Influence of curing time on the fire performance of solid reinforced concrete plates

When reinforced concrete elements are subjected to high temperatures, such as in a fire, they are susceptible to physical and chemical changes that cause spalling, thereby undermining their performance under such conditions. It is known that the age and the internal moisture content of concrete are...

Full description

Autores:
Manica, Gustavo Carniel
Longhi Bolina, Fabrício
Fonseca Tutikian, Bernardo
Silva Oliveira, Marcos Leandro
Anderson Moreira, Michael
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5972
Acceso en línea:
https://hdl.handle.net/11323/5972
https://doi.org/10.1016/j.jmrt.2019.12.081
https://repositorio.cuc.edu.co/
Palabra clave:
Reinforced concrete
Spalling
Fire resistance
Non-load bearing wall system
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_927f21c94c319dbff4248aab83bb37fc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5972
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Influence of curing time on the fire performance of solid reinforced concrete plates
title Influence of curing time on the fire performance of solid reinforced concrete plates
spellingShingle Influence of curing time on the fire performance of solid reinforced concrete plates
Reinforced concrete
Spalling
Fire resistance
Non-load bearing wall system
title_short Influence of curing time on the fire performance of solid reinforced concrete plates
title_full Influence of curing time on the fire performance of solid reinforced concrete plates
title_fullStr Influence of curing time on the fire performance of solid reinforced concrete plates
title_full_unstemmed Influence of curing time on the fire performance of solid reinforced concrete plates
title_sort Influence of curing time on the fire performance of solid reinforced concrete plates
dc.creator.fl_str_mv Manica, Gustavo Carniel
Longhi Bolina, Fabrício
Fonseca Tutikian, Bernardo
Silva Oliveira, Marcos Leandro
Anderson Moreira, Michael
dc.contributor.author.spa.fl_str_mv Manica, Gustavo Carniel
Longhi Bolina, Fabrício
Fonseca Tutikian, Bernardo
Silva Oliveira, Marcos Leandro
Anderson Moreira, Michael
dc.subject.spa.fl_str_mv Reinforced concrete
Spalling
Fire resistance
Non-load bearing wall system
topic Reinforced concrete
Spalling
Fire resistance
Non-load bearing wall system
description When reinforced concrete elements are subjected to high temperatures, such as in a fire, they are susceptible to physical and chemical changes that cause spalling, thereby undermining their performance under such conditions. It is known that the age and the internal moisture content of concrete are factors that contribute to this event, but the intensity of spalling is not yet a consensus. This study aimed to assess the influence of age and internal moisture on the performance of concrete walls at high temperatures. Therefore, 6 real-scale walls were built with dimensions of 3.15 × 3.00 m, with the same composition of concrete, for tests in a vertical furnace under the ISO 834 curve, for ages of 7, 14, 28, 56, 84 and 830 days. Moisture was measured as per the electrical resistivity of concrete. It was noted that walls with ages above 84 days showed no spalling whatsoever, due to the internal moisture of concrete. The most severe spalling took place at 14 days, thus evidencing that pore interconnectivity and hydrated cement crystallization can contribute as well.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-03T13:22:02Z
dc.date.available.none.fl_str_mv 2020-02-03T13:22:02Z
dc.date.issued.none.fl_str_mv 2020-01-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5972
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jmrt.2019.12.081
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5972
https://doi.org/10.1016/j.jmrt.2019.12.081
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Robert F, Colina H, Debicki G. A durabilidade do concreto mediante ao fogo. In: Ollivier J-P, Vichot A, editors. Durabilidade Do Concreto. 1 ed São Paulo: IBRACON; 2014. p. 509–58.
[2] Khoury GA. Effect of fire on concrete and concrete structures. Progress in structural engineering and materials, Vol. 2 ed. John Wiley & Sons; 2001. p. 429–47.
[3] Fu Y, Li L. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater Struct 2011;44(1):361–76.
[4] Zheng WZ, Hou XM, Shi DS, Xu MX. Experimental study on concrete spalling in prestressed slabs subjected to fire. Fire Safety J 2010;45(5):283–97.
[5] Hou Xiaomeng, Kodur VKR, Zheng Wenzhong. Factors governing the fire response of bonded prestressed concrete continuous beams. Mater Struct 2015;48(9): 2885–900.
[6] Jansson R. Fire spalling of concrete: theoretical and experimental studies. [Civil Engineering PhD]. Stockholm: KTH Vetenskap Och Konst; 2013.
[7] Fernandes B, Gil AM, Bolina FL, Tutikian BF. Thermal damage evaluation of full scale concrete columns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín) 2018;85:123–8.
[8] Wang G, et al. Fire safety provisions for aged concrete building structures. Procedia Eng 2013;62:629–38.
[9] Lataste JF. Evaluation non destructive de l’état d’endommagement des ouvrages en béton armé par mesure de résistivité électrique. [Civil Engineering PhD]. Université de Bordeaux; 2002.
[10] Plooy Rdu, Dérobert X, Villain G, PalmaLopes S. Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int 2013;54:27–36.
[11] Morita T, et al. An experimental study on spalling of high strength concrete elements under fire attack. Fire Safety Sci 2000;6:855–66.
[12] Kalifa P, Menneteau FD, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement Concrete Res 2000;30(12):1915–27.
[13] Costa CN. Dimensionamento de vigas de concreto armado em situac¸ão de incêndio. [Civil Engineering PhD]. São Paulo: Polytechnic School, Universidade de São Paulo; 2008.
[14] Pan Z, Sanjayan JG, Kong DLY. Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Const Building Mater 2012;36:365–72.
[15] Ehrenbring HZ, Quinino U, Oliveira LS, Tutikian BF. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct Concr 2019;20:1064–75, http://dx.doi.org/10.1002/suco.201800228.
[16] Pacheco F, Souza R, Christ R, Rocha C, Silva L, Tutikian BF. Determination of volume and distribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Struct Conc 2018;19:1419–27, http://dx.doi.org/10.1002/suco.201800075.
[17] Fédération Internationale. Du Betón (fib), Fire design of concrete structures – materials, structures and modeling – state-of-art report. Lausanne: Bulletin d’information 38; 2007. p. 97.
[18] Neville AM. Propriedades do concreto. 523p. 5.eD. Porto Alegre: Bookman; 2016.
[19] Polder RB. Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation. Const Building Mater 2001;15:125–31.
[20] International Organization for Standardization (ISO). Fire-resistance tests – elements of building construction – part 1: general requirements, ISO 834; 1999.
[21] Associac¸ão Brasileira de Normas Técnicas (ABNT). Paredes divisórias sem func¸ão estrutural - determinac¸ão da resistência ao fogo: método de ensaio, NBR 10636; 1989.
[22] ASTM E119-18a. Standard test methods for fire tests of building construction and materials. West Conshohocken, PA: ASTM International; 2018.
[23] Australian Standard, Sidney AS 1530: methods for fire tests on building materials, components and structures; 2005.
[24] British Standard, London BS 476-3: fire tests on building materials and structures. Classification and method of test for external fire exposure to roofs; 2004.
[25] Santos L. Avaliac¸ão da resistividade elétrica do concreto como parâmetro para a previsão da iniciac¸ão da corrosão induzida por cloretos em estruturas de concreto. [M.SC. dissertation]. Brasília: Civil and Environmental Engineering Department, Universidade de Brasília; 2006.
[26] Rigão AO. Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. Santa Maria, 2012. [M.Sc. dissertation]. Santa Maria: Civil and Environmental Engineering Graduate Program, Universidade Federal de Santa Maria; 2012.
[27] Gil A, Pacheco F, Christ R, Bolina FL, Khayat KH, Tutikian BF. Comparative study of concrete panels’ fire resistance. Aci Mater J 2017;114:755–62.
[28] Rosemann F. Resistência ao fogo de paredes de alvenaria estrutural de blocos cerâmicos pelo critério de isolamento térmico. [M.Sc. dissertation]. Florianópolis: Civil Engineering Graduate Program, Universidade Federal de Santa Catarina; 2011.
[29] Shekarchi M, Tadayon M, Chini M, Hoseini M, Alizadeh R, Ghods P, et al. Predicting chloride penetration into concrete containing silica fume, with measuring the electrical resistivity of concrete. In: 4th International Conference on Concrete Under Severe Conditions. CONSEC’04. Proceedings of the 4th CONSEC Congress. 2004.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Materials Research and Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/187f2945-7c8a-41a7-9c0e-914f16084204/download
https://repositorio.cuc.edu.co/bitstreams/fc021e42-0198-40b4-bb80-e5d92be119f4/download
https://repositorio.cuc.edu.co/bitstreams/2c1743d3-9c6e-47a1-9c3f-0bd0636329a9/download
https://repositorio.cuc.edu.co/bitstreams/fa4138b6-85c7-4284-8a04-8e42030e678c/download
https://repositorio.cuc.edu.co/bitstreams/78caf8cf-5ea7-48f2-84c3-8a44408d3389/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
b3ed2bf849aa6bf5d0940262a96c1b71
00ad39007acb75a6e9611c26df2931ac
d6342f1f397a0a1e77fd53b76803a83f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760792914100224
spelling Manica, Gustavo CarnielLonghi Bolina, FabrícioFonseca Tutikian, BernardoSilva Oliveira, Marcos LeandroAnderson Moreira, Michael2020-02-03T13:22:02Z2020-02-03T13:22:02Z2020-01-07https://hdl.handle.net/11323/5972https://doi.org/10.1016/j.jmrt.2019.12.081Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/When reinforced concrete elements are subjected to high temperatures, such as in a fire, they are susceptible to physical and chemical changes that cause spalling, thereby undermining their performance under such conditions. It is known that the age and the internal moisture content of concrete are factors that contribute to this event, but the intensity of spalling is not yet a consensus. This study aimed to assess the influence of age and internal moisture on the performance of concrete walls at high temperatures. Therefore, 6 real-scale walls were built with dimensions of 3.15 × 3.00 m, with the same composition of concrete, for tests in a vertical furnace under the ISO 834 curve, for ages of 7, 14, 28, 56, 84 and 830 days. Moisture was measured as per the electrical resistivity of concrete. It was noted that walls with ages above 84 days showed no spalling whatsoever, due to the internal moisture of concrete. The most severe spalling took place at 14 days, thus evidencing that pore interconnectivity and hydrated cement crystallization can contribute as well.Manica, Gustavo CarnielLonghi Bolina, FabrícioFonseca Tutikian, BernardoSilva Oliveira, Marcos LeandroAnderson Moreira, MichaelengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Materials Research and TechnologyReinforced concreteSpallingFire resistanceNon-load bearing wall systemInfluence of curing time on the fire performance of solid reinforced concrete platesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Robert F, Colina H, Debicki G. A durabilidade do concreto mediante ao fogo. In: Ollivier J-P, Vichot A, editors. Durabilidade Do Concreto. 1 ed São Paulo: IBRACON; 2014. p. 509–58.[2] Khoury GA. Effect of fire on concrete and concrete structures. Progress in structural engineering and materials, Vol. 2 ed. John Wiley & Sons; 2001. p. 429–47.[3] Fu Y, Li L. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater Struct 2011;44(1):361–76.[4] Zheng WZ, Hou XM, Shi DS, Xu MX. Experimental study on concrete spalling in prestressed slabs subjected to fire. Fire Safety J 2010;45(5):283–97.[5] Hou Xiaomeng, Kodur VKR, Zheng Wenzhong. Factors governing the fire response of bonded prestressed concrete continuous beams. Mater Struct 2015;48(9): 2885–900.[6] Jansson R. Fire spalling of concrete: theoretical and experimental studies. [Civil Engineering PhD]. Stockholm: KTH Vetenskap Och Konst; 2013.[7] Fernandes B, Gil AM, Bolina FL, Tutikian BF. Thermal damage evaluation of full scale concrete columns exposed to high temperatures using scanning electron microscopy and X-ray diffraction. DYNA (Medellín) 2018;85:123–8.[8] Wang G, et al. Fire safety provisions for aged concrete building structures. Procedia Eng 2013;62:629–38.[9] Lataste JF. Evaluation non destructive de l’état d’endommagement des ouvrages en béton armé par mesure de résistivité électrique. [Civil Engineering PhD]. Université de Bordeaux; 2002.[10] Plooy Rdu, Dérobert X, Villain G, PalmaLopes S. Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int 2013;54:27–36.[11] Morita T, et al. An experimental study on spalling of high strength concrete elements under fire attack. Fire Safety Sci 2000;6:855–66.[12] Kalifa P, Menneteau FD, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement Concrete Res 2000;30(12):1915–27.[13] Costa CN. Dimensionamento de vigas de concreto armado em situac¸ão de incêndio. [Civil Engineering PhD]. São Paulo: Polytechnic School, Universidade de São Paulo; 2008.[14] Pan Z, Sanjayan JG, Kong DLY. Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Const Building Mater 2012;36:365–72.[15] Ehrenbring HZ, Quinino U, Oliveira LS, Tutikian BF. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete. Struct Concr 2019;20:1064–75, http://dx.doi.org/10.1002/suco.201800228.[16] Pacheco F, Souza R, Christ R, Rocha C, Silva L, Tutikian BF. Determination of volume and distribution of pores of concretes according to different exposure classes through 3D microtomography and mercury intrusion porosimetry. Struct Conc 2018;19:1419–27, http://dx.doi.org/10.1002/suco.201800075.[17] Fédération Internationale. Du Betón (fib), Fire design of concrete structures – materials, structures and modeling – state-of-art report. Lausanne: Bulletin d’information 38; 2007. p. 97.[18] Neville AM. Propriedades do concreto. 523p. 5.eD. Porto Alegre: Bookman; 2016.[19] Polder RB. Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation. Const Building Mater 2001;15:125–31.[20] International Organization for Standardization (ISO). Fire-resistance tests – elements of building construction – part 1: general requirements, ISO 834; 1999.[21] Associac¸ão Brasileira de Normas Técnicas (ABNT). Paredes divisórias sem func¸ão estrutural - determinac¸ão da resistência ao fogo: método de ensaio, NBR 10636; 1989.[22] ASTM E119-18a. Standard test methods for fire tests of building construction and materials. West Conshohocken, PA: ASTM International; 2018.[23] Australian Standard, Sidney AS 1530: methods for fire tests on building materials, components and structures; 2005.[24] British Standard, London BS 476-3: fire tests on building materials and structures. Classification and method of test for external fire exposure to roofs; 2004.[25] Santos L. Avaliac¸ão da resistividade elétrica do concreto como parâmetro para a previsão da iniciac¸ão da corrosão induzida por cloretos em estruturas de concreto. [M.SC. dissertation]. Brasília: Civil and Environmental Engineering Department, Universidade de Brasília; 2006.[26] Rigão AO. Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. Santa Maria, 2012. [M.Sc. dissertation]. Santa Maria: Civil and Environmental Engineering Graduate Program, Universidade Federal de Santa Maria; 2012.[27] Gil A, Pacheco F, Christ R, Bolina FL, Khayat KH, Tutikian BF. Comparative study of concrete panels’ fire resistance. Aci Mater J 2017;114:755–62.[28] Rosemann F. Resistência ao fogo de paredes de alvenaria estrutural de blocos cerâmicos pelo critério de isolamento térmico. [M.Sc. dissertation]. Florianópolis: Civil Engineering Graduate Program, Universidade Federal de Santa Catarina; 2011.[29] Shekarchi M, Tadayon M, Chini M, Hoseini M, Alizadeh R, Ghods P, et al. Predicting chloride penetration into concrete containing silica fume, with measuring the electrical resistivity of concrete. In: 4th International Conference on Concrete Under Severe Conditions. CONSEC’04. Proceedings of the 4th CONSEC Congress. 2004.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/187f2945-7c8a-41a7-9c0e-914f16084204/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/fc021e42-0198-40b4-bb80-e5d92be119f4/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILInfluence of curing time on the fire performance of solid reinforced concrete plates.pdf.jpgInfluence of curing time on the fire performance of solid reinforced concrete plates.pdf.jpgimage/jpeg70651https://repositorio.cuc.edu.co/bitstreams/2c1743d3-9c6e-47a1-9c3f-0bd0636329a9/downloadb3ed2bf849aa6bf5d0940262a96c1b71MD55ORIGINALInfluence of curing time on the fire performance of solid reinforced concrete plates.pdfInfluence of curing time on the fire performance of solid reinforced concrete plates.pdfapplication/pdf1854577https://repositorio.cuc.edu.co/bitstreams/fa4138b6-85c7-4284-8a04-8e42030e678c/download00ad39007acb75a6e9611c26df2931acMD54TEXTInfluence of curing time on the fire performance of solid reinforced concrete plates.pdf.txtInfluence of curing time on the fire performance of solid reinforced concrete plates.pdf.txttext/plain28340https://repositorio.cuc.edu.co/bitstreams/78caf8cf-5ea7-48f2-84c3-8a44408d3389/downloadd6342f1f397a0a1e77fd53b76803a83fMD5611323/5972oai:repositorio.cuc.edu.co:11323/59722024-09-17 12:43:54.853http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=