Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp
In this work, endocarp of the species Butia capitata was employed as precursor material to prepare a novel activated carbon with intrinsic properties to remove ketoprofen and paracetamol from water efficiently. The activated carbon presented a predominantly microporous structure, with an average por...
- Autores:
-
M. Kerkhoff, Carolina
da Boit Martinello, Katia
S.P. Franco, Dison
S. Netto, Matias
Georgin, Jordana
L. Foletto, Edson
G.A. Piccilli, Daniel
F.O. Silva, Luis
L. Dotto, Guilherme
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8600
- Acceso en línea:
- https://hdl.handle.net/11323/8600
https://doi.org/10.1016/j.molliq.2021.117184
https://repositorio.cuc.edu.co/
- Palabra clave:
- Butia capitata
Activated carbon
Ketoprofen
Paracetamol
Synthetic mixture
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_90a71b6674960aeea72f512c63dca61b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8600 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
title |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
spellingShingle |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp Butia capitata Activated carbon Ketoprofen Paracetamol Synthetic mixture |
title_short |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
title_full |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
title_fullStr |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
title_full_unstemmed |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
title_sort |
Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp |
dc.creator.fl_str_mv |
M. Kerkhoff, Carolina da Boit Martinello, Katia S.P. Franco, Dison S. Netto, Matias Georgin, Jordana L. Foletto, Edson G.A. Piccilli, Daniel F.O. Silva, Luis L. Dotto, Guilherme |
dc.contributor.author.spa.fl_str_mv |
M. Kerkhoff, Carolina da Boit Martinello, Katia S.P. Franco, Dison S. Netto, Matias Georgin, Jordana L. Foletto, Edson G.A. Piccilli, Daniel F.O. Silva, Luis L. Dotto, Guilherme |
dc.subject.spa.fl_str_mv |
Butia capitata Activated carbon Ketoprofen Paracetamol Synthetic mixture |
topic |
Butia capitata Activated carbon Ketoprofen Paracetamol Synthetic mixture |
description |
In this work, endocarp of the species Butia capitata was employed as precursor material to prepare a novel activated carbon with intrinsic properties to remove ketoprofen and paracetamol from water efficiently. The activated carbon presented a predominantly microporous structure, with an average pore diameter of 1.23 nm, a total pore volume of 0.449 cm3 g−1, and a high specific surface area, 820 m2 g−1. The adsorption kinetics showed a rapid initial decay for both pharmaceuticals, with the system entering equilibrium after 120 min for ketoprofen and 180 min for paracetamol. The pseudo-second-order model presented the best fit for ketoprofen and the Elovich model for paracetamol. The adsorption equilibrium data show that temperature can increase or decrease the adsorption capacity, being found a maximum adsorption capacity of 108.79 and 100.60 mg g−1 for the ketoprofen and paracetamol, respectively. The Freundlich and Langmuir models presented the best statistical adjustments for the adsorption of ketoprofen and paracetamol, respectively. The thermodynamic analysis confirmed an endothermic process for ketoprofen (ΔH0 = 11.98 kJ mol−1) and exothermic for paracetamol (ΔH0 = -13.37 kJ mol−1). The recycle tests revealed that the adsorbent has an average decrease for removal percentage of only 1.88 % for ketoprofen and 1.57 % for paracetamol. Estimations costs indicate that the price of 1 kg of activated carbon costs is 2.39 USD at minimum. Last, the material presented a highly efficient adsorptive activity to treat a synthetic mixture containing several pharmaceutical compounds and salts, reaching 84.82% removal. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-01T17:20:32Z |
dc.date.available.none.fl_str_mv |
2021-09-01T17:20:32Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8600 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.molliq.2021.117184 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8600 https://doi.org/10.1016/j.molliq.2021.117184 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
H. Zeng, M. Gao, T. Shen, F. Ding Organo silica nanosheets with gemini surfactants for rapid adsorption of ibuprofen from aqueous solutions J. Taiwan Inst. Chem. Eng., 93 (2018), pp. 329-335, 10.1016/j.jtice.2018.07.038 Y. Zhao, S. Lin, J.W. Choi, J.K. Bediako, M.H. Song, J.A. Kim, C.W. Cho, Y.S. Yun Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model Chem. Eng. J., 362 (2019), pp. 199-206, 10.1016/j.cej.2019.01.031 C. Peña-Guzmán, S. Ulloa-Sánchez, K. Mora, R. Helena-Bustos, E. Lopez-Barrera, J. Alvarez, M. Rodriguez-Pinzón Emerging pollutants in the urban water cycle in Latin America: A review of the current literature J. Environ. Manage., 237 (2019), pp. 408-423, 10.1016/j.jenvman.2019.02.100 S. Dahane, M.D. Gil García, M.J. Martínez Bueno, A. Uclés Moreno, M. Martínez Galera, A. Derdour Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry J. Chromatogr. A., 1297 (2013), pp. 17-28, 10.1016/j.chroma.2013.05.002 L. Patrolecco, N. Ademollo, P. Grenni, A. Tolomei, A. Barra Caracciolo, S. Capri Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection Microchem. J., 107 (2013), pp. 165-171, 10.1016/j.microc.2012.05.035 N. Lindqvist, T. Tuhkanen, L. Kronberg Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters Water Res., 39 (11) (2005), pp. 2219-2228, 10.1016/j.watres.2005.04.003 D. Montes-Grajales, M. Fennix-Agudelo, W. Miranda-Castro Occurrence of personal care products as emerging chemicals of concern in water resources: A review Sci. Total Environ., 595 (2017), pp. 601-614, 10.1016/j.scitotenv.2017.03.286 N.Y. Mlunguza, S. Ncube, P. Nokwethemba Mahlambi, L. Chimuka, L.M. Madikizela Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies J. Environ Chem. Eng., 7 (3) (2019), p. 103142, 10.1016/j.jece:2019.103142 L.M. Madikizela, N.T. Tavengwa, L. Chimuka Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods J. Environ. Manage., 193 (2017), pp. 211-220, 10.1016/j.jenvman.2017.02.022 D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells Colloids Surfaces A Physicochem. Eng. Asp., 583 (2019), p. 123966, 10.1016/j.colsurfa.2019.123966 J. Żur, D. Wojcieszyńska, K. Hupert-Kocurek, A. Marchlewicz, U. Guzik Paracetamol – toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway Chemosphere., 206 (2018), pp. 192-202, 10.1016/j.chemosphere.2018.04.179 E. Harnagea-Theophilus, S.L. Gadd, A.H. Knight-Trent, G.L. DeGeorge, M.R. Miller Acetaminophen-induced proliferation of breast cancer cells involves estrogen receptors Toxicol. Appl. Pharmacol., 155 (3) (1999), pp. 273-279, 10.1006/taap.1998.8619 N. Pi, J.Z. Ng, B.C. Kelly Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes Sci. Total Environ., 601–602 (2017), pp. 812-820, 10.1016/j.scitotenv.2017.05.137 H. Montaseri, P.B.C. Forbes Analytical techniques for the determination of acetaminophen: A review TrAC - Trends Anal. Chem., 108 (2018), pp. 122-134, 10.1016/j.trac.2018.08.023 J.C. Antunes, J.G.L. Frias, A.C. Micaelo, P. Sobral Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants Estuar. Coast. Shelf Sci., 130 (2013), pp. 62-69, 10.1016/j.ecss.2013.06.016 I.C. Afolabi, S.I. Popoola, O.S. Bello Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network Chemom. Intell. Lab. Syst., 203 (2020), p. 104053, 10.1016/j.chemolab.2020.104053 B. Nunes Ecotoxicological Effects of the Drug Paracetamol: A Critical Review of Past Ecotoxicity Assessments and Future Perspectives Handb. Environ. Chem., 96 (2020), pp. 131-145, 10.1007/698_2020_546 M.J. Ahmed Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review J. Environ. Manage., 190 (2017), pp. 274-282, 10.1016/j.jenvman.2016.12.073 Z.A. ALOthman, A.Y. Badjah, O.M. Alduhaish, K. Rathinam, S. Panglisch, I. Ali Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles J. Mol. Liq., 323 (2021), p. 115075, 10.1016/j.molliq.2020.115075 S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa, N.B. Mohamed, J.H. Low Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies Powder Technol., 338 (2018), pp. 878-886, 10.1016/j.powtec.2018.07.075 P. Chakraborty, S. Show, S. Banerjee, G. Halder Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation J. Environ. Chem. Eng., 6 (4) (2018), pp. 5287-5300, 10.1016/j.jece:2018.08.017 G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (4) (2020), p. 103988, 10.1016/j.jece:2020.103988 N. Sivarajasekar, N. Mohanraj, S. Sivamani, J. Prakash Maran, I. Ganesh Moorthy, K. Balasubramani Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation Mater. Today Proc., 5 (2) (2018), pp. 7264-7274, 10.1016/j.matpr.2017.11.394 R. Ocampo-Perez, E. Padilla-Ortega, N.A. Medellin-Castillo, P. Coronado-Oyarvide, C.G. Aguilar-Madera, S.J. Segovia-Sandoval, R. Flores-Ramírez, A. Parra-Marfil Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling Sci. Total Environ., 655 (2019), pp. 1397-1408, 10.1016/j.scitotenv.2018.11.283 L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102 J.P. Faria, F. Almeida, L.C.R. da Silva, R.F. Vieira, T. da S. Agostini-Costa Characterization of the coquinho-azedo pulp (Butia capitata var capitata) Brazilian J. Fruit Grow., 30 (2008), pp. 827-829, 10.1590/s0100-29452008000300045 Fabrício de Araújo Pedron, Josiane Pacheco Menezes, Nilson Lemos de Menezes Parâmetros biométricos de fruto, endocarpo e semente de butiazeiro Ciência Rural., 34 (2) (2004), pp. 585-586, 10.1590/S0103-84782004000200040 R.C. de Moura, P.S.N. Lopes, D. da S. Brandão Junior, J.G. Gomes, M.B. Pereira Biometrics of fruits and seeds of Butia capitata (Mart.) Beccari (Arecaceae), in natural vegetation in the North of Minas Gerais, Brazil Biota Neotrop., 10 (2010), pp. 415-419, 10.1590/s1676-06032010000200040 E. Schwartz, J.C. Fachinello, R.L. Barbieri, J.B. da Silva Performance of Butia capitata population in Santa Vitória do Palmar Brazilian J. Fruit Grow., 32 (2010), pp. 736-745, 10.1590/S0100-29452010005000089 A. Rivas, M. Barilani Diversity, Productive and Reproductive potential of the forest palms of Butia capitata (MART.) B.E.C.C. of Uruguay, Agroscience VII, I (2004), pp. 11-20 R. Kabir Ahmad, S. Anwar Sulaiman, S. Yusup, S. Sham Dol, M. Inayat, H. Aminu Umar Exploring the potential of coconut shell biomass for charcoal production, Ain Shams Eng J. (2021), 10.1016/j.asej.2021.05.013 Mariene R. Cunha, Eder C. Lima, Diana R. Lima, Raphaelle S. da Silva, Pascal S. Thue, Moaaz K. Seliem, Farooq Sher, Glaydson S. dos Reis, Sylvia H. Larsson Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis J. Environ. Chem. Eng., 8 (6) (2020), p. 104506, 10.1016/j.jece:2020.104506 Yamil L. de O. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Luis F.S. Oliveira, Guilherme L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (1) (2021), p. 104911, 10.1016/j.jece:2020.104911 S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. http://books2ebooks.eu/odm/html/nls/en/agb.html. Y.S Ho, G McKay Pseudo-second order model for sorption processes Process Biochem., 34 (5) (1999), pp. 451-465, 10.1016/S0032-9592(98)00112-5 Yu Liu, Liang Shen A general rate law equation for biosorption Biochem., 38 (3) (2008), pp. 390-394, 10.1016/j.bej.2007.08.003 S.Yu. Elovich, O.G. Larionov Theory of adsorption from nonelectrolyte solutions on solid adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 11 (2) (1962), pp. 198-203, 10.1007/BF00908017 Jordana Georgin, Dison S.P. Franco, Matias Schadeck Netto, Daniel Allasia, Marcos L.S. Oliveira, Guilherme L. Dotto Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches Environ. Sci. Pollut. Res., 27 (20) (2020), pp. 25727-25739, 10.1007/s11356-020-08854-6 Irving Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (9) (1918), pp. 1361-1403, 10.1021/ja02242a004 Herbert Freundlich Über die Adsorption in Lösungen Chemie, 57U (1) (1907), pp. 385-470, 10.1515/zpch-1907-5723 Eder C. Lima, Ahmad Hosseini-Bandegharaei, Juan Carlos Moreno-Piraján, Ioannis Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048 M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117 F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions J. Clean. Prod., 197 (2018), pp. 919-929, 10.1016/j.jclepro.2018.06.146 Anderson B. Leite, Caroline Saucier, Eder C. Lima, Glaydson S. dos Reis, Cibele S. Umpierres, Beatris L. Mello, Mohammad Shirmardi, Silvio L.P Dias, Carlos H. Sampaio Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds Environ. Sci. Pollut. Res., 25 (8) (2018), pp. 7647-7661, 10.1007/s11356-017-1105-9 M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surfaces A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059 Caroline Saucier, P. Karthickeyan, V. Ranjithkumar, Eder C. Lima, Glaydson S. dos Reis, Irineu A.S. de Brum Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon Environ. Sci. Pollut. Res., 24 (6) (2017), pp. 5918-5932, 10.1007/s11356-016-8304-7 A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation Surfaces and Interfaces., 16 (2019), pp. 76-84, 10.1016/j.surfin.2019.04.012 M.M. Hamed, M.M.S. Ali, M. Holiel Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005 A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila Adsorption Processes for Water Treatment and Purification, Springer International Publishing Cham (2017), 10.1007/978-3-319-58136-1 Manuel Fernando R Pereira, Samanta F Soares, José J.M Órfão, José L Figueiredo Adsorption of dyes on activated carbons: Influence of surface chemical groups Carbon N. Y., 41 (4) (2003), pp. 811-821, 10.1016/S0008-6223(02)00406-2 G.A. Adebisi, Z.Z. Chowdhury, P.A. Alaba Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent J. Clean. Prod., 148 (2017), pp. 958-968, 10.1016/j.jclepro.2017.02.047 L. Niazi, A. Lashanizadegan, H. Sharififard Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026 Rupa Sharma, Ankur Sarswat, Charles U. Pittman, Dinesh Mohan Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods RSC Adv., 7 (14) (2017), pp. 8606-8624, 10.1039/C6RA25295H S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan An overview of the organic and inorganic phase composition of biomass Fuel., 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030 Patrick Dutournié, Marion Bruneau, Jocelyne Brendlé, Lionel Limousy, Sylvain Pluchon Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest Comptes Rendus Chim., 22 (2-3) (2019), pp. 250-257, 10.1016/j.crci.2018.10.008 M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054 Angélica F.M. Streit, Gabriela C. Collazzo, Susanne P. Druzian, Rodrigo S. Verdi, Edson L. Foletto, Luis F.S. Oliveira, Guilherme L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere., 262 (2021), p. 128322, 10.1016/j.chemosphere.2020.128322 María E. Peñafiel, José M. Matesanz, Eulalia Vanegas, Daniel Bermejo, Rosa Mosteo, María P. Ormad Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon Sci. Total Environ., 750 (2021), p. 141498, 10.1016/j.scitotenv.2020.141498 Eduardo M. Cuerda-Correa, Joaquín R. Domínguez-Vargas, Francisco J. Olivares-Marín, Jesús Beltrán de Heredia On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water J. Hazard. Mater., 177 (1-3) (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026 Andressa Cristiana Fröhlich, Glaydson Simoes dos Reis, Flávio André Pavan, Éder Cláudio Lima, Edson Luiz Foletto, Guilherme Luiz Dotto Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption Environ. Sci. Pollut. Res., 25 (25) (2018), pp. 24713-24725, 10.1007/s11356-018-2525-x Z. Anfar, M. Zbair, H. Ait Ahsiane, A. Jada, N. El Alem Microwave assisted green synthesis of Fe2O3/biochar for ultrasonic removal of non-steroidal anti-inflammatory pharmaceuticals RSC Adv., 10 (2020), pp. 11371-11380, 10.1039/d0ra00617c L.A. Al-Khateeb, S. Almotiry, M.A. Salam Adsorption of pharmaceutical pollutants onto graphene nanoplatelets Chem. Eng. J., 248 (2014), pp. 191-199, 10.1016/j.cej.2014.03.023 Ali Mashayekh-Salehi, Gholamreza Moussavi Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl Desalin. Water Treat., 57 (27) (2016), pp. 12861-12873, 10.1080/19443994.2015.1051588 Javaid Akhtar, Nor Aishah Saidina Amin, Khurram Shahzad A review on removal of pharmaceuticals from water by adsorption Desalin. Water Treat., 57 (27) (2016), pp. 12842-12860, 10.1080/19443994.2015.1051121 A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037 Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Juan Luis Santos, Irene Aparicio, Esteban Alonso Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media Appl. Clay Sci., 171 (2019), pp. 29-37, 10.1016/j.clay.2019.02.002 José Luis Malvar, Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Juan Luis Santos, Irene Aparicio, Esteban Alonso Simultaneous and individual adsorption of ibuprofen metabolites by a modified montmorillonite Appl. Clay Sci., 189 (2020), p. 105529, 10.1016/j.clay.2020.105529 H. Guedidi, L. Reinert, Y. Soneda, N. Bellakhal, L. Duclaux Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths Arab. J. Chem., 10 (2017), pp. S3584-S3594, 10.1016/j.arabjc.2014.03.007 Fatma Tomul, Yasin Arslan, Burcu Kabak, Diğdem Trak, Erdal Kendüzler, Eder C. Lima, Hai Nguyen Tran Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water Sci. Total Environ., 726 (2020), p. 137828, 10.1016/j.scitotenv.2020.137828 Feng-Chin Wu, Ru-Ling Tseng, Ruey-Shin Juang Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems Chem. Eng. J., 150 (2-3) (2009), pp. 366-373, 10.1016/j.cej.2009.01.014 K Klusácek, R.R. Hudgins, P.L. Silveston Multiple steady states of an isothermal catalytic reaction with Elovich adsorption Chem. Eng. Sci., 44 (10) (1989), pp. 2377-2381, 10.1016/0009-2509(89)85171-1 L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari, A.H. Mahvi Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent J. Mol. Liq., 224 (2016), pp. 832-841, 10.1016/j.molliq.2016.10.059 Xinxiang Geng, Siying Lv, Jing Yang, Shihai Cui, Zehua Zhao Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics J. Environ. Manage., 280 (2021), p. 111749, 10.1016/j.jenvman.2020.111749 Feihu Zhang, Sheng Zhang, Lei Chen, Zilei Liu, Junjie Qin Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater Ind. Crops Prod., 160 (2021), p. 113157, 10.1016/j.indcrop.2020.113157 T. Van Tran, D.T.C. Nguyen, H.T.N. Le, D.V.N. Vo, S. Nanda, T.D. Nguyen Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug J. Environ. Sci. (China), 93 (2020), pp. 137-150, 10.1016/j.jes.2020.02.007 G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima Adsorption of Methylene Blue by ultrasonic surface modified chitin J. Colloid Interface Sci., 446 (2015), pp. 133-140, 10.1016/j.jcis.2015.01.046 Heshmatollah Nourmoradi, Kobra Farokhi Moghadam, Ali Jafari, Bahram Kamarehie Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent J. Environ. Chem. Eng., 6 (6) (2018), pp. 6807-6815, 10.1016/j.jece:2018.10.047 A. Thakur, N. Sharma, A. Mann Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption Mater. Today Proc., 28 (2020), pp. 1514-1519, 10.1016/j.matpr.2020.04.833 Agustín Spaltro, Matías N. Pila, Diego D. Colasurdo, Emilia Noseda Grau, Gabriel Román, Sandra Simonetti, Danila L. Ruiz Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study J. Contam. Hydrol., 236 (2021), p. 103739, 10.1016/j.jconhyd.2020.103739 M. Conde-Cid, D. Fernández-Calviño, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, M. Arias-Estévez, E. Álvarez-Rodríguez Estimation of adsorption/desorption Freundlich’s affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions Ecotoxicol. Environ. Saf., 196 (2020), p. 110584, 10.1016/j.ecoenv.2020.110584 I.A. Lawal, M.M. Lawal, S.O. Akpotu, M.A. Azeez, P. Ndungu, B. Moodley Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified C.N.T.s Ecotoxicol. Environ. Saf., 161 (2018), pp. 542-552, 10.1016/j.ecoenv.2018.06.019 Temesgen Girma Kebede, Simiso Dube, Mathew Muzi Nindi Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems J. Environ. Chem. Eng., 7 (5) (2019), p. 103330, 10.1016/j.jece:2019.103330 M. Turk Sekulic, N. Boskovic, A. Slavkovic, J. Garunovic, S. Kolakovic, S. Pap Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms Process Saf. Environ. Prot., 125 (2019), pp. 50-63, 10.1016/j.psep.2019.03.007 R.C. Ferreira, H.H.C. De Lima, A.A. Cândido, O.C. Junior, P.A. Arroyo, K.Q. De Carvalho, G.F. Gauze, M.A.S.D. Barros Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp World Acad. Sci. Eng. Technol., 9 (2015) Panchanan Pramanik, Himanshu Patel, Samir Charola, Subhadip Neogi, Subarna Maiti High surface area porous carbon from cotton stalk agro-residue for CO2adsorption and study of techno-economic viability of commercial production J. CO2 Util., 45 (2021), p. 101450, 10.1016/j.jcou.2021.101450 Jéssica Manfrin, Affonso Celso Gonçalves Jr., Daniel Schwantes, Elio Conradi Jr., Juliano Zimmermann, Guilherme Lindner Ziemer Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+adsorption J. Environ. Chem. Eng., 9 (2) (2021), p. 104980, 10.1016/j.jece:2020.104980 Ying Zhang, Xiaolan Song, Pu Zhang, Hongpeng Gao, Cuiyun Ou, Xiaodong Kong Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content Chemosphere., 245 (2020), p. 125587, 10.1016/j.chemosphere.2019.125587 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Journal of Molecular Liquids |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0167732221019085?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/89d2331d-56b6-45e5-919e-e22ab0cc9b4d/download https://repositorio.cuc.edu.co/bitstreams/788855a3-1d93-4ac3-ad97-87d3077ead67/download https://repositorio.cuc.edu.co/bitstreams/35093866-d9a0-4eba-8f11-8058f718bf0d/download https://repositorio.cuc.edu.co/bitstreams/986addc2-a783-4b35-b9f8-6d1cf36f1628/download https://repositorio.cuc.edu.co/bitstreams/caab0390-47b2-4337-900f-d059d61b2cd0/download https://repositorio.cuc.edu.co/bitstreams/0c207101-c5b6-44a2-a45c-72374f76310b/download |
bitstream.checksum.fl_str_mv |
51dd9de4edeafcd08774021c07076550 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 6ae0e211f086b21343b7ca12a8828a9d 6ae0e211f086b21343b7ca12a8828a9d 627557e18a790cee89bd5a297e0c52c6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760761133858816 |
spelling |
M. Kerkhoff, Carolinada Boit Martinello, KatiaS.P. Franco, DisonS. Netto, MatiasGeorgin, JordanaL. Foletto, EdsonG.A. Piccilli, DanielF.O. Silva, LuisL. Dotto, Guilherme2021-09-01T17:20:32Z2021-09-01T17:20:32Z2021https://hdl.handle.net/11323/8600https://doi.org/10.1016/j.molliq.2021.117184Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, endocarp of the species Butia capitata was employed as precursor material to prepare a novel activated carbon with intrinsic properties to remove ketoprofen and paracetamol from water efficiently. The activated carbon presented a predominantly microporous structure, with an average pore diameter of 1.23 nm, a total pore volume of 0.449 cm3 g−1, and a high specific surface area, 820 m2 g−1. The adsorption kinetics showed a rapid initial decay for both pharmaceuticals, with the system entering equilibrium after 120 min for ketoprofen and 180 min for paracetamol. The pseudo-second-order model presented the best fit for ketoprofen and the Elovich model for paracetamol. The adsorption equilibrium data show that temperature can increase or decrease the adsorption capacity, being found a maximum adsorption capacity of 108.79 and 100.60 mg g−1 for the ketoprofen and paracetamol, respectively. The Freundlich and Langmuir models presented the best statistical adjustments for the adsorption of ketoprofen and paracetamol, respectively. The thermodynamic analysis confirmed an endothermic process for ketoprofen (ΔH0 = 11.98 kJ mol−1) and exothermic for paracetamol (ΔH0 = -13.37 kJ mol−1). The recycle tests revealed that the adsorbent has an average decrease for removal percentage of only 1.88 % for ketoprofen and 1.57 % for paracetamol. Estimations costs indicate that the price of 1 kg of activated carbon costs is 2.39 USD at minimum. Last, the material presented a highly efficient adsorptive activity to treat a synthetic mixture containing several pharmaceutical compounds and salts, reaching 84.82% removal.M. Kerkhoff, Carolinada Boit Martinello, KatiaS.P. Franco, DisonS. Netto, MatiasGeorgin, JordanaL. Foletto, EdsonG.A. Piccilli, DanielF.O. Silva, LuisL. Dotto, Guilhermeapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Molecular Liquidshttps://www.sciencedirect.com/science/article/abs/pii/S0167732221019085?via%3DihubButia capitataActivated carbonKetoprofenParacetamolSynthetic mixtureAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarpArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionH. Zeng, M. Gao, T. Shen, F. Ding Organo silica nanosheets with gemini surfactants for rapid adsorption of ibuprofen from aqueous solutions J. Taiwan Inst. Chem. Eng., 93 (2018), pp. 329-335, 10.1016/j.jtice.2018.07.038Y. Zhao, S. Lin, J.W. Choi, J.K. Bediako, M.H. Song, J.A. Kim, C.W. Cho, Y.S. Yun Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model Chem. Eng. J., 362 (2019), pp. 199-206, 10.1016/j.cej.2019.01.031C. Peña-Guzmán, S. Ulloa-Sánchez, K. Mora, R. Helena-Bustos, E. Lopez-Barrera, J. Alvarez, M. Rodriguez-Pinzón Emerging pollutants in the urban water cycle in Latin America: A review of the current literature J. Environ. Manage., 237 (2019), pp. 408-423, 10.1016/j.jenvman.2019.02.100S. Dahane, M.D. Gil García, M.J. Martínez Bueno, A. Uclés Moreno, M. Martínez Galera, A. Derdour Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry J. Chromatogr. A., 1297 (2013), pp. 17-28, 10.1016/j.chroma.2013.05.002L. Patrolecco, N. Ademollo, P. Grenni, A. Tolomei, A. Barra Caracciolo, S. Capri Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection Microchem. J., 107 (2013), pp. 165-171, 10.1016/j.microc.2012.05.035N. Lindqvist, T. Tuhkanen, L. Kronberg Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters Water Res., 39 (11) (2005), pp. 2219-2228, 10.1016/j.watres.2005.04.003D. Montes-Grajales, M. Fennix-Agudelo, W. Miranda-Castro Occurrence of personal care products as emerging chemicals of concern in water resources: A review Sci. Total Environ., 595 (2017), pp. 601-614, 10.1016/j.scitotenv.2017.03.286N.Y. Mlunguza, S. Ncube, P. Nokwethemba Mahlambi, L. Chimuka, L.M. Madikizela Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies J. Environ Chem. Eng., 7 (3) (2019), p. 103142, 10.1016/j.jece:2019.103142L.M. Madikizela, N.T. Tavengwa, L. Chimuka Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods J. Environ. Manage., 193 (2017), pp. 211-220, 10.1016/j.jenvman.2017.02.022D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells Colloids Surfaces A Physicochem. Eng. Asp., 583 (2019), p. 123966, 10.1016/j.colsurfa.2019.123966J. Żur, D. Wojcieszyńska, K. Hupert-Kocurek, A. Marchlewicz, U. Guzik Paracetamol – toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway Chemosphere., 206 (2018), pp. 192-202, 10.1016/j.chemosphere.2018.04.179E. Harnagea-Theophilus, S.L. Gadd, A.H. Knight-Trent, G.L. DeGeorge, M.R. Miller Acetaminophen-induced proliferation of breast cancer cells involves estrogen receptors Toxicol. Appl. Pharmacol., 155 (3) (1999), pp. 273-279, 10.1006/taap.1998.8619N. Pi, J.Z. Ng, B.C. Kelly Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes Sci. Total Environ., 601–602 (2017), pp. 812-820, 10.1016/j.scitotenv.2017.05.137H. Montaseri, P.B.C. Forbes Analytical techniques for the determination of acetaminophen: A review TrAC - Trends Anal. Chem., 108 (2018), pp. 122-134, 10.1016/j.trac.2018.08.023J.C. Antunes, J.G.L. Frias, A.C. Micaelo, P. Sobral Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants Estuar. Coast. Shelf Sci., 130 (2013), pp. 62-69, 10.1016/j.ecss.2013.06.016I.C. Afolabi, S.I. Popoola, O.S. Bello Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network Chemom. Intell. Lab. Syst., 203 (2020), p. 104053, 10.1016/j.chemolab.2020.104053B. Nunes Ecotoxicological Effects of the Drug Paracetamol: A Critical Review of Past Ecotoxicity Assessments and Future Perspectives Handb. Environ. Chem., 96 (2020), pp. 131-145, 10.1007/698_2020_546M.J. Ahmed Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review J. Environ. Manage., 190 (2017), pp. 274-282, 10.1016/j.jenvman.2016.12.073Z.A. ALOthman, A.Y. Badjah, O.M. Alduhaish, K. Rathinam, S. Panglisch, I. Ali Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles J. Mol. Liq., 323 (2021), p. 115075, 10.1016/j.molliq.2020.115075S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa, N.B. Mohamed, J.H. Low Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies Powder Technol., 338 (2018), pp. 878-886, 10.1016/j.powtec.2018.07.075P. Chakraborty, S. Show, S. Banerjee, G. Halder Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation J. Environ. Chem. Eng., 6 (4) (2018), pp. 5287-5300, 10.1016/j.jece:2018.08.017G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (4) (2020), p. 103988, 10.1016/j.jece:2020.103988N. Sivarajasekar, N. Mohanraj, S. Sivamani, J. Prakash Maran, I. Ganesh Moorthy, K. Balasubramani Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation Mater. Today Proc., 5 (2) (2018), pp. 7264-7274, 10.1016/j.matpr.2017.11.394R. Ocampo-Perez, E. Padilla-Ortega, N.A. Medellin-Castillo, P. Coronado-Oyarvide, C.G. Aguilar-Madera, S.J. Segovia-Sandoval, R. Flores-Ramírez, A. Parra-Marfil Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling Sci. Total Environ., 655 (2019), pp. 1397-1408, 10.1016/j.scitotenv.2018.11.283L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102J.P. Faria, F. Almeida, L.C.R. da Silva, R.F. Vieira, T. da S. Agostini-Costa Characterization of the coquinho-azedo pulp (Butia capitata var capitata) Brazilian J. Fruit Grow., 30 (2008), pp. 827-829, 10.1590/s0100-29452008000300045Fabrício de Araújo Pedron, Josiane Pacheco Menezes, Nilson Lemos de Menezes Parâmetros biométricos de fruto, endocarpo e semente de butiazeiro Ciência Rural., 34 (2) (2004), pp. 585-586, 10.1590/S0103-84782004000200040R.C. de Moura, P.S.N. Lopes, D. da S. Brandão Junior, J.G. Gomes, M.B. Pereira Biometrics of fruits and seeds of Butia capitata (Mart.) Beccari (Arecaceae), in natural vegetation in the North of Minas Gerais, Brazil Biota Neotrop., 10 (2010), pp. 415-419, 10.1590/s1676-06032010000200040E. Schwartz, J.C. Fachinello, R.L. Barbieri, J.B. da Silva Performance of Butia capitata population in Santa Vitória do Palmar Brazilian J. Fruit Grow., 32 (2010), pp. 736-745, 10.1590/S0100-29452010005000089A. Rivas, M. Barilani Diversity, Productive and Reproductive potential of the forest palms of Butia capitata (MART.) B.E.C.C. of Uruguay, Agroscience VII, I (2004), pp. 11-20R. Kabir Ahmad, S. Anwar Sulaiman, S. Yusup, S. Sham Dol, M. Inayat, H. Aminu Umar Exploring the potential of coconut shell biomass for charcoal production, Ain Shams Eng J. (2021), 10.1016/j.asej.2021.05.013Mariene R. Cunha, Eder C. Lima, Diana R. Lima, Raphaelle S. da Silva, Pascal S. Thue, Moaaz K. Seliem, Farooq Sher, Glaydson S. dos Reis, Sylvia H. Larsson Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis J. Environ. Chem. Eng., 8 (6) (2020), p. 104506, 10.1016/j.jece:2020.104506Yamil L. de O. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Luis F.S. Oliveira, Guilherme L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (1) (2021), p. 104911, 10.1016/j.jece:2020.104911S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. http://books2ebooks.eu/odm/html/nls/en/agb.html.Y.S Ho, G McKay Pseudo-second order model for sorption processes Process Biochem., 34 (5) (1999), pp. 451-465, 10.1016/S0032-9592(98)00112-5Yu Liu, Liang Shen A general rate law equation for biosorption Biochem., 38 (3) (2008), pp. 390-394, 10.1016/j.bej.2007.08.003S.Yu. Elovich, O.G. Larionov Theory of adsorption from nonelectrolyte solutions on solid adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 11 (2) (1962), pp. 198-203, 10.1007/BF00908017Jordana Georgin, Dison S.P. Franco, Matias Schadeck Netto, Daniel Allasia, Marcos L.S. Oliveira, Guilherme L. Dotto Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches Environ. Sci. Pollut. Res., 27 (20) (2020), pp. 25727-25739, 10.1007/s11356-020-08854-6Irving Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (9) (1918), pp. 1361-1403, 10.1021/ja02242a004Herbert Freundlich Über die Adsorption in Lösungen Chemie, 57U (1) (1907), pp. 385-470, 10.1515/zpch-1907-5723Eder C. Lima, Ahmad Hosseini-Bandegharaei, Juan Carlos Moreno-Piraján, Ioannis Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions J. Clean. Prod., 197 (2018), pp. 919-929, 10.1016/j.jclepro.2018.06.146Anderson B. Leite, Caroline Saucier, Eder C. Lima, Glaydson S. dos Reis, Cibele S. Umpierres, Beatris L. Mello, Mohammad Shirmardi, Silvio L.P Dias, Carlos H. Sampaio Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds Environ. Sci. Pollut. Res., 25 (8) (2018), pp. 7647-7661, 10.1007/s11356-017-1105-9M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surfaces A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059Caroline Saucier, P. Karthickeyan, V. Ranjithkumar, Eder C. Lima, Glaydson S. dos Reis, Irineu A.S. de Brum Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon Environ. Sci. Pollut. Res., 24 (6) (2017), pp. 5918-5932, 10.1007/s11356-016-8304-7A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation Surfaces and Interfaces., 16 (2019), pp. 76-84, 10.1016/j.surfin.2019.04.012M.M. Hamed, M.M.S. Ali, M. Holiel Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila Adsorption Processes for Water Treatment and Purification, Springer International Publishing Cham (2017), 10.1007/978-3-319-58136-1Manuel Fernando R Pereira, Samanta F Soares, José J.M Órfão, José L Figueiredo Adsorption of dyes on activated carbons: Influence of surface chemical groups Carbon N. Y., 41 (4) (2003), pp. 811-821, 10.1016/S0008-6223(02)00406-2G.A. Adebisi, Z.Z. Chowdhury, P.A. Alaba Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent J. Clean. Prod., 148 (2017), pp. 958-968, 10.1016/j.jclepro.2017.02.047L. Niazi, A. Lashanizadegan, H. Sharififard Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026Rupa Sharma, Ankur Sarswat, Charles U. Pittman, Dinesh Mohan Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods RSC Adv., 7 (14) (2017), pp. 8606-8624, 10.1039/C6RA25295HS.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan An overview of the organic and inorganic phase composition of biomass Fuel., 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030Patrick Dutournié, Marion Bruneau, Jocelyne Brendlé, Lionel Limousy, Sylvain Pluchon Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest Comptes Rendus Chim., 22 (2-3) (2019), pp. 250-257, 10.1016/j.crci.2018.10.008M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054Angélica F.M. Streit, Gabriela C. Collazzo, Susanne P. Druzian, Rodrigo S. Verdi, Edson L. Foletto, Luis F.S. Oliveira, Guilherme L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere., 262 (2021), p. 128322, 10.1016/j.chemosphere.2020.128322María E. Peñafiel, José M. Matesanz, Eulalia Vanegas, Daniel Bermejo, Rosa Mosteo, María P. Ormad Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon Sci. Total Environ., 750 (2021), p. 141498, 10.1016/j.scitotenv.2020.141498Eduardo M. Cuerda-Correa, Joaquín R. Domínguez-Vargas, Francisco J. Olivares-Marín, Jesús Beltrán de Heredia On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water J. Hazard. Mater., 177 (1-3) (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026Andressa Cristiana Fröhlich, Glaydson Simoes dos Reis, Flávio André Pavan, Éder Cláudio Lima, Edson Luiz Foletto, Guilherme Luiz Dotto Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption Environ. Sci. Pollut. Res., 25 (25) (2018), pp. 24713-24725, 10.1007/s11356-018-2525-xZ. Anfar, M. Zbair, H. Ait Ahsiane, A. Jada, N. El Alem Microwave assisted green synthesis of Fe2O3/biochar for ultrasonic removal of non-steroidal anti-inflammatory pharmaceuticals RSC Adv., 10 (2020), pp. 11371-11380, 10.1039/d0ra00617cL.A. Al-Khateeb, S. Almotiry, M.A. Salam Adsorption of pharmaceutical pollutants onto graphene nanoplatelets Chem. Eng. J., 248 (2014), pp. 191-199, 10.1016/j.cej.2014.03.023Ali Mashayekh-Salehi, Gholamreza Moussavi Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl Desalin. Water Treat., 57 (27) (2016), pp. 12861-12873, 10.1080/19443994.2015.1051588Javaid Akhtar, Nor Aishah Saidina Amin, Khurram Shahzad A review on removal of pharmaceuticals from water by adsorption Desalin. Water Treat., 57 (27) (2016), pp. 12842-12860, 10.1080/19443994.2015.1051121A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Juan Luis Santos, Irene Aparicio, Esteban Alonso Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media Appl. Clay Sci., 171 (2019), pp. 29-37, 10.1016/j.clay.2019.02.002José Luis Malvar, Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Juan Luis Santos, Irene Aparicio, Esteban Alonso Simultaneous and individual adsorption of ibuprofen metabolites by a modified montmorillonite Appl. Clay Sci., 189 (2020), p. 105529, 10.1016/j.clay.2020.105529H. Guedidi, L. Reinert, Y. Soneda, N. Bellakhal, L. Duclaux Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths Arab. J. Chem., 10 (2017), pp. S3584-S3594, 10.1016/j.arabjc.2014.03.007Fatma Tomul, Yasin Arslan, Burcu Kabak, Diğdem Trak, Erdal Kendüzler, Eder C. Lima, Hai Nguyen Tran Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water Sci. Total Environ., 726 (2020), p. 137828, 10.1016/j.scitotenv.2020.137828Feng-Chin Wu, Ru-Ling Tseng, Ruey-Shin Juang Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems Chem. Eng. J., 150 (2-3) (2009), pp. 366-373, 10.1016/j.cej.2009.01.014K Klusácek, R.R. Hudgins, P.L. Silveston Multiple steady states of an isothermal catalytic reaction with Elovich adsorption Chem. Eng. Sci., 44 (10) (1989), pp. 2377-2381, 10.1016/0009-2509(89)85171-1L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari, A.H. Mahvi Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent J. Mol. Liq., 224 (2016), pp. 832-841, 10.1016/j.molliq.2016.10.059Xinxiang Geng, Siying Lv, Jing Yang, Shihai Cui, Zehua Zhao Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics J. Environ. Manage., 280 (2021), p. 111749, 10.1016/j.jenvman.2020.111749Feihu Zhang, Sheng Zhang, Lei Chen, Zilei Liu, Junjie Qin Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater Ind. Crops Prod., 160 (2021), p. 113157, 10.1016/j.indcrop.2020.113157T. Van Tran, D.T.C. Nguyen, H.T.N. Le, D.V.N. Vo, S. Nanda, T.D. Nguyen Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug J. Environ. Sci. (China), 93 (2020), pp. 137-150, 10.1016/j.jes.2020.02.007G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima Adsorption of Methylene Blue by ultrasonic surface modified chitin J. Colloid Interface Sci., 446 (2015), pp. 133-140, 10.1016/j.jcis.2015.01.046Heshmatollah Nourmoradi, Kobra Farokhi Moghadam, Ali Jafari, Bahram Kamarehie Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent J. Environ. Chem. Eng., 6 (6) (2018), pp. 6807-6815, 10.1016/j.jece:2018.10.047A. Thakur, N. Sharma, A. Mann Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption Mater. Today Proc., 28 (2020), pp. 1514-1519, 10.1016/j.matpr.2020.04.833Agustín Spaltro, Matías N. Pila, Diego D. Colasurdo, Emilia Noseda Grau, Gabriel Román, Sandra Simonetti, Danila L. Ruiz Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study J. Contam. Hydrol., 236 (2021), p. 103739, 10.1016/j.jconhyd.2020.103739M. Conde-Cid, D. Fernández-Calviño, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, M. Arias-Estévez, E. Álvarez-Rodríguez Estimation of adsorption/desorption Freundlich’s affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions Ecotoxicol. Environ. Saf., 196 (2020), p. 110584, 10.1016/j.ecoenv.2020.110584I.A. Lawal, M.M. Lawal, S.O. Akpotu, M.A. Azeez, P. Ndungu, B. Moodley Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified C.N.T.s Ecotoxicol. Environ. Saf., 161 (2018), pp. 542-552, 10.1016/j.ecoenv.2018.06.019Temesgen Girma Kebede, Simiso Dube, Mathew Muzi Nindi Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems J. Environ. Chem. Eng., 7 (5) (2019), p. 103330, 10.1016/j.jece:2019.103330M. Turk Sekulic, N. Boskovic, A. Slavkovic, J. Garunovic, S. Kolakovic, S. Pap Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms Process Saf. Environ. Prot., 125 (2019), pp. 50-63, 10.1016/j.psep.2019.03.007R.C. Ferreira, H.H.C. De Lima, A.A. Cândido, O.C. Junior, P.A. Arroyo, K.Q. De Carvalho, G.F. Gauze, M.A.S.D. Barros Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp World Acad. Sci. Eng. Technol., 9 (2015)Panchanan Pramanik, Himanshu Patel, Samir Charola, Subhadip Neogi, Subarna Maiti High surface area porous carbon from cotton stalk agro-residue for CO2adsorption and study of techno-economic viability of commercial production J. CO2 Util., 45 (2021), p. 101450, 10.1016/j.jcou.2021.101450Jéssica Manfrin, Affonso Celso Gonçalves Jr., Daniel Schwantes, Elio Conradi Jr., Juliano Zimmermann, Guilherme Lindner Ziemer Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+adsorption J. Environ. Chem. Eng., 9 (2) (2021), p. 104980, 10.1016/j.jece:2020.104980Ying Zhang, Xiaolan Song, Pu Zhang, Hongpeng Gao, Cuiyun Ou, Xiaodong Kong Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content Chemosphere., 245 (2020), p. 125587, 10.1016/j.chemosphere.2019.125587PublicationORIGINALAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdfAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdfapplication/pdf131493https://repositorio.cuc.edu.co/bitstreams/89d2331d-56b6-45e5-919e-e22ab0cc9b4d/download51dd9de4edeafcd08774021c07076550MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/788855a3-1d93-4ac3-ad97-87d3077ead67/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/35093866-d9a0-4eba-8f11-8058f718bf0d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.jpgAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.jpgimage/jpeg49525https://repositorio.cuc.edu.co/bitstreams/986addc2-a783-4b35-b9f8-6d1cf36f1628/download6ae0e211f086b21343b7ca12a8828a9dMD54THUMBNAILAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.jpgAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.jpgimage/jpeg49525https://repositorio.cuc.edu.co/bitstreams/caab0390-47b2-4337-900f-d059d61b2cd0/download6ae0e211f086b21343b7ca12a8828a9dMD54TEXTAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.txtAdsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from.pdf.txttext/plain2099https://repositorio.cuc.edu.co/bitstreams/0c207101-c5b6-44a2-a45c-72374f76310b/download627557e18a790cee89bd5a297e0c52c6MD5511323/8600oai:repositorio.cuc.edu.co:11323/86002024-09-17 11:01:53.544http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |