River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia
Numerical models are important tools for analyzing and solving water resources problems; however, a model’s reliability heavily depends on its calibration. This paper presents a method based on Design of Experiments theory for calibrating numerical models of rivers by considering the interaction bet...
- Autores:
-
J. Acuña, Guillermo
Ávila, Humberto
A. Canales, Fausto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4947
- Acceso en línea:
- https://hdl.handle.net/11323/4947
https://repositorio.cuc.edu.co/
- Palabra clave:
- calibration
river modeling
design of experiments
MIKE-21C model
Meta River
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_91c21498cab0e08e88e4f30f7373a76b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4947 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
title |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
spellingShingle |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia calibration river modeling design of experiments MIKE-21C model Meta River |
title_short |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
title_full |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
title_fullStr |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
title_full_unstemmed |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
title_sort |
River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia |
dc.creator.fl_str_mv |
J. Acuña, Guillermo Ávila, Humberto A. Canales, Fausto |
dc.contributor.author.spa.fl_str_mv |
J. Acuña, Guillermo Ávila, Humberto A. Canales, Fausto |
dc.subject.spa.fl_str_mv |
calibration river modeling design of experiments MIKE-21C model Meta River |
topic |
calibration river modeling design of experiments MIKE-21C model Meta River |
description |
Numerical models are important tools for analyzing and solving water resources problems; however, a model’s reliability heavily depends on its calibration. This paper presents a method based on Design of Experiments theory for calibrating numerical models of rivers by considering the interaction between different calibration parameters, identifying the most sensitive parameters and finding a value or a range of values for which the calibration parameters produces an adequate performance of the model in terms of accuracy. The method consists of a systematic process for assessing the qualitative and quantitative performance of a hydromorphological numeric model. A 75 km reach of the Meta River, in Colombia, was used as case study for validating the method. The modeling was conducted by using the software package MIKE-21C, a two-dimensional flow model. The calibration is assessed by means of an Overall Weighted Indicator, based on the coefficient of determination of the calibration parameters and within a range from 0 to 1. For the case study, the most significant calibration parameters were the sediment transport equation, the riverbed load factor and the suspended load factor. The optimal calibration produced an Overall Weighted Indicator equal to 0.857. The method can be applied to any type of morphological models. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-07-12T13:46:52Z |
dc.date.available.none.fl_str_mv |
2019-07-12T13:46:52Z |
dc.date.issued.none.fl_str_mv |
2019-06-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2073-4441 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4947 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2073-4441 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4947 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.3390/w11071382 |
dc.relation.references.spa.fl_str_mv |
1. Church, M.; Ferguson, R.I. Morphodynamics: Rivers beyond steady state. Water Resour. Res. 2015, 51, 1883–1897. [CrossRef] 2. Yadav, B.; Eliza, K. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement 2017, 103, 294–301. [CrossRef] 3. Zhu, Q.; Wang, Y.P.; Gao, S.; Zhang, J.; Li, M.; Yang, Y.; Gao, J. Modeling morphological change in anthropogenically controlled estuaries. Anthropocene 2017, 17, 70–83. [CrossRef] 4. Pascolo, S.; Petti, M.; Bosa, S. On the wave bottom shear stress in shallow depths: The role ofwave period and bed roughness. Water 2018, 10, 1348. [CrossRef] 5. Logan, B.L.; McDonald, R.R.; Nelson, J.M.; Kinzel, P.J.; Barton, G.J. Use of Multidimensional Modeling to Evaluate a Channel Restoration Design for the Kootenai River, Idaho; Scientific Investigations Report 2010–5213; U.S. Geological Survey: Reston, VA, USA, 2011. 6. Stewart, G.; Anderson, R.; Wohl, E. Two-dimensional modelling of habitat suitability as a function of discharge on two Colorado rivers. River Res. Appl. 2005, 21, 1061–1074. [CrossRef] 7. Ouédraogo, W.; Raude, J.; Gathenya, J. Continuous modeling of the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: Calibration, validation, model performance evaluation and sensitivity analysis. Hydrology 2018, 5, 44. [CrossRef] 8. Refsgaard, J.C.; Henriksen, H.J. Modelling guidelines—Terminology and guiding principles. Adv. Water Resour. 2004, 27, 71–82. [CrossRef] 9. Kannan, N.; Santhi, C.; White, M.J.; Mehan, S.; Arnold, J.G.; Gassman, P.W. Some Challenges in hydrologic model calibration for large-scale studies: A case study of SWAT model application to Mississippi–Atchafalaya River basin. Hydrology 2019, 6, 17. [CrossRef] 10. Arsenault, R.; Brissette, F.; Martel, J.L. The hazards of split-sample validation in hydrological model calibration. J. Hydrol. 2018, 566, 346–362. [CrossRef] 11. Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Kropp, I.M.; Abouali, M.; Zhang, Z.; Deb, K. Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. J. Hydrol. 2018, 564, 758–772. [CrossRef] 12. Kavetski, D.; Kuczera, G.; Franks, S.W. Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts. J. Hydrol. 2006, 320, 173–186. [CrossRef] 13. Guerrero, M.; Di Federico, V.; Lamberti, A. Calibration of a 2-D morphodynamic model using water–sediment flux maps derived from an ADCP recording. J. Hydroinforma. 2013, 15, 813–828. [CrossRef] 14. Troy, T.J.; Wood, E.F.; Sheffield, J. An efficient calibration method for continental-scale land surface modeling. Water Resour. Res. 2008, 44, 1–13. [CrossRef] 15. Getirana, A.C.V. Integrating spatial altimetry data into the automatic calibration of hydrological models. J. Hydrol. 2010, 387, 244–255. [CrossRef] 16. Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. [CrossRef] 17. Singh, S.; Bárdossy, A. Hydrological model calibration by sequential replacement of weak parameter sets using depth function. Hydrology 2015, 2, 69–92. [CrossRef] 18. Beven, K. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour. 1993, 16, 41–51. [CrossRef] 19. Wright, K.A.; Goodman, D.H.; Som, N.A.; Alvarez, J.; Martin, A.; Hardy, T.B. Improving hydrodynamic modelling: An analytical framework for assessment of two-dimensional hydrodynamic models. River Res. Appl. 2017, 33, 170–181. [CrossRef] 20. Paarlberg, A.J.; Guerrero, M.; Huthoff, F.; Re, M. Optimizing dredge-and-dump activities for river navigability using a hydro-morphodynamic model. Water 2015, 7, 3943–3962. [CrossRef] 21. Wu, K.; Yeh, K.C.; Lai, Y.G. A combined field and numerical modeling study to assess the longitudinal channel slope evolution in a mixed alluvial and soft bedrock stream. Water 2019, 11, 735. [CrossRef] 22. Guan, M.; Liang, Q. A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation. Environ. Model. Softw. 2017, 88, 10–21. [CrossRef] 23. Kang, T.; Kimura, I.; Shimizu, Y. Responses of bed morphology to vegetation growth and flood discharge at a sharp river bend. Water 2018, 10, 223. [CrossRef] 24. Castro-Bolinaga, C.F.; Fox, G.A. Streambank erosion: Advances in monitoring, modeling and management. Water 2018, 10, 1346. [CrossRef] 25. Bosa, S.; Petti, M.; Pascolo, S. Numerical modelling of cohesive bank migration. Water 2018, 10, 961. [CrossRef] 26. Klein, A. Verification of Morphodynamic Models on Channels, Trenches, and Pits. Master’s Thesis, TU Delft, Delft, The Netherlands, March 2004. 27. Van Waveren, R.H.; Groot, S.; Scholten, H.; van Geer, F.; Wösten, H.; Koeze, R.; Noort, J. Good Modelling Practice Handbook; RWS-RIZA: Lelystad, The Netherlands, 1999. 28. DHI. MIKE 21C Curvilinear model for river morphology—Scientific Documentation. Available online: http:// manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE21C_Scientific_documentation.pdf (accessed on 11 November 2018). 29. Papanicolaou, A.N.T.; Krallis, G.; Edinger, J. Sediment transport modeling review—Current and future developments. J. Hydraul. Eng. 2008, 134, 1–14. [CrossRef] 30. Mueller, E.R.; Pitlick, J. Sediment supply and channel morphology in mountain river systems: 1. Relative importance of lithology, topography, and climate. J. Geophys. Res. Earth Surf. 2013, 118, 2325–2342. [CrossRef] 31. Sear, D.A.; Newson, M.D.; Thorne, C.R. Guidebook of Applied Fluvial Geomorphology; Thomas Telford Ltd: London, UK, 2010. 32. Matte, P.; Secretan, Y.; Morin, J. Hydrodynamic modeling of the St. Lawrence fluvial estuary. I: Model setup, calibration, and validation. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017010. [CrossRef] 33. Chaves, H.M.L.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2007, 21, 883–895. [CrossRef] 34. DHI Water & Environment. MIKE 21 Flow Model FM—User Guide: Sand Transport Module, incl. Shoreline Morphology; DHI Water & Environment: Hørsholm, Denmark, 2017. 35. De Villiers, J. 2D Modelling of Turbulent Transport of Cohesive Sediments in Shallow Reservoirs. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2006. 36. Beck, J.S.; Basson, G.R. Klein River estuary (South Africa): 2D numerical modelling of estuary breaching. Water SA 2008, 34, 33–38. 37. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1991. 38. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. 39. Kleijnen, J.P.C. Experimental design for sensitivity analysis, optimization, and validation of simulation models. In Handbook of Simulation; Banks, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998; pp. 173–223. 40. Lee, R. Statistical design of experiments for screening and optimization. Chemie-Ingenieur-Technik 2019, 91, 191–200. [CrossRef] 41. Dorfmann, C.; Knoblauch, H. ADCP measurements in a reservoir of a run-of-river Hydro Power Plant. In Proceedings of the 6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, Prague, Czech Republic, 9–11 September 2008; pp. 45–48. 42. Universidad del Norte. Actualización de los Estudios y Diseños para la Navegabilidad del río Meta entre Cabuyaro (K804) y Puerto Carreño (K0); Universidad del Norte: Barranquilla, Colombia, 2013. 43. Plan Maestro Fluvial de Colombia 2015; Ministerio de Transporte: Bogotá, Colombia, 2015. 44. Caracterización del Transporte en Colombia—Diagnóstico y Proyectos de Transporte e Infraestructura; Ministerio de Transporte: Bogotá, Colombia, 2005. 45. Pasternack, G.B.; Gilbert, A.T.; Wheaton, J.M.; Buckland, E.M. Error propagation for velocity and shear stress prediction using 2D models for environmental management. J. Hydrol. 2006, 328, 227–241. [CrossRef] 46. Talmon, A.M. Bed Topography of River Bends with Suspended Sediment Transport. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1992. 47. DHI Water & Environment. MIKE 21 Flow Model—User Guide: Hydrodynamic Module; DHI Water & Environment: Hørsholm, Denmark, 2017. 48. García, M.H. Sediment transport and morphodynamics. In Sedimentation Engineering; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 21–163. 49. Engelund, F.; Hansen, E. A monograph on sediment transport in alluvial streams; Technical University of Denmark: Copenhagen, Denmark, 1967. 50. Yang, C.T. Incipient motion and sediment transport. J. Hydraul. Div. 1973, 99, 1679–1704. 51. Van Rijn, L.C. Sediment transport, part II: Suspended load transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [CrossRef] 52. Hidroconsultas LTDA. Estudios básicos en el río Meta para la línea base de ingeniería tendiente a definir el sistema más adecuado para el mantenimiento de un canal navegable, obras de encauzamiento y demás obras fluviales entre la desembocadura del río Casanare y Puerto Texas; Hidroconsultas LTDA: Bogota, Colombia, 2003. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Water |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0bf8ae53-17da-4994-89e1-4082a225bb0a/download https://repositorio.cuc.edu.co/bitstreams/aebb2050-d6c2-4997-9524-dd43d1e44d63/download https://repositorio.cuc.edu.co/bitstreams/054bef44-7d0e-4754-9299-3b75fb303dd1/download https://repositorio.cuc.edu.co/bitstreams/63070659-b997-40ee-9e5e-add4e867aa42/download https://repositorio.cuc.edu.co/bitstreams/b6a572f3-0525-43cb-9d34-0e85391d9188/download |
bitstream.checksum.fl_str_mv |
a86a904db7ba8a2362905f10dc4f9469 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 2b1388ff022c597685472a6b06c6eb23 ce3a1ff334eabf13bd65275daf319d3d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760776220770304 |
spelling |
J. Acuña, GuillermoÁvila, HumbertoA. Canales, Fausto2019-07-12T13:46:52Z2019-07-12T13:46:52Z2019-06-292073-4441https://hdl.handle.net/11323/4947Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Numerical models are important tools for analyzing and solving water resources problems; however, a model’s reliability heavily depends on its calibration. This paper presents a method based on Design of Experiments theory for calibrating numerical models of rivers by considering the interaction between different calibration parameters, identifying the most sensitive parameters and finding a value or a range of values for which the calibration parameters produces an adequate performance of the model in terms of accuracy. The method consists of a systematic process for assessing the qualitative and quantitative performance of a hydromorphological numeric model. A 75 km reach of the Meta River, in Colombia, was used as case study for validating the method. The modeling was conducted by using the software package MIKE-21C, a two-dimensional flow model. The calibration is assessed by means of an Overall Weighted Indicator, based on the coefficient of determination of the calibration parameters and within a range from 0 to 1. For the case study, the most significant calibration parameters were the sediment transport equation, the riverbed load factor and the suspended load factor. The optimal calibration produced an Overall Weighted Indicator equal to 0.857. The method can be applied to any type of morphological models.J. Acuña, Guillermo-0000-0002-7233-8161-600Ávila, Humberto-0000-0002-8064-9584-600A. Canales, Fausto-0000-0002-6858-1855-600engWaterhttps://doi.org/10.3390/w110713821. Church, M.; Ferguson, R.I. Morphodynamics: Rivers beyond steady state. Water Resour. Res. 2015, 51, 1883–1897. [CrossRef] 2. Yadav, B.; Eliza, K. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement 2017, 103, 294–301. [CrossRef] 3. Zhu, Q.; Wang, Y.P.; Gao, S.; Zhang, J.; Li, M.; Yang, Y.; Gao, J. Modeling morphological change in anthropogenically controlled estuaries. Anthropocene 2017, 17, 70–83. [CrossRef] 4. Pascolo, S.; Petti, M.; Bosa, S. On the wave bottom shear stress in shallow depths: The role ofwave period and bed roughness. Water 2018, 10, 1348. [CrossRef] 5. Logan, B.L.; McDonald, R.R.; Nelson, J.M.; Kinzel, P.J.; Barton, G.J. Use of Multidimensional Modeling to Evaluate a Channel Restoration Design for the Kootenai River, Idaho; Scientific Investigations Report 2010–5213; U.S. Geological Survey: Reston, VA, USA, 2011. 6. Stewart, G.; Anderson, R.; Wohl, E. Two-dimensional modelling of habitat suitability as a function of discharge on two Colorado rivers. River Res. Appl. 2005, 21, 1061–1074. [CrossRef] 7. Ouédraogo, W.; Raude, J.; Gathenya, J. Continuous modeling of the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: Calibration, validation, model performance evaluation and sensitivity analysis. Hydrology 2018, 5, 44. [CrossRef] 8. Refsgaard, J.C.; Henriksen, H.J. Modelling guidelines—Terminology and guiding principles. Adv. Water Resour. 2004, 27, 71–82. [CrossRef] 9. Kannan, N.; Santhi, C.; White, M.J.; Mehan, S.; Arnold, J.G.; Gassman, P.W. Some Challenges in hydrologic model calibration for large-scale studies: A case study of SWAT model application to Mississippi–Atchafalaya River basin. Hydrology 2019, 6, 17. [CrossRef] 10. Arsenault, R.; Brissette, F.; Martel, J.L. The hazards of split-sample validation in hydrological model calibration. J. Hydrol. 2018, 566, 346–362. [CrossRef] 11. Hernandez-Suarez, J.S.; Nejadhashemi, A.P.; Kropp, I.M.; Abouali, M.; Zhang, Z.; Deb, K. Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. J. Hydrol. 2018, 564, 758–772. [CrossRef] 12. Kavetski, D.; Kuczera, G.; Franks, S.W. Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts. J. Hydrol. 2006, 320, 173–186. [CrossRef] 13. Guerrero, M.; Di Federico, V.; Lamberti, A. Calibration of a 2-D morphodynamic model using water–sediment flux maps derived from an ADCP recording. J. Hydroinforma. 2013, 15, 813–828. [CrossRef] 14. Troy, T.J.; Wood, E.F.; Sheffield, J. An efficient calibration method for continental-scale land surface modeling. Water Resour. Res. 2008, 44, 1–13. [CrossRef] 15. Getirana, A.C.V. Integrating spatial altimetry data into the automatic calibration of hydrological models. J. Hydrol. 2010, 387, 244–255. [CrossRef] 16. Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. [CrossRef] 17. Singh, S.; Bárdossy, A. Hydrological model calibration by sequential replacement of weak parameter sets using depth function. Hydrology 2015, 2, 69–92. [CrossRef] 18. Beven, K. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour. 1993, 16, 41–51. [CrossRef] 19. Wright, K.A.; Goodman, D.H.; Som, N.A.; Alvarez, J.; Martin, A.; Hardy, T.B. Improving hydrodynamic modelling: An analytical framework for assessment of two-dimensional hydrodynamic models. River Res. Appl. 2017, 33, 170–181. [CrossRef] 20. Paarlberg, A.J.; Guerrero, M.; Huthoff, F.; Re, M. Optimizing dredge-and-dump activities for river navigability using a hydro-morphodynamic model. Water 2015, 7, 3943–3962. [CrossRef] 21. Wu, K.; Yeh, K.C.; Lai, Y.G. A combined field and numerical modeling study to assess the longitudinal channel slope evolution in a mixed alluvial and soft bedrock stream. Water 2019, 11, 735. [CrossRef] 22. Guan, M.; Liang, Q. A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation. Environ. Model. Softw. 2017, 88, 10–21. [CrossRef] 23. Kang, T.; Kimura, I.; Shimizu, Y. Responses of bed morphology to vegetation growth and flood discharge at a sharp river bend. Water 2018, 10, 223. [CrossRef] 24. Castro-Bolinaga, C.F.; Fox, G.A. Streambank erosion: Advances in monitoring, modeling and management. Water 2018, 10, 1346. [CrossRef] 25. Bosa, S.; Petti, M.; Pascolo, S. Numerical modelling of cohesive bank migration. Water 2018, 10, 961. [CrossRef] 26. Klein, A. Verification of Morphodynamic Models on Channels, Trenches, and Pits. Master’s Thesis, TU Delft, Delft, The Netherlands, March 2004. 27. Van Waveren, R.H.; Groot, S.; Scholten, H.; van Geer, F.; Wösten, H.; Koeze, R.; Noort, J. Good Modelling Practice Handbook; RWS-RIZA: Lelystad, The Netherlands, 1999. 28. DHI. MIKE 21C Curvilinear model for river morphology—Scientific Documentation. Available online: http:// manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE21C_Scientific_documentation.pdf (accessed on 11 November 2018). 29. Papanicolaou, A.N.T.; Krallis, G.; Edinger, J. Sediment transport modeling review—Current and future developments. J. Hydraul. Eng. 2008, 134, 1–14. [CrossRef] 30. Mueller, E.R.; Pitlick, J. Sediment supply and channel morphology in mountain river systems: 1. Relative importance of lithology, topography, and climate. J. Geophys. Res. Earth Surf. 2013, 118, 2325–2342. [CrossRef] 31. Sear, D.A.; Newson, M.D.; Thorne, C.R. Guidebook of Applied Fluvial Geomorphology; Thomas Telford Ltd: London, UK, 2010. 32. Matte, P.; Secretan, Y.; Morin, J. Hydrodynamic modeling of the St. Lawrence fluvial estuary. I: Model setup, calibration, and validation. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017010. [CrossRef] 33. Chaves, H.M.L.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2007, 21, 883–895. [CrossRef] 34. DHI Water & Environment. MIKE 21 Flow Model FM—User Guide: Sand Transport Module, incl. Shoreline Morphology; DHI Water & Environment: Hørsholm, Denmark, 2017. 35. De Villiers, J. 2D Modelling of Turbulent Transport of Cohesive Sediments in Shallow Reservoirs. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2006. 36. Beck, J.S.; Basson, G.R. Klein River estuary (South Africa): 2D numerical modelling of estuary breaching. Water SA 2008, 34, 33–38. 37. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1991. 38. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. 39. Kleijnen, J.P.C. Experimental design for sensitivity analysis, optimization, and validation of simulation models. In Handbook of Simulation; Banks, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998; pp. 173–223. 40. Lee, R. Statistical design of experiments for screening and optimization. Chemie-Ingenieur-Technik 2019, 91, 191–200. [CrossRef] 41. Dorfmann, C.; Knoblauch, H. ADCP measurements in a reservoir of a run-of-river Hydro Power Plant. In Proceedings of the 6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, Prague, Czech Republic, 9–11 September 2008; pp. 45–48. 42. Universidad del Norte. Actualización de los Estudios y Diseños para la Navegabilidad del río Meta entre Cabuyaro (K804) y Puerto Carreño (K0); Universidad del Norte: Barranquilla, Colombia, 2013. 43. Plan Maestro Fluvial de Colombia 2015; Ministerio de Transporte: Bogotá, Colombia, 2015. 44. Caracterización del Transporte en Colombia—Diagnóstico y Proyectos de Transporte e Infraestructura; Ministerio de Transporte: Bogotá, Colombia, 2005. 45. Pasternack, G.B.; Gilbert, A.T.; Wheaton, J.M.; Buckland, E.M. Error propagation for velocity and shear stress prediction using 2D models for environmental management. J. Hydrol. 2006, 328, 227–241. [CrossRef] 46. Talmon, A.M. Bed Topography of River Bends with Suspended Sediment Transport. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1992. 47. DHI Water & Environment. MIKE 21 Flow Model—User Guide: Hydrodynamic Module; DHI Water & Environment: Hørsholm, Denmark, 2017. 48. García, M.H. Sediment transport and morphodynamics. In Sedimentation Engineering; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 21–163. 49. Engelund, F.; Hansen, E. A monograph on sediment transport in alluvial streams; Technical University of Denmark: Copenhagen, Denmark, 1967. 50. Yang, C.T. Incipient motion and sediment transport. J. Hydraul. Div. 1973, 99, 1679–1704. 51. Van Rijn, L.C. Sediment transport, part II: Suspended load transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [CrossRef] 52. Hidroconsultas LTDA. Estudios básicos en el río Meta para la línea base de ingeniería tendiente a definir el sistema más adecuado para el mantenimiento de un canal navegable, obras de encauzamiento y demás obras fluviales entre la desembocadura del río Casanare y Puerto Texas; Hidroconsultas LTDA: Bogota, Colombia, 2003.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2calibrationriver modelingdesign of experimentsMIKE-21C modelMeta RiverRiver Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdfRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdfapplication/pdf3307539https://repositorio.cuc.edu.co/bitstreams/0bf8ae53-17da-4994-89e1-4082a225bb0a/downloada86a904db7ba8a2362905f10dc4f9469MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/aebb2050-d6c2-4997-9524-dd43d1e44d63/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/054bef44-7d0e-4754-9299-3b75fb303dd1/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdf.jpgRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdf.jpgimage/jpeg68924https://repositorio.cuc.edu.co/bitstreams/63070659-b997-40ee-9e5e-add4e867aa42/download2b1388ff022c597685472a6b06c6eb23MD55TEXTRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdf.txtRiver Model Calibration Based on Design of Experiments Theory. A Case Study Meta River, Colombia.pdf.txttext/plain67519https://repositorio.cuc.edu.co/bitstreams/b6a572f3-0525-43cb-9d34-0e85391d9188/downloadce3a1ff334eabf13bd65275daf319d3dMD5611323/4947oai:repositorio.cuc.edu.co:11323/49472024-09-17 11:06:06.607http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |