Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen

In this work, a high porous activated carbon from Jacaranda mimosifolia was developed and employed for ketoprofen adsorption. After the pyrolysis process at 973.15 K, the material presented cavities with different sizes allocated on the particle surface. The material presented a pH at the point of z...

Full description

Autores:
Georgin, Jordana
de O. Salomón, Yamil L.
Franco, Dison S.P.
Netto, Matias S.
Piccilli, Daniel G.A.
Perondi, Daniele
Silva, Luis F.O.
Foletto, Edson L.
Dotto, Guilherme L.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8437
Acceso en línea:
https://hdl.handle.net/11323/8437
https://doi.org/10.1016/j.jece.2021.105676
https://repositorio.cuc.edu.co/
Palabra clave:
Activated carbon
Jacaranda mimosifolia
Ketoprofen
Adsorption
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_9318ad9e40fda67b95bb0f2b12ae1b8c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8437
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
title Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
spellingShingle Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
Activated carbon
Jacaranda mimosifolia
Ketoprofen
Adsorption
title_short Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
title_full Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
title_fullStr Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
title_full_unstemmed Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
title_sort Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
dc.creator.fl_str_mv Georgin, Jordana
de O. Salomón, Yamil L.
Franco, Dison S.P.
Netto, Matias S.
Piccilli, Daniel G.A.
Perondi, Daniele
Silva, Luis F.O.
Foletto, Edson L.
Dotto, Guilherme L.
dc.contributor.author.spa.fl_str_mv Georgin, Jordana
de O. Salomón, Yamil L.
Franco, Dison S.P.
Netto, Matias S.
Piccilli, Daniel G.A.
Perondi, Daniele
Silva, Luis F.O.
Foletto, Edson L.
Dotto, Guilherme L.
dc.subject.spa.fl_str_mv Activated carbon
Jacaranda mimosifolia
Ketoprofen
Adsorption
topic Activated carbon
Jacaranda mimosifolia
Ketoprofen
Adsorption
description In this work, a high porous activated carbon from Jacaranda mimosifolia was developed and employed for ketoprofen adsorption. After the pyrolysis process at 973.15 K, the material presented cavities with different sizes allocated on the particle surface. The material presented a pH at the point of zero charge of 4.1 with the best adsorption at pH 2. The best adsorbent dosage was 0.72 g L−1, corresponding to a removal of 96%. The system reached the adsorption equilibrium after 120 min and was described by the linear driving force model. The isotherms revealed that the adsorption capacity decreased with the temperature and followed the Langmuir model, with a maximum adsorption capacity of 303.9 mg g−1. This high capacity can be associated with the high surface area (928 m2 g−1) and pore volume (0.521 cm3 g−1) values. The thermodynamic values indicated that the adsorption system is spontaneous and exothermic. The enthalpy value indicates that the interactions between the adsorbent and adsorbate are physical. Regeneration tests showed a decreasing percentage of removal of 7.86% after 5 cycles. Finally, the adsorbent showed efficiency when treating a simulated effluent containing drugs and inorganic salts, showing the removal of 71.43%.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-29T21:40:50Z
dc.date.available.none.fl_str_mv 2021-06-29T21:40:50Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8437
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jece.2021.105676
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8437
https://doi.org/10.1016/j.jece.2021.105676
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv A. Zenker, M.R. Cicero, F. Prestinaci, P. Bottoni, M. Carere Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment J. Environ. Manag., 133 (2014), pp. 378-387, 10.1016/j.jenvman.2013.12.017
S. Maldonado-Torres, R. Gurung, H. Rijal, A. Chan, S. Acharya, S. Rogelj, M. Piyasena, G. Rubasinghege Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters Environ. Health Insights, 12 (2018), pp. 1-4, 10.1177/1178630218795836
A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment Emerg. Contam., 3 (2017), pp. 1-16, 10.1016/j.emcon.2016.12.004
B. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053
R. Ocampo-Pérez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon Adsorption, 19 (2013), pp. 945-957, 10.1007/s10450-013-9502-y
H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review Chemosphere, 222 (2019), pp. 766-780, 10.1016/j.chemosphere.2019.02.009
J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva A review on environmental monitoring of water organic pollutants identified by EU guidelines J. Hazard. Mater., 344 (2018), pp. 146-162, 10.1016/j.jhazmat.2017.09.058
M. Gros, M. Petrović, A. Ginebreda, D. Barceló Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes Environ. Int., 36 (2010), pp. 15-26, 10.1016/j.envint.2009.09.002
D. Smiljanić, B. de Gennaro, F. Izzo, A. Langella, A. Daković, C. Germinario, G.E. Rottinghaus, M. Spasojević, M. Mercurio Removal of emerging contaminants from water by zeolite-rich composites: a first approach aiming at diclofenac and ketoprofen Microporous Mesoporous Mater., 298 (2020), Article 110057, 10.1016/j.micromeso.2020.110057
E.L. Foletto, C.T. Weber, D.S. Paz, M.A. Mazutti, L. Meili, M.M. Bassaco, G.C. Collazzo Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies Water Sci. Technol., 67 (2013), pp. 201-209, 10.2166/wst.2012.555
B. Linhares, C.T. Weber, E.L. Foletto, D.S. Paz, M.A. Mazutti, G.C. Collazzo Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution Environ. Technol., 34 (2013), pp. 2401-2406, 10.1080/09593330.2013.770562
P. Rai, K.P. Singh Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application J. Environ. Manag., 207 (2018), pp. 249-261, 10.1016/j.jenvman.2017.11.047
Z. Han, B. Sani, W. Mrozik, M. Obst, B. Beckingham, H.K. Karapanagioti, D. Werner Magnetite impregnation effects on the sorbent properties of activated carbons and biochars Water Res., 70 (2015), pp. 394-403, 10.1016/j.watres.2014.12.016
G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988
J.T.C. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato, J.M. Fonseca, P.S. Carraro, A. Ronix, M.C. Silva, T.L. Silva, V.C. Almeida Stevia residue as new precursor of CO 2 -activated carbon: optimization of preparation condition and adsorption study of triclosan Ecotoxicol. Environ. Saf., 172 (2019), pp. 403-410, 10.1016/j.ecoenv.2019.01.096
D.C. Henrique, D.U. Quintela, A.H. Ide, A. Erto, J.L.D.S. Duarte, L. Meili Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103782, 10.1016/j.jece.2020.103782
C. de Oliveira Carvalho, D.L. Costa Rodrigues, É.C. Lima, C. Santanna Umpierres, D.F. Caicedo Chaguezac, F. Machado Machado Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana) Environ. Sci. Pollut. Res., 26 (2019), pp. 4690-4702, 10.1007/s11356-018-3954-2
M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, M.P. Ormad Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon Sci. Total Environ., 750 (2021), Article 141498, 10.1016/j.scitotenv.2020.141498
H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent J. Environ. Chem. Eng., 6 (2018), pp. 6807-6815, 10.1016/j.jece.2018.10.047
M.S. Gachet, W. Schühly Jacaranda-An ethnopharmacological and phytochemical review J. Ethnopharmacol., 121 (2009), pp. 14-27, 10.1016/j.jep.2008.10.015
H. Treviño-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water Ind. Crops Prod., 42 (2013), pp. 315-323, 10.1016/j.indcrop.2012.05.029
N.K. Mondal, P. Ghosh, K. Sen, A. Mondal, P. Debnath Efficacy of onion peel towards removal of nitrate from aqueous solution and field samples Environ. Nanotechnol., Monit. Manag., 11 (2019), Article 100222, 10.1016/j.enmm.2019.100222
S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2ebooks.eu/odm/html/nls/en/agb.html〉.
H. Freundlich Über die Adsorption in Lösungen Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723
M.M. Dubinin, V.A. Astakhov Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307
M. Temkin, V. Pyzhev Kinetics of the synthesis of ammonia on promoted iron catalysts J. Phys. Chem., 13 (1939), pp. 851-867
I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004
E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048
X. Wang, L. Gu, P. Zhou, N. Zhu, C. Li, H. Tao, H. Wen, D. Zhang Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol Chem. Eng. J., 324 (2017), pp. 203-215, 10.1016/j.cej.2017.04.101
O. Üner Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax Mater. Chem. Phys., 237 (2019), Article 121858, 10.1016/j.matchemphys.2019.121858
M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions J. Clean. Prod., 171 (2018), pp. 57-65, 10.1016/j.jclepro.2017.10.007
S. Sun, Q. Yu, M. Li, H. Zhao, C. Wu Preparation of coffee-shell activated carbon and its application for water vapor adsorption Renew. Energy, 142 (2019), pp. 11-19, 10.1016/j.renene.2019.04.097
X. Li, S. Deng, H. Fu Inhibition of the corrosion of steel in HCl, H 2SO 4 solutions by bamboo leaf extract Corros. Sci., 62 (2012), pp. 163-175, 10.1016/j.corsci.2012.05.008
L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102
V. Boonamnuayvitaya, S. Sae-Ung, W. Tanthapanichakoon Preparation of activated carbons from coffee residue for the adsorption of formaldehyde Sep. Purif. Technol., 42 (2005), pp. 159-168, 10.1016/j.seppur.2004.07.007
K.J.D. Silverstein, R.M. Webster, X. F Spectrometric Identification of Organic Compounds (7th ed.), John Wiley & Sons Inc,, USA (2005)
A.N.A. El-Hendawy Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions J. Anal. Appl. Pyrolysis, 75 (2006), pp. 159-166, 10.1016/j.jaap.2005.05.004
S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels Bioenergy Res., 6 (2013), pp. 663-677, 10.1007/s12155-012-9281-4
T. Xiao, H. Yuan, Q. Ma, X. Guo, Y. Wu An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression Int. J. Biol. Macromol., 132 (2019), pp. 1106-1111, 10.1016/j.ijbiomac.2019.04.043
L. Niazi, A. Lashanizadegan, H. Sharififard Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026
T.K. Sen, S. Afroze, H.M. Ang Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata Water Air Soil Pollut., 218 (2011), pp. 499-515, 10.1007/s11270-010-0663-y
M.M. Hamed, M.M.S. Ali, M. Holiel Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005
K. Munusamy, R.S. Somani, H.C. Bajaj Breakthrough adsorption studies of mixed gases on mango (Mangifera indicaL.) seed shell derived activated carbon extrudes J. Environ. Chem. Eng., 3 (2015), pp. 2750-2759, 10.1016/j.jece.2015.05.010
J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018
R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods RSC Adv., 7 (2017), pp. 8606-8624, 10.1039/C6RA25295H
S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan An overview of the organic and inorganic phase composition of biomass Fuel, 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030
A. Ros, M.A. Montes-Moran, E. Fuente, D.M. Nevskaia, M.J. Martin Dried sludges and sludge-based chars for H2S removal at low temperature: Influence of sewage sludge characteristics Environ. Sci. Technol., 40 (2006), pp. 302-309, 10.1021/es050996j
G. Crini, P.M. Badot Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature Prog. Polym. Sci., 33 (2008), pp. 399-447, 10.1016/j.progpolymsci.2007.11.001
J. Cheng, J.J. Gu, W. Tao, P. Wang, L. Liu, C.Y. Wang, Y.K. Li, X.H. Feng, G.H. Qiu, F.F. Cao Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water Bioresour. Technol., 294 (2019), Article 122149, 10.1016/j.biortech.2019.122149
M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059
M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054
A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117
Y. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T. Zhang The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China J. Nat. Gas. Geosci., 1 (2016), pp. 213-220, 10.1016/j.jnggs.2016.08.002
D. Guo, Y. Li, B. Cui, M. Hu, S. Luo, B. Ji, Y. Liu Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse J. Clean. Prod., 267 (2020), Article 121903, 10.1016/j.jclepro.2020.121903
S. Li, K. Han, J. Li, M. Li, C. Lu Preparation and characterization of super activated carbon produced from gulfweed by KOH activation Microporous Mesoporous Mater., 243 (2017), pp. 291-300, 10.1016/j.micromeso.2017.02.052
R. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites Chemosphere, 239 (2020), Article 124708, 10.1016/j.chemosphere.2019.124708
M. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna Phenoxy Herbicide Removal from Aqueous Solutions Using Fast Pyrolysis Switchgrass Biochar, Elsevier Ltd (2017), 10.1016/j.chemosphere.2017.01.105
M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption Chem. Eng. J., 240 (2014), pp. 344-351, 10.1016/j.cej.2013.11.067
I. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan Removal of arsenic species from water by batch and column operations on bagasse fly ash Environ. Sci. Pollut. Res., 21 (2014), pp. 3218-3229, 10.1007/s11356-013-2235-3
E. Worch Adsorption technology in water treatment: fundamentals, processes, and modeling Adsorpt. Technol. Water Treat.: Fundam. Process. Model. (2012), 10.1515/9783110240238
M. Suzuki Adsorption Engineering (1st ed.), Elsevier (1990)
C.S. Umpierres, P.S. Thue, E.C. Lima, G.S. do. Reis, I.A.S. de Brum, W.S. d Alencar, S.L.P. Dias, G.L. Dotto Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions Environ. Technol. (U. Kingd.), 39 (2018), pp. 1173-1187, 10.1080/09593330.2017.1323957
F.M. Machado, S.A. Carmalin, E.C. Lima, S.L.P. Dias, L.D.T. Prola, C. Saucier, I.M. Jauris, I. Zanella, S.B. Fagan Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation J. Phys. Chem. C, 120 (2016), pp. 18296-18306, 10.1021/acs.jpcc.6b03884
M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang Dye and its removal from aqueous solution by adsorption: a review Adv. Colloid Interface Sci., 209 (2014), pp. 172-184, 10.1016/j.cis.2014.04.002
L. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A.B. Lamine Single and binary adsorption of cobalt and methylene blue on modified chitin: application of the Hill and exclusive extended Hill models J. Mol. Liq., 233 (2017), pp. 543-550, 10.1016/j.molliq.2016.10.079
A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037
N. Yao, C. Li, J. Yu, Q. Xu, S. Wei, Z. Tian, Z. Yang, W. Yang, J. Shen Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water Sep. Purif. Technol., 236 (2020), Article 116278, 10.1016/j.seppur.2019.116278
A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling Chem. Eng. J., 404 (2021), Article 126601, 10.1016/j.cej.2020.126601
E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water J. Hazard. Mater., 177 (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026
Y. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888
R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099
F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684
I. Ali, Z.A. Al-Othman, A. Alwarthan Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water J. Mol. Liq., 219 (2016), pp. 858-864, 10.1016/j.molliq.2016.04.031
Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911
W. Liu, Q. Yang, Z. Yang, W. Wang Adsorption of 2,4-D on magnetic graphene and mechanism study Colloids Surf. A Physicochem. Eng. Asp., 509 (2016), pp. 367-375, 10.1016/j.colsurfa.2016.09.039
Y. Lu, Y. Li, Y. Gao, B.X. Ai, W. Gao, G. Peng Facile preparation of 3D GO with caffeic acid for efficient adsorption of norfloxacin and ketoprofen Water Sci. Technol., 81 (2020), pp. 1461-1470, 10.2166/wst.2020.193
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S2213343721006539
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8437/1/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8437/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8437/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8437/4/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8437/5/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf.txt
bitstream.checksum.fl_str_mv 9e0256b7e199f4a16430f6342c5fd59c
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
94d7a37f5687123fc0c4fea9158d8666
65d672d9349952c65f543c26976ea3c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400176310648832
spelling Georgin, Jordana9b324b2f70fcd3715202ec8676bf9abede O. Salomón, Yamil L.23a5c05d142fc3a00ae40cb903ca7753Franco, Dison S.P.a31048682d15d92916c5efad2f1caea4Netto, Matias S.bbafe7978c27efedfcbbfaf18ef632b6Piccilli, Daniel G.A.7ef1afbafe4b0172b98da9aeb6c9e13dPerondi, Daniele3e9fb5d8c02b91cc3c8da7ff1a64f856Silva, Luis F.O.8859d8def09b06a41e4d7807d6a70603Foletto, Edson L.bcfa5f178e78f39b6a3c8c0095845667300Dotto, Guilherme L.c0e5bf3f141757792fd1a91aaeb9fc0c2021-06-29T21:40:50Z2021-06-29T21:40:50Z2021https://hdl.handle.net/11323/8437https://doi.org/10.1016/j.jece.2021.105676Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, a high porous activated carbon from Jacaranda mimosifolia was developed and employed for ketoprofen adsorption. After the pyrolysis process at 973.15 K, the material presented cavities with different sizes allocated on the particle surface. The material presented a pH at the point of zero charge of 4.1 with the best adsorption at pH 2. The best adsorbent dosage was 0.72 g L−1, corresponding to a removal of 96%. The system reached the adsorption equilibrium after 120 min and was described by the linear driving force model. The isotherms revealed that the adsorption capacity decreased with the temperature and followed the Langmuir model, with a maximum adsorption capacity of 303.9 mg g−1. This high capacity can be associated with the high surface area (928 m2 g−1) and pore volume (0.521 cm3 g−1) values. The thermodynamic values indicated that the adsorption system is spontaneous and exothermic. The enthalpy value indicates that the interactions between the adsorbent and adsorbate are physical. Regeneration tests showed a decreasing percentage of removal of 7.86% after 5 cycles. Finally, the adsorbent showed efficiency when treating a simulated effluent containing drugs and inorganic salts, showing the removal of 71.43%.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/abs/pii/S2213343721006539Activated carbonJacaranda mimosifoliaKetoprofenAdsorptionDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofenArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionA. Zenker, M.R. Cicero, F. Prestinaci, P. Bottoni, M. Carere Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment J. Environ. Manag., 133 (2014), pp. 378-387, 10.1016/j.jenvman.2013.12.017S. Maldonado-Torres, R. Gurung, H. Rijal, A. Chan, S. Acharya, S. Rogelj, M. Piyasena, G. Rubasinghege Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters Environ. Health Insights, 12 (2018), pp. 1-4, 10.1177/1178630218795836A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment Emerg. Contam., 3 (2017), pp. 1-16, 10.1016/j.emcon.2016.12.004B. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053R. Ocampo-Pérez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon Adsorption, 19 (2013), pp. 945-957, 10.1007/s10450-013-9502-yH.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review Chemosphere, 222 (2019), pp. 766-780, 10.1016/j.chemosphere.2019.02.009J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva A review on environmental monitoring of water organic pollutants identified by EU guidelines J. Hazard. Mater., 344 (2018), pp. 146-162, 10.1016/j.jhazmat.2017.09.058M. Gros, M. Petrović, A. Ginebreda, D. Barceló Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes Environ. Int., 36 (2010), pp. 15-26, 10.1016/j.envint.2009.09.002D. Smiljanić, B. de Gennaro, F. Izzo, A. Langella, A. Daković, C. Germinario, G.E. Rottinghaus, M. Spasojević, M. Mercurio Removal of emerging contaminants from water by zeolite-rich composites: a first approach aiming at diclofenac and ketoprofen Microporous Mesoporous Mater., 298 (2020), Article 110057, 10.1016/j.micromeso.2020.110057E.L. Foletto, C.T. Weber, D.S. Paz, M.A. Mazutti, L. Meili, M.M. Bassaco, G.C. Collazzo Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies Water Sci. Technol., 67 (2013), pp. 201-209, 10.2166/wst.2012.555B. Linhares, C.T. Weber, E.L. Foletto, D.S. Paz, M.A. Mazutti, G.C. Collazzo Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution Environ. Technol., 34 (2013), pp. 2401-2406, 10.1080/09593330.2013.770562P. Rai, K.P. Singh Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application J. Environ. Manag., 207 (2018), pp. 249-261, 10.1016/j.jenvman.2017.11.047Z. Han, B. Sani, W. Mrozik, M. Obst, B. Beckingham, H.K. Karapanagioti, D. Werner Magnetite impregnation effects on the sorbent properties of activated carbons and biochars Water Res., 70 (2015), pp. 394-403, 10.1016/j.watres.2014.12.016G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988J.T.C. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato, J.M. Fonseca, P.S. Carraro, A. Ronix, M.C. Silva, T.L. Silva, V.C. Almeida Stevia residue as new precursor of CO 2 -activated carbon: optimization of preparation condition and adsorption study of triclosan Ecotoxicol. Environ. Saf., 172 (2019), pp. 403-410, 10.1016/j.ecoenv.2019.01.096D.C. Henrique, D.U. Quintela, A.H. Ide, A. Erto, J.L.D.S. Duarte, L. Meili Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103782, 10.1016/j.jece.2020.103782C. de Oliveira Carvalho, D.L. Costa Rodrigues, É.C. Lima, C. Santanna Umpierres, D.F. Caicedo Chaguezac, F. Machado Machado Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana) Environ. Sci. Pollut. Res., 26 (2019), pp. 4690-4702, 10.1007/s11356-018-3954-2M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, M.P. Ormad Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon Sci. Total Environ., 750 (2021), Article 141498, 10.1016/j.scitotenv.2020.141498H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent J. Environ. Chem. Eng., 6 (2018), pp. 6807-6815, 10.1016/j.jece.2018.10.047M.S. Gachet, W. Schühly Jacaranda-An ethnopharmacological and phytochemical review J. Ethnopharmacol., 121 (2009), pp. 14-27, 10.1016/j.jep.2008.10.015H. Treviño-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water Ind. Crops Prod., 42 (2013), pp. 315-323, 10.1016/j.indcrop.2012.05.029N.K. Mondal, P. Ghosh, K. Sen, A. Mondal, P. Debnath Efficacy of onion peel towards removal of nitrate from aqueous solution and field samples Environ. Nanotechnol., Monit. Manag., 11 (2019), Article 100222, 10.1016/j.enmm.2019.100222S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2ebooks.eu/odm/html/nls/en/agb.html〉.H. Freundlich Über die Adsorption in Lösungen Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723M.M. Dubinin, V.A. Astakhov Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307M. Temkin, V. Pyzhev Kinetics of the synthesis of ammonia on promoted iron catalysts J. Phys. Chem., 13 (1939), pp. 851-867I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048X. Wang, L. Gu, P. Zhou, N. Zhu, C. Li, H. Tao, H. Wen, D. Zhang Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol Chem. Eng. J., 324 (2017), pp. 203-215, 10.1016/j.cej.2017.04.101O. Üner Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax Mater. Chem. Phys., 237 (2019), Article 121858, 10.1016/j.matchemphys.2019.121858M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions J. Clean. Prod., 171 (2018), pp. 57-65, 10.1016/j.jclepro.2017.10.007S. Sun, Q. Yu, M. Li, H. Zhao, C. Wu Preparation of coffee-shell activated carbon and its application for water vapor adsorption Renew. Energy, 142 (2019), pp. 11-19, 10.1016/j.renene.2019.04.097X. Li, S. Deng, H. Fu Inhibition of the corrosion of steel in HCl, H 2SO 4 solutions by bamboo leaf extract Corros. Sci., 62 (2012), pp. 163-175, 10.1016/j.corsci.2012.05.008L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102V. Boonamnuayvitaya, S. Sae-Ung, W. Tanthapanichakoon Preparation of activated carbons from coffee residue for the adsorption of formaldehyde Sep. Purif. Technol., 42 (2005), pp. 159-168, 10.1016/j.seppur.2004.07.007K.J.D. Silverstein, R.M. Webster, X. F Spectrometric Identification of Organic Compounds (7th ed.), John Wiley & Sons Inc,, USA (2005)A.N.A. El-Hendawy Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions J. Anal. Appl. Pyrolysis, 75 (2006), pp. 159-166, 10.1016/j.jaap.2005.05.004S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels Bioenergy Res., 6 (2013), pp. 663-677, 10.1007/s12155-012-9281-4T. Xiao, H. Yuan, Q. Ma, X. Guo, Y. Wu An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression Int. J. Biol. Macromol., 132 (2019), pp. 1106-1111, 10.1016/j.ijbiomac.2019.04.043L. Niazi, A. Lashanizadegan, H. Sharififard Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026T.K. Sen, S. Afroze, H.M. Ang Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata Water Air Soil Pollut., 218 (2011), pp. 499-515, 10.1007/s11270-010-0663-yM.M. Hamed, M.M.S. Ali, M. Holiel Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005K. Munusamy, R.S. Somani, H.C. Bajaj Breakthrough adsorption studies of mixed gases on mango (Mangifera indicaL.) seed shell derived activated carbon extrudes J. Environ. Chem. Eng., 3 (2015), pp. 2750-2759, 10.1016/j.jece.2015.05.010J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods RSC Adv., 7 (2017), pp. 8606-8624, 10.1039/C6RA25295HS.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan An overview of the organic and inorganic phase composition of biomass Fuel, 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030A. Ros, M.A. Montes-Moran, E. Fuente, D.M. Nevskaia, M.J. Martin Dried sludges and sludge-based chars for H2S removal at low temperature: Influence of sewage sludge characteristics Environ. Sci. Technol., 40 (2006), pp. 302-309, 10.1021/es050996jG. Crini, P.M. Badot Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature Prog. Polym. Sci., 33 (2008), pp. 399-447, 10.1016/j.progpolymsci.2007.11.001J. Cheng, J.J. Gu, W. Tao, P. Wang, L. Liu, C.Y. Wang, Y.K. Li, X.H. Feng, G.H. Qiu, F.F. Cao Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water Bioresour. Technol., 294 (2019), Article 122149, 10.1016/j.biortech.2019.122149M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117Y. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T. Zhang The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China J. Nat. Gas. Geosci., 1 (2016), pp. 213-220, 10.1016/j.jnggs.2016.08.002D. Guo, Y. Li, B. Cui, M. Hu, S. Luo, B. Ji, Y. Liu Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse J. Clean. Prod., 267 (2020), Article 121903, 10.1016/j.jclepro.2020.121903S. Li, K. Han, J. Li, M. Li, C. Lu Preparation and characterization of super activated carbon produced from gulfweed by KOH activation Microporous Mesoporous Mater., 243 (2017), pp. 291-300, 10.1016/j.micromeso.2017.02.052R. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites Chemosphere, 239 (2020), Article 124708, 10.1016/j.chemosphere.2019.124708M. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna Phenoxy Herbicide Removal from Aqueous Solutions Using Fast Pyrolysis Switchgrass Biochar, Elsevier Ltd (2017), 10.1016/j.chemosphere.2017.01.105M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption Chem. Eng. J., 240 (2014), pp. 344-351, 10.1016/j.cej.2013.11.067I. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan Removal of arsenic species from water by batch and column operations on bagasse fly ash Environ. Sci. Pollut. Res., 21 (2014), pp. 3218-3229, 10.1007/s11356-013-2235-3E. Worch Adsorption technology in water treatment: fundamentals, processes, and modeling Adsorpt. Technol. Water Treat.: Fundam. Process. Model. (2012), 10.1515/9783110240238M. Suzuki Adsorption Engineering (1st ed.), Elsevier (1990)C.S. Umpierres, P.S. Thue, E.C. Lima, G.S. do. Reis, I.A.S. de Brum, W.S. d Alencar, S.L.P. Dias, G.L. Dotto Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions Environ. Technol. (U. Kingd.), 39 (2018), pp. 1173-1187, 10.1080/09593330.2017.1323957F.M. Machado, S.A. Carmalin, E.C. Lima, S.L.P. Dias, L.D.T. Prola, C. Saucier, I.M. Jauris, I. Zanella, S.B. Fagan Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation J. Phys. Chem. C, 120 (2016), pp. 18296-18306, 10.1021/acs.jpcc.6b03884M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang Dye and its removal from aqueous solution by adsorption: a review Adv. Colloid Interface Sci., 209 (2014), pp. 172-184, 10.1016/j.cis.2014.04.002L. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A.B. Lamine Single and binary adsorption of cobalt and methylene blue on modified chitin: application of the Hill and exclusive extended Hill models J. Mol. Liq., 233 (2017), pp. 543-550, 10.1016/j.molliq.2016.10.079A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037N. Yao, C. Li, J. Yu, Q. Xu, S. Wei, Z. Tian, Z. Yang, W. Yang, J. Shen Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water Sep. Purif. Technol., 236 (2020), Article 116278, 10.1016/j.seppur.2019.116278A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling Chem. Eng. J., 404 (2021), Article 126601, 10.1016/j.cej.2020.126601E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water J. Hazard. Mater., 177 (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026Y. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684I. Ali, Z.A. Al-Othman, A. Alwarthan Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water J. Mol. Liq., 219 (2016), pp. 858-864, 10.1016/j.molliq.2016.04.031Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911W. Liu, Q. Yang, Z. Yang, W. Wang Adsorption of 2,4-D on magnetic graphene and mechanism study Colloids Surf. A Physicochem. Eng. Asp., 509 (2016), pp. 367-375, 10.1016/j.colsurfa.2016.09.039Y. Lu, Y. Li, Y. Gao, B.X. Ai, W. Gao, G. Peng Facile preparation of 3D GO with caffeic acid for efficient adsorption of norfloxacin and ketoprofen Water Sci. Technol., 81 (2020), pp. 1461-1470, 10.2166/wst.2020.193ORIGINALDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdfDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdfapplication/pdf109683https://repositorio.cuc.edu.co/bitstream/11323/8437/1/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf9e0256b7e199f4a16430f6342c5fd59cMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/8437/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8437/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdf.jpgDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdf.jpgimage/jpeg45447https://repositorio.cuc.edu.co/bitstream/11323/8437/4/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf.jpg94d7a37f5687123fc0c4fea9158d8666MD54open accessTEXTDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdf.txtDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen.pdf.txttext/plain1811https://repositorio.cuc.edu.co/bitstream/11323/8437/5/Development%20of%20highly%20porous%20activated%20carbon%20from%20Jacaranda%20mimosifolia%20seed%20pods%20for%20remarkable%20removal%20of%20aqueous-phase%20ketoprofen.pdf.txt65d672d9349952c65f543c26976ea3c6MD55open access11323/8437oai:repositorio.cuc.edu.co:11323/84372023-12-14 15:55:28.66Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==