Soil fertility in agricultural production units of tropical areas
BACKGROUND AND OBJECTIVES: Soil is the most important basic natural resource for the support of agricultural production systems. Productivity maintenance in these ecosystems depends on their physicochemical. However, there are no significant studies on the current status of soil fertility and qualit...
- Autores:
-
S. Rodelo-Torrente
Torregroza Espinosa, Ana Carolina
Moreno Pallares, M.
Pinto Osorio, D.
Echeverría-González, A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9269
- Acceso en línea:
- https://hdl.handle.net/11323/9269
https://repositorio.cuc.edu.co/
- Palabra clave:
- Soil nutrients
Soil physicochemical properties
Soil quality
Soil texture
Tropical soils
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_923154c0aa520235f84c77f982c7c345 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9269 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Soil fertility in agricultural production units of tropical areas |
title |
Soil fertility in agricultural production units of tropical areas |
spellingShingle |
Soil fertility in agricultural production units of tropical areas Soil nutrients Soil physicochemical properties Soil quality Soil texture Tropical soils |
title_short |
Soil fertility in agricultural production units of tropical areas |
title_full |
Soil fertility in agricultural production units of tropical areas |
title_fullStr |
Soil fertility in agricultural production units of tropical areas |
title_full_unstemmed |
Soil fertility in agricultural production units of tropical areas |
title_sort |
Soil fertility in agricultural production units of tropical areas |
dc.creator.fl_str_mv |
S. Rodelo-Torrente Torregroza Espinosa, Ana Carolina Moreno Pallares, M. Pinto Osorio, D. Echeverría-González, A. |
dc.contributor.author.spa.fl_str_mv |
S. Rodelo-Torrente Torregroza Espinosa, Ana Carolina Moreno Pallares, M. Pinto Osorio, D. Echeverría-González, A. |
dc.subject.proposal.eng.fl_str_mv |
Soil nutrients Soil physicochemical properties Soil quality Soil texture Tropical soils |
topic |
Soil nutrients Soil physicochemical properties Soil quality Soil texture Tropical soils |
description |
BACKGROUND AND OBJECTIVES: Soil is the most important basic natural resource for the support of agricultural production systems. Productivity maintenance in these ecosystems depends on their physicochemical. However, there are no significant studies on the current status of soil fertility and quality in tropical areas vulnerable to climate change and lacking management practices. The purpose of this study was to assess the physical and chemical properties of the soil to propose guidelines on soil handling and management in tropical areas. METHODS: Data on texture, macronutrients, micronutrients, and cation ratios were collected at 200 farms in the Sucre Department of Northern Colombia. Correlation analysis and principal component analysis were performed on the resulting data set, and a soil quality index was calculated. FINDING: Macronutrients N, P, K, S, Ca, Mg, and Na displayed average values of 21.65 ± 10.65 part per million, 40.35 ± 67.21 part per million, 0.46 ± 0.43 meq/100g, 7.94 ± 28.35 part per million, 15.63 ± 17.30 meq/100 g, 5.63 ± 3.58 meq/100g, 0.19 ± 0.20 meq/100g, respectively. Micronutrients Cu, Fe, Zn, and Mn displayed average values of 2.20 ± 1.66 part per million, 48.05 ± 37.87 part per million, 1.16 ± 1.26 part per million, 14.22 ± 12.24 part per million, respectively. The predominant texture among assessed soils was sandy clay loam. A significant correlation was found between (Ca/Mg) K-Ca/K, (Ca/Mg) K-Mg/K, Fe-Cu, and Ca-cation exchange capacity. The soil quality index of the soils assessed in the Department of Sucre indicates a high level of quality, which is strongly influenced by the indicators S, P, Mn (≥ 0.90) Fe, Zn, Cu, K, Na (≥ 0.80). CONCLUSION: The macronutrients displayed a deficiency of potassium. It is therefore recommended to monitor these soils and apply fertilization plans according to the needs of each assessed soil. Lastly, this study provides relevant information for proposing guidelines for crop improvement. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T12:54:20Z |
dc.date.available.none.fl_str_mv |
2022-06-21T12:54:20Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
2383-3572 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9269 |
dc.identifier.doi.spa.fl_str_mv |
10.22034/GJESM.2022.03.08 |
dc.identifier.eissn.spa.fl_str_mv |
2383-386 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2383-3572 10.22034/GJESM.2022.03.08 2383-386 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9269 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Global Journal of Environmental Science and Management |
dc.relation.references.spa.fl_str_mv |
Agronet., (2021). Red de información y comunicación del sector Agropecuario Colombiano. MinAgricultura. Amsili, J.P.; van Es, H.M.; Schindelbeck, R.R., (2021). Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur., 4: 1000012 (11 pages). Bader, B.R.; Taban, S.K.; Fahmi, A.H.; Abood, M.A.; Hamdi, G.J., (2021). Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays) growth. J. Saudi Soc. Agric. Sci., 20(6): 390-394 (5 pages). Bonomelli, C.; Mogollon, R.; de Freitas, S.T.; Zoffoli, J.P.; Contreras, C., (2020). Nutritional relationships in bitter pit-affected fruit and the feasibility of vis-NIR models to determine calcium concentration in ‘fuji’ apples. Agronomy., 10: 1474 (13 pages). Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; Pulleman, M.; Sukkel, W.; van Groenigen, J.W.; Brussaard, L. (2018). Soil quality – A critical review. Soil Biol. Biochem., 120: 105-125 (21 pages). Bustamante, N.; Danoucaras, N.; McIntyre, N.; Díaz-Martínez, J.; Restrepo-Baena, O.J., (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia., 79: 174-184 (11 pages). CCME, (2014). Canadian environmental quality guidelines. Canadian council of ministers of the environment. Chabala, L.M.; Chimungu, J.G.; Lark, R.M.; Mtambanengwe, F.; Nalivata, P.C.; Phiri, E.; Sakala, G.M., (2020). Eliciting experts’ tacit models for the interpretation of soil information, an example from the evaluation of potential benefits from conservation agriculture. Geoderma., 376: 114545 (11pages). Chang, H.; Wang, Q.; Li, Z.; Wu, J.; Xu, X.; Shi, Z., (2020). The effects of calcium combined with chitosan amendment on the bioavailability of exogenous pb in calcareous soil. J. Integr. Agric., 19(5): 1375-1386 (12 pages). Coblinski, J.A.; Inda, A.V.; Demattê, J.A.M.; Dotto, A.C.; Gholizadeh, A.; Giasson, É., (2021). Identification of minerals in subtropical soils with different textural classes by VIS–NIR–SWIR reflectance spectroscopy. Catena (Giessen)., 203: 105334 (10 pages). Cornell, R.M.; Schwertmann, U., (2006). The iron oxides: structure, properties, reactions, occurences and uses. 2nd Edition. Wiley. De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S., (2019). Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Cleaner Prod., 215:63-74 (12 pages). Delsouz Khaki, B.; Honarjoo, N.; Davatgar, N.; Jalalian, A.; Torabi Golsefidi, H., (2017). Assessment of two soil fertility indexes to evaluate paddy fields for rice cultivation. Sustainability., 9(8): 1299 (13 pages). DNP., (2003). Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Programa de desarrollo sostenible de la región de La Mojana, Bogotá. Departamento Nacional de Planeación (567 pages). FAO., (2021). Food and Agriculture Organization of the United Nations. Soil portal. Huang, W.; Zong, M.; Fan, Z.; Feng, Y.; Li, S.; Duan, C.; Li, H., (2021). Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecol. Indic., 125: 107580 (10 pages). ICONTEC., (2004). NTC 3656, Gestión ambiental suelo, Toma de muestras de suelo para determinar contaminación. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá, Colombia. IDEAM, (2018). Atlas climatológico de Colombia. Instituto De Hidrología, Meteorología y Estudios Ambientales. IGAC, (2016). Suelos y tierras de Colombia, subdirección de agrología. Instituto Geográfico Agustín Codazzi. Bogotá DC, Tomo 1 (854 pages). IGAC, (2021). Colombia, un país con una diversidad de suelos ignorada y desperdiciada. Bogotá, Colombia. Instituto Geográfico Agustín Codazzi. Karbassi, A.R.; Pazoki, M., (2015). Environmental qualitative assessment of rivers sediments. Global J. Environ. Sci. Manage., 1(2): 109-116 (8 Pages). Karbassi, A.R.; Heidari, M., (2015). An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. Global J. Environ. Sci. Manage., 1(1): 41-46 (6 pages). Klimkowicz-Pawlas, A.; Ukalska-Jaruga, A.; Smreczak, B., (2019). Soil quality index for agricultural areas under different levels of anthropopressure. Int. Agrophys., 33: 455-462 (8 pages). Kurgat, B.K.; Ngenoh, E.; Bett, H.K.; Stöber, S.; Mwonga, S.; Lotze-Campen, H.; Rosenstock, T.S., (2018). Drivers of sustainable intensification in kenyan rural and peri-urban vegetable production. Int. J. Agric. Sustainability., 16(4-5): 385-398 (14 pages). Lal, R., (2015). Restoring soil quality to mitigate soil degradation. Sustainability., 7(5): 5875-5895 (21 pages). León-Moreno, C.E.; Rojas-Molina, J.; Castilla-Campos, C.E., (2019). Physicochemical characteristics of cacao (Theobroma cacao L.) soils in Colombia: Are they adequate to improve productivity? Agronomía Colombiana., 37(1): 28-38 (11 pages). León, S.L.A., (2001). Evaluación de la fertilidad del suelo. En: Silva F. (ed.). Fertilidad de suelos, diagnóstico y control. 2a edición. Sociedad Colombiana de la Ciencia del Suelo (15 pages). Marrugo-Negrete, J.; Pinedo-Hernandez, J.; Díez, S., (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res., 154: 380–388 (9 pages). Martínez-Mera, E.A.; Torregroza-Espinosa, A.C.; ValenciaGarcía, A.; Rojas Jerónimo, L., (2017). Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil and Environment., 36: 174-181 (8 pages). https://doi.org/10.1016/j.heliyon.2019.e02217 Martínez-Mera, E.A.; Torregroza-Espinosa, A.C.; Crissien-Borrero, T.J.; Marrugo-Negrete, J.L.; González-Márquez, L.C., (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon., 5(8): e02217 (9 pages). Moraru, S.S.; Ene, A.; Badila, A., (2020). Physical and hydrophysical characteristics of soil in the context of climate change. A case study in danube river basin, SE Romania. Sustainability., 12(9174): 9174 (26 pages). Mukherjee, A.; Lal, R., (2014). Comparison of soil quality index using three methods. PLoS One., 9(8): e105981 (15 pages). Muñoz-Rojas, M., (2018). Soil quality indicators: critical tools in ecosystem restoration. Curr. Opin. Environ. Sci. Health., 5: 47- 52 (6 pages). Ndung’u, M.; Ngatia, L.W.; Onwonga, R.N.; Mucheru-Muna, M.W.; Fu, R.; Moriasi, D.N.; Ngetich, K.F., (2021). The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields. Heliyon., 7(8): e07881 (10 pages). Nguemezi, C.; Tematio, P.; Yemefack, M.; Tsozue, D.; Silatsa, T.B.F., (2020). Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon., 6(2): e03432 (10 pages). Novello, O.A.; Quintero, C.E., (2009). Contenidos de fósforo total en suelos distrito Villa Eloisa (Santa Fe). Inf. Agronómicas., 41: 11–15 (5 pages). Obriot, F.; Stauffer, M.; Goubard, Y.; Cheviron, N.; Peres, G.; Eden, M.; Revallier, A.; Vieublé-Gonod, L.; Houot, S., (2016). Multi-criteria indices to evaluate the effects of repeated organic amendment applications on soil and crop quality. Agric. Ecosyst. Environ., 232: 165-178 (14 pages). Paz-Ferreiro, J.; Fu, S., (2016). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev., 27(1): 14-25 (12 pages). R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Ruan, L.; Zhang, J.; Xin, X., (2014). Effect of poor-quality irrigation water on potassium release from soils under long-term fertilization. Acta Agric. Scand. Sect. B., 64(1): 45-55 (11 pages). Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P., (2021). Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon., 7(3): e06360 (8 pages). Torri, S.I.; Correa, R.S.; Renella, G., (2017). Biosolid application to agricultural land a contribution to global phosphorus recycle: a review. Pedosphere., 27(1): 1–16 (16 pages). Vanlauwe, B.; AbdelGadir, A.H.; Adewopo, J.; Adjei-Nsiah, S.; Ampadu-Boakye, T.; Asare, R. et al., (2017). Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa. Int. J. of Agric. Sustainability., 15(6): 613-631 (19 pages). Van Leeuwen, J. P.; Creamer, R. E.; Cluzeau, D.; Debeljak, M.; Gatti, F.; Henriksen, C. B.; Kuzmanovski, V.; Menta, C.; Pérès, G.; Picaud, C.; Saby, N.P.A.; Trajanov, A.; Trinsoutrot-Gattin, I.; Visioli, G.; Rutgers, M., (2019). Modeling of soil functions for assessing soil quality: soil biodiversity and hábitat provisioning. Front. Environ. Sci., 7: 113 (13 pages). Villasanti, C.; Román, P.; Pantoja, A., (2013). El manejo del suelo en la producción de hortalizas con buenas prácticas agrícolas. In Food and Agriculture Organization of the United Nations (31 pages). Yu, H.; Huang. X.; Ning, J.; Zhu, B.; Cheng, Y., (2014). Effect of cation exchange capacity of soil on stabilized soil strength. Soils Found., 54(6): 1236-1240 (5 pages). Yu, H.; Liu, C.; Zhu, J.; Li, F.; Deng, D.; Wang, Q.; Liu, C., (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ. Pollut., 209: 38-45 (8 pages). Zhang, C.; Xue, S.; Liu, G.; Song, Z., (2011). A comparison of soil qualities of different revegetation types in the loess plateau, china. Plant Soil., 347(1/2): 163-178 (16 pages). |
dc.relation.citationendpage.spa.fl_str_mv |
418 |
dc.relation.citationstartpage.spa.fl_str_mv |
403 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationvolume.spa.fl_str_mv |
8 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) ©2022 The author(s). |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) ©2022 The author(s). https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Global Journal of Environmental Science and Management |
dc.publisher.place.spa.fl_str_mv |
Iran |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.gjesm.net/article_248238.html |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6b05d538-53e6-4b7d-874a-4b81890353ab/download https://repositorio.cuc.edu.co/bitstreams/99940aea-c8cb-4441-8765-a2fb060b984d/download https://repositorio.cuc.edu.co/bitstreams/3a445793-c053-4f8d-b5dc-6bec55cc3ed6/download https://repositorio.cuc.edu.co/bitstreams/b964bfca-9acd-4d8e-bc57-b09fc586f5b5/download |
bitstream.checksum.fl_str_mv |
38abc50156b173ced6c8a762a56d37df e30e9215131d99561d40d6b0abbe9bad af7eeba7634ae144863bcebf1fc47a1b d3764d7fda405fdfadfc069d2015a69d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760749489422336 |
spelling |
S. Rodelo-TorrenteTorregroza Espinosa, Ana CarolinaMoreno Pallares, M.Pinto Osorio, D.Echeverría-González, A.2022-06-21T12:54:20Z2022-06-21T12:54:20Z20222383-3572https://hdl.handle.net/11323/926910.22034/GJESM.2022.03.082383-386Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/BACKGROUND AND OBJECTIVES: Soil is the most important basic natural resource for the support of agricultural production systems. Productivity maintenance in these ecosystems depends on their physicochemical. However, there are no significant studies on the current status of soil fertility and quality in tropical areas vulnerable to climate change and lacking management practices. The purpose of this study was to assess the physical and chemical properties of the soil to propose guidelines on soil handling and management in tropical areas. METHODS: Data on