Unbalanced data processing using oversampling: machine Learning
Nowadays, the DL algorithms show good results when used in the solution of different problems which present similar characteristics as the great amount of data and high dimensionality. However, one of the main challenges that currently arises is the classification of high dimensionality databases, w...
- Autores:
-
amelec, viloria
Pineda Lezama, Omar Bonerge
Mercado Caruso, Nohora Nubia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7655
- Acceso en línea:
- https://hdl.handle.net/11323/7655
https://doi.org/10.1016/j.procs.2020.07.018
https://repositorio.cuc.edu.co/
- Palabra clave:
- Imbalance of classes
Microarray databases
Genetic expression
Deep learning techniques
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_92298e822d3b180f11911f31e1ced54d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7655 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Unbalanced data processing using oversampling: machine Learning |
title |
Unbalanced data processing using oversampling: machine Learning |
spellingShingle |
Unbalanced data processing using oversampling: machine Learning Imbalance of classes Microarray databases Genetic expression Deep learning techniques |
title_short |
Unbalanced data processing using oversampling: machine Learning |
title_full |
Unbalanced data processing using oversampling: machine Learning |
title_fullStr |
Unbalanced data processing using oversampling: machine Learning |
title_full_unstemmed |
Unbalanced data processing using oversampling: machine Learning |
title_sort |
Unbalanced data processing using oversampling: machine Learning |
dc.creator.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Mercado Caruso, Nohora Nubia |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Mercado Caruso, Nohora Nubia |
dc.subject.spa.fl_str_mv |
Imbalance of classes Microarray databases Genetic expression Deep learning techniques |
topic |
Imbalance of classes Microarray databases Genetic expression Deep learning techniques |
description |
Nowadays, the DL algorithms show good results when used in the solution of different problems which present similar characteristics as the great amount of data and high dimensionality. However, one of the main challenges that currently arises is the classification of high dimensionality databases, with very few samples and high-class imbalance. Biomedical databases of gene expression microarrays present the characteristics mentioned above, presenting problems of class imbalance, with few samples and high dimensionality. The problem of class imbalance arises when the set of samples belonging to one class is much larger than the set of samples of the other class or classes. This problem has been identified as one of the main challenges of the algorithms applied in the context of Big Data. The objective of this research is the study of genetic expression databases, using conventional methods of sub and oversampling for the balance of classes such as RUS, ROS and SMOTE. The databases were modified by applying an increase in their imbalance and in another case generating artificial noise. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-04T21:18:03Z |
dc.date.available.none.fl_str_mv |
2021-01-04T21:18:03Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7655 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2020.07.018 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7655 https://doi.org/10.1016/j.procs.2020.07.018 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Bolón-Canedo, V., Alonso-Betanzos, A., López-de-Ullibarri, I., & Cao, R. (2019). Challenges and Future Trends for Microarray Analysis. In Microarray Bioinformatics (pp. 283-293). Humana, New York, NY. [2] Sayed, S., Nassef, M., Badr, A., & Farag, I. (2019). A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Systems with Applications, 121, 233-243. [3] Pal, M.: Extreme learning machine for land cover classification. International Journal of Remote Sensing, 30(14), pp. 3835–3841 (2008) [4] Guillen, P., & Ebalunode, J. (2016, December). Cancer classification based on microarray gene expression data using deep learning. In 2016 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1403-1405). IEEE. [5] Nene, S.: Deep learning for natural languaje processing. International Research Journal of Engineering Technology, 4, pp. 930–933 (2017) [6] Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C., ... & Lundin, J. (2018). Deep learning-based tissue analysis predicts outcome in colorectal cancer. Scientific reports, 8(1), 1-11. [7] Reyes-Nava, A., Sánchez, J. S., Alejo, R., Flores-Fuentes, A. A., & Rendón-Lara, E. (2018, June). Performance analysis of deep neural networks for classification of gene-expression microarrays. In Mexican Conference on Pattern Recognition (pp. 105-115). Springer, Cham. [8] Viloria, A., & Lezama, O. B. P. (2019). Improvements for determining the number of clusters in k-means for innovation databases in SMEs. In Procedia Computer Science (Vol. 151, pp. 1201–1206). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.04.172. [9] Flores-Fuentes, A. A., & Granda-Gutiérrez, E. E. (2019, March). Using Deep Learning to Classify Class Imbalanced Gene-Expression Microarrays Datasets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings (Vol. 11401, p. 46). Springer. [10] Ding, L., & McDonald, D. J. (2017). Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Bioinformatics, 33(14), i350-i358. [11] Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene selection and classification of microarray data using convolutional neural network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150). IEEE. [12] Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University-Computer and Information Sciences. [13] Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., ... & Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific reports, 8(1), 1-11. [14] Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., & Pechenizkiy, M. (2019). Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware. arXiv preprint arXiv:1901.09181. [15] Shahane, R., Ismail, M., & Prabhu, C. S. R. (2019). A Survey on Deep Learning Techniques for Prognosis and Diagnosis of Cancer from Microarray Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 16(12), 5078-5088. [16] Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B., ... & Litjens, G. (2020). Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet Oncology. [17] Salman, H. K.: Cost-Sensitive Learning of Deep Feature Representations from Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems (2017) [18] Nguyen, A.B., Phung, S.L.: A supervised learning approach for imbalanced data sets. In: Proc. of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008) [19] Shekar, B. H., & Dagnew, G. (2020). L1-Regulated Feature Selection and Classification of Microarray Cancer Data Using Deep Learning. In Proceedings of 3rd International Conference on Computer Vision and Image Processing (pp. 227-242). Springer, Singapore. [20] Basavegowda, H. S., & Dagnew, G. (2020). Deep learning approach for microarray cancer data classification. CAAI Transactions on Intelligence Technology, 5(1), 22-33. [21] Khaire, U. M., & Dhanalakshmi, R. (2020). High-dimensional microarray dataset classification using an improved adam optimizer (iAdam). Journal of Ambient Intelligence and Humanized Computing, 1-18. [22] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050920316975 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b05e6d72-c0d7-4152-b2a9-8a3a83e6e476/download https://repositorio.cuc.edu.co/bitstreams/70fd9c00-0571-4cc5-a29c-4bfc70b6bb2e/download https://repositorio.cuc.edu.co/bitstreams/68a44dca-76b7-439e-96a3-543717eb0a9e/download https://repositorio.cuc.edu.co/bitstreams/e6af352a-0ef6-4a15-8ad1-eb5c8b1637e2/download https://repositorio.cuc.edu.co/bitstreams/400f723c-f070-43a7-952a-19c00ec92b06/download |
bitstream.checksum.fl_str_mv |
5a5f0ba57e54c87b573227576af9810b 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 1e7b8ab3edf7cd8d014086024a60f8ff 4883948f3ac2eb24c1e9741d4a9497e5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760803998597120 |
spelling |
amelec, viloriaPineda Lezama, Omar BonergeMercado Caruso, Nohora Nubia2021-01-04T21:18:03Z2021-01-04T21:18:03Z20201877-0509https://hdl.handle.net/11323/7655https://doi.org/10.1016/j.procs.2020.07.018Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, the DL algorithms show good results when used in the solution of different problems which present similar characteristics as the great amount of data and high dimensionality. However, one of the main challenges that currently arises is the classification of high dimensionality databases, with very few samples and high-class imbalance. Biomedical databases of gene expression microarrays present the characteristics mentioned above, presenting problems of class imbalance, with few samples and high dimensionality. The problem of class imbalance arises when the set of samples belonging to one class is much larger than the set of samples of the other class or classes. This problem has been identified as one of the main challenges of the algorithms applied in the context of Big Data. The objective of this research is the study of genetic expression databases, using conventional methods of sub and oversampling for the balance of classes such as RUS, ROS and SMOTE. The databases were modified by applying an increase in their imbalance and in another case generating artificial noise.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeMercado Caruso, Nohora-will be generated-orcid-0000-0001-9261-8331-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920316975Imbalance of classesMicroarray databasesGenetic expressionDeep learning techniquesUnbalanced data processing using oversampling: machine LearningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Bolón-Canedo, V., Alonso-Betanzos, A., López-de-Ullibarri, I., & Cao, R. (2019). Challenges and Future Trends for Microarray Analysis. In Microarray Bioinformatics (pp. 283-293). Humana, New York, NY.[2] Sayed, S., Nassef, M., Badr, A., & Farag, I. (2019). A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Systems with Applications, 121, 233-243.[3] Pal, M.: Extreme learning machine for land cover classification. International Journal of Remote Sensing, 30(14), pp. 3835–3841 (2008)[4] Guillen, P., & Ebalunode, J. (2016, December). Cancer classification based on microarray gene expression data using deep learning. In 2016 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1403-1405). IEEE.[5] Nene, S.: Deep learning for natural languaje processing. International Research Journal of Engineering Technology, 4, pp. 930–933 (2017)[6] Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C., ... & Lundin, J. (2018). Deep learning-based tissue analysis predicts outcome in colorectal cancer. Scientific reports, 8(1), 1-11.[7] Reyes-Nava, A., Sánchez, J. S., Alejo, R., Flores-Fuentes, A. A., & Rendón-Lara, E. (2018, June). Performance analysis of deep neural networks for classification of gene-expression microarrays. In Mexican Conference on Pattern Recognition (pp. 105-115). Springer, Cham.[8] Viloria, A., & Lezama, O. B. P. (2019). Improvements for determining the number of clusters in k-means for innovation databases in SMEs. In Procedia Computer Science (Vol. 151, pp. 1201–1206). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.04.172.[9] Flores-Fuentes, A. A., & Granda-Gutiérrez, E. E. (2019, March). Using Deep Learning to Classify Class Imbalanced Gene-Expression Microarrays Datasets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings (Vol. 11401, p. 46). Springer.[10] Ding, L., & McDonald, D. J. (2017). Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Bioinformatics, 33(14), i350-i358.[11] Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene selection and classification of microarray data using convolutional neural network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150). IEEE.[12] Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University-Computer and Information Sciences.[13] Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., ... & Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific reports, 8(1), 1-11.[14] Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., & Pechenizkiy, M. (2019). Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware. arXiv preprint arXiv:1901.09181.[15] Shahane, R., Ismail, M., & Prabhu, C. S. R. (2019). A Survey on Deep Learning Techniques for Prognosis and Diagnosis of Cancer from Microarray Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 16(12), 5078-5088.[16] Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B., ... & Litjens, G. (2020). Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet Oncology.[17] Salman, H. K.: Cost-Sensitive Learning of Deep Feature Representations from Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems (2017)[18] Nguyen, A.B., Phung, S.L.: A supervised learning approach for imbalanced data sets. In: Proc. of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008)[19] Shekar, B. H., & Dagnew, G. (2020). L1-Regulated Feature Selection and Classification of Microarray Cancer Data Using Deep Learning. In Proceedings of 3rd International Conference on Computer Vision and Image Processing (pp. 227-242). Springer, Singapore.[20] Basavegowda, H. S., & Dagnew, G. (2020). Deep learning approach for microarray cancer data classification. CAAI Transactions on Intelligence Technology, 5(1), 22-33.[21] Khaire, U. M., & Dhanalakshmi, R. (2020). High-dimensional microarray dataset classification using an improved adam optimizer (iAdam). Journal of Ambient Intelligence and Humanized Computing, 1-18.[22] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20PublicationORIGINALUnbalanced data processing using oversampling, Machine Learning.pdfUnbalanced data processing using oversampling, Machine Learning.pdfapplication/pdf507516https://repositorio.cuc.edu.co/bitstreams/b05e6d72-c0d7-4152-b2a9-8a3a83e6e476/download5a5f0ba57e54c87b573227576af9810bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/70fd9c00-0571-4cc5-a29c-4bfc70b6bb2e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/68a44dca-76b7-439e-96a3-543717eb0a9e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILUnbalanced data processing using oversampling, Machine Learning.pdf.jpgUnbalanced data processing using oversampling, Machine Learning.pdf.jpgimage/jpeg48347https://repositorio.cuc.edu.co/bitstreams/e6af352a-0ef6-4a15-8ad1-eb5c8b1637e2/download1e7b8ab3edf7cd8d014086024a60f8ffMD54TEXTUnbalanced data processing using oversampling, Machine Learning.pdf.txtUnbalanced data processing using oversampling, Machine Learning.pdf.txttext/plain50475https://repositorio.cuc.edu.co/bitstreams/400f723c-f070-43a7-952a-19c00ec92b06/download4883948f3ac2eb24c1e9741d4a9497e5MD5511323/7655oai:repositorio.cuc.edu.co:11323/76552024-09-17 12:46:35.53http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |