotential Energy savings in compressed air systems in industrialized cities. A case study in Barranquilla and CartagenaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Outlook, B. E. 2019 edition. London, United Kingdom2019. Available From: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/energy-outlook/bp-energy-outlook-2019.pdf. [Last accessed on 2019 Jun 28].[2] Chikunov S O, Gutsunuk O N, Ivleva M I, Elyakova I D, Nikolaeva I V and Maramygin M S, 2018, Improving the economic performance of Russia’s energy system based on the development of alternative energy sources. IJEEP, 8(6), 382-391.[3] UPME (2018), Balance Energético Colombiano. BECO. Available from: http://www1. upme.gov.co/ InformacionCifras/Paginas/BalanceEnergetico.aspx.[Last accessed on 2019 Jun 24].[4] UPME (2016), Plan de acción indicativo de eficiencia energética 2017-2022, una realidad y oportunidad para Colombia (PAI Proure 2017-2022), Available from:http://www1. upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf.[Last accessed on 2019 Jun 12].[5] Faizah S I and Husaeni U A, 2018, Development of Consumption and Supplying Energy in Indonesia’s Economy. IJEEP, 8(6), 313-321.[6] Benedetti M, Bertini I, Introna V, and Ubertini S, 2018, Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436- 448.[7] B Gopalakrishnan, K Ramamoorthy, E Crowe, S Chaudhari and H. Latif, 2014, A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector, Sustainable Energy Technologies and Assessments, 7, 154-165.[8] Ocampo N, Garcia J, Ghazoul J and Etter A, 2018, Quantifying impacts of oil palm expansion on Colombia's threatened biodiversity. Biological Conservation, 224, 117-121.[9] Berruezo J A and Jiménez J D, 2017. Situación del Convenio Marco de Naciones Unidas sobre el Cambio Climático. Resumen de las Cumbres de París, COP21 y de Marrakech, COP22. Revista de Salud Ambiental, 17(1), 34-39.[10] Taheri K, and Gadow R, 2017, Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP-JMST, 18, 10-17.[11] Bonfà F, Salvatori S, Benedetti M, Introna V and Ubertini S, 2017, Monitoring compressed air systems energy performance in industrial production: lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403.[12] Annegret C and Radgen P, 2003, Efficient compressed air a successful campaign for energy efficient compressed air systems in Germany, ECEEE 2003 summer study proceedings; 2 - 7 June 2003, Saint-Raphaël, France.[13] Dos Santos Mascarenhas J, Chowdhury H, Thirugnanasambandam M, Chowdhury T and Saidur, R, 2019, Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production, 231, 183-195.[14] Yin Y, Zheng B, Yang C, and Zhang X, 2015. A proposed compressed air drying method using pressurized liquid desiccant and experimental verification. Applied Energy, 141, 80-89.[15] Zahlan J, Asfour S, 2015, A multi-objective approach for determining optimal air compressor location in a manufacturing facility, Journal of Manufacturing Systems, 35, 176–190.[16] DoE US, 1998, Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC).[17] Šešlija D, Ignjatović I, Dudić S and Lagod B, 2011, Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645.[18] Viholainen J, Grönman K, Jaatinen-Värri A, Grönman A, Ukkonen P, and Luoranen M, 2015, Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment. Energy conversion and Management, 101, 336-342.[19] UPME INCOMBUSTION, 2013, Determinación del potencial de reducción del consumo energético en los subsectores manufactureros códigos CIIU 10 a 18 en Colombia. Available from: http://www1.upme.gov.co/DemandaEnergetica/INFORME_III_Caracterizacion_energetica_Ver Pub.pdf. [Last accessed on 2019 Mar 6][20] UPME CORPOEMA, 2014 a, Determinación y priorización de alternativas de Eficiencia Energética para los subsectores manufactureros informe final códigos CIIU 19 a 31. Vol. I. Colombia. Available from: http://www.upme. gov.co/Estudios/2014/Informe_Final_Volumen_1 .pdf. [Last accessed on 2019 Mar 8].[21] UPME CORPOEMA, 2014 b, Determinación y priorización de alternativas de Eficiencia Energética para los subsectores manufactureros informe final códigos CIIU 19 a 31. Vol. II. Colombia. Available from: http://www1.upme.gov.co/DemandaEnergetica/ DeterminacionEficiencia/Informe_Final_Volumen_2.pdf. [Last accessed on 2019 Mar 8].[22] Kriel C J, Marais J H and Kleingeld M. 2014, Modernising underground compressed air DSM projects to reduce operating costs. In 2014 International Conference on the Eleventh industrial and Commercial Use of Energy, 1-6.[23] Shaw W, Mathews M and Marais J, 2019, Using specific energy as a metric to characterise compressor system performance. Sustainable Energy Technologies and Assessments, 31, 329- 338.[24] Corsini A, De Propris L, Feudo S and Stefanato M, 2015. Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778.[25] Mousavi S, Kara S and Kornfeld B. 2014, Energy Efficiency of Compressed Air Systems, 21st CIRP Conference on Life Cycle Engineering, Procedia CIRP, 15, 313-318.[26] Saidur R, Rahim N A and Hasanuzzaman, M, 2010, A review on compressed-air energy use and energy saving, Renewable and Sustainable Energy Reviews, 14, 1135-1153.[27] European Commission, 2009, Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://eippcb.jrc.ec.europa.eu/. [Last accessed on 2019 Feb 22].[28] Yang M, 2009, Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337.[29] Abdelaziz E A, Saidur R and Mekhilef S, 2011, A review on energy saving strategies in industrial sector, Renewable and Sustainable Energy Reviews, 15, 150-168.[30] Vittorini D and Cipollone R, 2016, Energy saving potential in existing industrial compressors. Energy, 102, 502-515.[31] Cloete S, le Roux D and Buhrmann T, 2013, Reducing Compressed Air Wastage By Installing New Technology in Underground Mines. In: 2013 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE, 1-6.[32] Nehler T, 2018, Linking energy efficiency measures in industrial compressed air systems with non-energy benefits–A review. Renewable and Sustainable Energy Reviews, 89, 72-87.[33] Fleiter T, Hirzel S and Worrell E, 2012, The characteristics of energy-efficiency measures a neglected dimension. Energy Policy, 51, 502–513.[34] Broniszewski M, and Werle S, 2018, The study on the heat recovery from air compressors. In E3S Web of Conferences, 70, p 03001, EDP Sciences.[35] Neale J R, and Kamp P J, 2009, Compressed air system best practice programmes: what needs to change to secure long term energy savings for New Zealand, Energy Policy, 37,3400–3408.[36] Kaya D, Phelan P, Chau D and Ibrahim H, 2002, Energy conservation in compressed‐air systems. International Journal of Energy Research, 26(9), 837-849.[37] Radgen P and Blaustein E, 2001, Compressed air systems in the European Union: energy, emissions, savings potential and policy actions. LOG_X Verlag GmbH, Stuttgart, Germany.[38] United Nations, 2018, International Standard Industrial Classification off all Economics Activities (ISIC) Revision 4, ISBN: 978-92-1-161518-0, United Nations, New York.[39] DANE, 2018, Clasificación industrial Internacional uniforme de todas las actividades Económicas, Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C.PublicationORIGINALPotential Energy savings in compressed air systems in industrialized.pdfPotential Energy savings in compressed air systems in industrialized.pdfapplication/pdf508996https://repositorio.cuc.edu.co/bitstreams/8d1381fc-49a4-44df-afb1-125b961a46d2/downloadd1711bc2a42c57b350e624a8e148dfadMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/4831a128-826f-4370-9363-c09d9d7bfea5/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/fbeff516-e658-4ef8-a51a-d894cd52d172/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPotential Energy savings in compressed air systems in industrialized.pdf.jpgPotential Energy savings in compressed air systems in industrialized.pdf.jpgimage/jpeg23837https://repositorio.cuc.edu.co/bitstreams/79240108-4347-448a-9111-94a5f87e302e/downloadd3763f9e3a1e9e749e811d4da1249faeMD54TEXTPotential Energy savings in compressed air systems in industrialized.pdf.txtPotential Energy savings in compressed air systems in industrialized.pdf.txttext/plain25852https://repositorio.cuc.edu.co/bitstreams/905de434-bb73-45d0-b99e-a5b3fa8b8764/download32859b71c301b3bf538a48eac5f92affMD5511323/6544oai:repositorio.cuc.edu.co:11323/65442024-09-17 11:09:18.459http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==