texture, macronutrients, micronutrients, and cation ratios were collected at 200 farms in the Sucre Department of Northern Colombia. Correlation analysis and principal component analysis were performed on the resulting data set, and a soil quality index was calculated. FINDING: Macronutrients N, P, K, S, Ca, Mg, and Na displayed average values of 21.65 ± 10.65 part per million, 40.35 ± 67.21 part per million, 0.46 ± 0.43 meq/100g, 7.94 ± 28.35 part per million, 15.63 ± 17.30 meq/100 g, 5.63 ± 3.58 meq/100g, 0.19 ± 0.20 meq/100g, respectively. Micronutrients Cu, Fe, Zn, and Mn displayed average values of 2.20 ± 1.66 part per million, 48.05 ± 37.87 part per million, 1.16 ± 1.26 part per million, 14.22 ± 12.24 part per million, respectively. The predominant texture among assessed soils was sandy clay loam. A significant correlation was found between (Ca/Mg) K-Ca/K, (Ca/Mg) K-Mg/K, Fe-Cu, and Ca-cation exchange capacity. The soil quality index of the soils assessed in the Department of Sucre indicates a high level of quality, which is strongly influenced by the indicators S, P, Mn (≥ 0.90) Fe, Zn, Cu, K, Na (≥ 0.80). CONCLUSION: The macronutrients displayed a deficiency of potassium. It is therefore recommended to monitor these soils and apply fertilization plans according to the needs of each assessed soil. Lastly, this study provides relevant information for proposing guidelines for crop improvement.16 páginasapplication/pdfengGlobal Journal of Environmental Science and ManagementIranAtribución 4.0 Internacional (CC BY 4.0)©2022 The author(s).https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soil fertility in agricultural production units of tropical areasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.gjesm.net/article_248238.htmlGlobal Journal of Environmental Science and ManagementAgronet., (2021). Red de información y comunicación del sector Agropecuario Colombiano. MinAgricultura.Amsili, J.P.; van Es, H.M.; Schindelbeck, R.R., (2021). Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur., 4: 1000012 (11 pages).Bader, B.R.; Taban, S.K.; Fahmi, A.H.; Abood, M.A.; Hamdi, G.J., (2021). Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays) growth. J. Saudi Soc. Agric. Sci., 20(6): 390-394 (5 pages).Bonomelli, C.; Mogollon, R.; de Freitas, S.T.; Zoffoli, J.P.; Contreras, C., (2020). Nutritional relationships in bitter pit-affected fruit and the feasibility of vis-NIR models to determine calcium concentration in ‘fuji’ apples. Agronomy., 10: 1474 (13 pages).Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; Pulleman, M.; Sukkel, W.; van Groenigen, J.W.; Brussaard, L. (2018). Soil quality – A critical review. Soil Biol. Biochem., 120: 105-125 (21 pages).Bustamante, N.; Danoucaras, N.; McIntyre, N.; Díaz-Martínez, J.; Restrepo-Baena, O.J., (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia., 79: 174-184 (11 pages).CCME, (2014). Canadian environmental quality guidelines. Canadian council of ministers of the environment.Chabala, L.M.; Chimungu, J.G.; Lark, R.M.; Mtambanengwe, F.; Nalivata, P.C.; Phiri, E.; Sakala, G.M., (2020). Eliciting experts’ tacit models for the interpretation of soil information, an example from the evaluation of potential benefits from conservation agriculture. Geoderma., 376: 114545 (11pages).Chang, H.; Wang, Q.; Li, Z.; Wu, J.; Xu, X.; Shi, Z., (2020). The effects of calcium combined with chitosan amendment on the bioavailability of exogenous pb in calcareous soil. J. Integr. Agric., 19(5): 1375-1386 (12 pages).Coblinski, J.A.; Inda, A.V.; Demattê, J.A.M.; Dotto, A.C.; Gholizadeh, A.; Giasson, É., (2021). Identification of minerals in subtropical soils with different textural classes by VIS–NIR–SWIR reflectance spectroscopy. Catena (Giessen)., 203: 105334 (10 pages).Cornell, R.M.; Schwertmann, U., (2006). The iron oxides: structure, properties, reactions, occurences and uses. 2nd Edition. Wiley.De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S., (2019). Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Cleaner Prod., 215:63-74 (12 pages).Delsouz Khaki, B.; Honarjoo, N.; Davatgar, N.; Jalalian, A.; Torabi Golsefidi, H., (2017). Assessment of two soil fertility indexes to evaluate paddy fields for rice cultivation. Sustainability., 9(8): 1299 (13 pages).DNP., (2003). Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Programa de desarrollo sostenible de la región de La Mojana, Bogotá. Departamento Nacional de Planeación (567 pages).FAO., (2021). Food and Agriculture Organization of the United Nations. Soil portal.Huang, W.; Zong, M.; Fan, Z.; Feng, Y.; Li, S.; Duan, C.; Li, H., (2021). Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecol. Indic., 125: 107580 (10 pages).ICONTEC., (2004). NTC 3656, Gestión ambiental suelo, Toma de muestras de suelo para determinar contaminación. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá, Colombia.IDEAM, (2018). Atlas climatológico de Colombia. Instituto De Hidrología, Meteorología y Estudios Ambientales.IGAC, (2016). Suelos y tierras de Colombia, subdirección de agrología. Instituto Geográfico Agustín Codazzi. Bogotá DC, Tomo 1 (854 pages).IGAC, (2021). Colombia, un país con una diversidad de suelos ignorada y desperdiciada. Bogotá, Colombia. Instituto Geográfico Agustín Codazzi.Karbassi, A.R.; Pazoki, M., (2015). Environmental qualitative assessment of rivers sediments. Global J. Environ. Sci. Manage., 1(2): 109-116 (8 Pages).Karbassi, A.R.; Heidari, M., (2015). An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. Global J. Environ. Sci. Manage., 1(1): 41-46 (6 pages).Klimkowicz-Pawlas, A.; Ukalska-Jaruga, A.; Smreczak, B., (2019). Soil quality index for agricultural areas under different levels of anthropopressure. Int. Agrophys., 33: 455-462 (8 pages).Kurgat, B.K.; Ngenoh, E.; Bett, H.K.; Stöber, S.; Mwonga, S.; Lotze-Campen, H.; Rosenstock, T.S., (2018). Drivers of sustainable intensification in kenyan rural and peri-urban vegetable production. Int. J. Agric. Sustainability., 16(4-5): 385-398 (14 pages).Lal, R., (2015). Restoring soil quality to mitigate soil degradation. Sustainability., 7(5): 5875-5895 (21 pages).León-Moreno, C.E.; Rojas-Molina, J.; Castilla-Campos, C.E., (2019). Physicochemical characteristics of cacao (Theobroma cacao L.) soils in Colombia: Are they adequate to improve productivity? Agronomía Colombiana., 37(1): 28-38 (11 pages).León, S.L.A., (2001). Evaluación de la fertilidad del suelo. En: Silva F. (ed.). Fertilidad de suelos, diagnóstico y control. 2a edición. Sociedad Colombiana de la Ciencia del Suelo (15 pages).Marrugo-Negrete, J.; Pinedo-Hernandez, J.; Díez, S., (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res., 154: 380–388 (9 pages).Martínez-Mera, E.A.; Torregroza-Espinosa, A.C.; ValenciaGarcía, A.; Rojas Jerónimo, L., (2017). Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil and Environment., 36: 174-181 (8 pages). https://doi.org/10.1016/j.heliyon.2019.e02217Martínez-Mera, E.A.; Torregroza-Espinosa, A.C.; Crissien-Borrero, T.J.; Marrugo-Negrete, J.L.; González-Márquez, L.C., (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon., 5(8): e02217 (9 pages).Moraru, S.S.; Ene, A.; Badila, A., (2020). Physical and hydrophysical characteristics of soil in the context of climate change. A case study in danube river basin, SE Romania. Sustainability., 12(9174): 9174 (26 pages).Mukherjee, A.; Lal, R., (2014). Comparison of soil quality index using three methods. PLoS One., 9(8): e105981 (15 pages).Muñoz-Rojas, M., (2018). Soil quality indicators: critical tools in ecosystem restoration. Curr. Opin. Environ. Sci. Health., 5: 47- 52 (6 pages).Ndung’u, M.; Ngatia, L.W.; Onwonga, R.N.; Mucheru-Muna, M.W.; Fu, R.; Moriasi, D.N.; Ngetich, K.F., (2021). The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields. Heliyon., 7(8): e07881 (10 pages).Nguemezi, C.; Tematio, P.; Yemefack, M.; Tsozue, D.; Silatsa, T.B.F., (2020). Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon., 6(2): e03432 (10 pages).Novello, O.A.; Quintero, C.E., (2009). Contenidos de fósforo total en suelos distrito Villa Eloisa (Santa Fe). Inf. Agronómicas., 41: 11–15 (5 pages).Obriot, F.; Stauffer, M.; Goubard, Y.; Cheviron, N.; Peres, G.; Eden, M.; Revallier, A.; Vieublé-Gonod, L.; Houot, S., (2016). Multi-criteria indices to evaluate the effects of repeated organic amendment applications on soil and crop quality. Agric. Ecosyst. Environ., 232: 165-178 (14 pages). Paz-Ferreiro, J.; Fu, S., (2016). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev., 27(1): 14-25 (12 pages). R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Ruan, L.; Zhang, J.; Xin, X., (2014). Effect of poor-quality irrigation water on potassium release from soils under long-term fertilization. Acta Agric. Scand. Sect. B., 64(1): 45-55 (11 pages).Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P., (2021). Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon., 7(3): e06360 (8 pages).Torri, S.I.; Correa, R.S.; Renella, G., (2017). Biosolid application to agricultural land a contribution to global phosphorus recycle: a review. Pedosphere., 27(1): 1–16 (16 pages).Vanlauwe, B.; AbdelGadir, A.H.; Adewopo, J.; Adjei-Nsiah, S.; Ampadu-Boakye, T.; Asare, R. et al., (2017). Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa. Int. J. of Agric. Sustainability., 15(6): 613-631 (19 pages).Van Leeuwen, J. P.; Creamer, R. E.; Cluzeau, D.; Debeljak, M.; Gatti, F.; Henriksen, C. B.; Kuzmanovski, V.; Menta, C.; Pérès, G.; Picaud, C.; Saby, N.P.A.; Trajanov, A.; Trinsoutrot-Gattin, I.; Visioli, G.; Rutgers, M., (2019). Modeling of soil functions for assessing soil quality: soil biodiversity and hábitat provisioning. Front. Environ. Sci., 7: 113 (13 pages).Villasanti, C.; Román, P.; Pantoja, A., (2013). El manejo del suelo en la producción de hortalizas con buenas prácticas agrícolas. In Food and Agriculture Organization of the United Nations (31 pages).Yu, H.; Huang. X.; Ning, J.; Zhu, B.; Cheng, Y., (2014). Effect of cation exchange capacity of soil on stabilized soil strength. Soils Found., 54(6): 1236-1240 (5 pages).Yu, H.; Liu, C.; Zhu, J.; Li, F.; Deng, D.; Wang, Q.; Liu, C., (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ. Pollut., 209: 38-45 (8 pages).Zhang, C.; Xue, S.; Liu, G.; Song, Z., (2011). A comparison of soil qualities of different revegetation types in the loess plateau, china. Plant Soil., 347(1/2): 163-178 (16 pages).41840338Soil nutrientsSoil physicochemical propertiesSoil qualitySoil textureTropical soilsPublicationORIGINALSoil fertility in agricultural production units of tropical areas.pdfSoil fertility in agricultural production units of tropical areas.pdfapplication/pdf1022102https://repositorio.cuc.edu.co/bitstreams/6b05d538-53e6-4b7d-874a-4b81890353ab/download38abc50156b173ced6c8a762a56d37dfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/99940aea-c8cb-4441-8765-a2fb060b984d/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTSoil fertility in agricultural production units of tropical areas.pdf.txtSoil fertility in agricultural production units of tropical areas.pdf.txttext/plain54268https://repositorio.cuc.edu.co/bitstreams/3a445793-c053-4f8d-b5dc-6bec55cc3ed6/downloadaf7eeba7634ae144863bcebf1fc47a1bMD53THUMBNAILSoil fertility in agricultural production units of tropical areas.pdf.jpgSoil fertility in agricultural production units of tropical areas.pdf.jpgimage/jpeg11556https://repositorio.cuc.edu.co/bitstreams/b964bfca-9acd-4d8e-bc57-b09fc586f5b5/downloadd3764d7fda405fdfadfc069d2015a69dMD5411323/9269oai:repositorio.cuc.edu.co:11323/92692024-09-17 10:57:35.582https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |