Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions

The organic Rankine cycle (ORC) is an efficient technology for electricity generation from low- and medium-temperature heat sources. In this type of power cycle, the radial inflow turbine is the option usually selected for electricity generation. As a critical ORC component, turbine performance mark...

Full description

Autores:
Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
Venturini, Osvaldo José
Silva Lora, Electo Eduardo
Alviz Meza, Anibal
Mendoza Castellanos, Luis Sebastián
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10602
Acceso en línea:
https://hdl.handle.net/11323/10602
https://repositorio.cuc.edu.co/
Palabra clave:
Radial turbine
Organic Rankine cycle
Off-design conditions
Turbine design
Three-dimensional analysis
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_909ea73ece958c5b3e7dcaa07e0f924c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10602
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
title Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
spellingShingle Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
Radial turbine
Organic Rankine cycle
Off-design conditions
Turbine design
Three-dimensional analysis
title_short Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
title_full Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
title_fullStr Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
title_full_unstemmed Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
title_sort Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditions
dc.creator.fl_str_mv Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
Venturini, Osvaldo José
Silva Lora, Electo Eduardo
Alviz Meza, Anibal
Mendoza Castellanos, Luis Sebastián
dc.contributor.author.none.fl_str_mv Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
Venturini, Osvaldo José
Silva Lora, Electo Eduardo
Alviz Meza, Anibal
Mendoza Castellanos, Luis Sebastián
dc.subject.proposal.eng.fl_str_mv Radial turbine
Organic Rankine cycle
Off-design conditions
Turbine design
Three-dimensional analysis
topic Radial turbine
Organic Rankine cycle
Off-design conditions
Turbine design
Three-dimensional analysis
description The organic Rankine cycle (ORC) is an efficient technology for electricity generation from low- and medium-temperature heat sources. In this type of power cycle, the radial inflow turbine is the option usually selected for electricity generation. As a critical ORC component, turbine performance markedly affects the efficiency of the system. Therefore, the challenge is to model the behavior of the radial inflow turbine operating with organic fluids for heat recovery applications. In this context, various groups of fluids are highlighted in the scientific literature, including R-123, R-245fa, and R-141b, which are the fluids used in this research. Since little research has focused on the turbine efficiency effect on the power cycle design and analysis, this study presents an analysis of a radial inflow turbine based on a mathematical model of a one-dimensional design of the turbine. From this analysis, geometric, thermal, and operating parameters were determined, as well as volute, stator, and rotor losses. For this purpose, an algorithm was implemented in MATLAB to calculate the one-dimensional parameters of the turbine. Using these parameters, a 3D model of the turbine was designed in ANSYS-CFX, with performance curves of each projected turbine under design and off-design conditions. The numerical results suggest that the isentropic efficiency of all the proposed turbines under design conditions can surpass 75%. Additionally, the findings indicate that different design conditions, such as specific speed, pressure ratio, and turbine size, can affect the efficiency of radial inflow turbines in ORC systems.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-20T15:43:10Z
dc.date.available.none.fl_str_mv 2023-11-20T15:43:10Z
dc.date.issued.none.fl_str_mv 2023-04-12
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Carrillo Caballero, G.; Cardenas Escorcia, Y.; Venturini, O.J.; Silva Lora, E.E.; Alviz Meza, A.; Mendoza Castellanos, L.S. Unidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions. Energies 2023, 16, 3383. https://doi.org/10.3390/en16083383
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10602
dc.identifier.doi.none.fl_str_mv 10.3390/en16083383
dc.identifier.eissn.spa.fl_str_mv 1996-1073
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Carrillo Caballero, G.; Cardenas Escorcia, Y.; Venturini, O.J.; Silva Lora, E.E.; Alviz Meza, A.; Mendoza Castellanos, L.S. Unidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions. Energies 2023, 16, 3383. https://doi.org/10.3390/en16083383
10.3390/en16083383
1996-1073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10602
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Energies
dc.relation.references.spa.fl_str_mv 1. Wang, H.; Wang, G.; Qi, J.; Schandl, H.; Li, Y.; Feng, C.; Yang, X.; Wang, Y.; Wang, X.; Liang, S. Scarcity-weighted fossil fuel footprint of China at the provincial level. Appl. Energy 2020, 258, 114081. [CrossRef]
2. Curtin, J.; McInerney, C.; Gallachóir, B.Ó.; Hickey, C.; Deane, P.; Deeney, P. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renew. Sustain. Energy Rev. 2019, 116, 109402. [CrossRef]
3. Gaete-Morales, C.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period. J. Clean. Prod. 2019, 232, 1499–1512. [CrossRef]
4. Carrillo Caballero, G. Estudo E Modelagem Dos Componentes de Um Sistema Dish Stirling Visando à Otimização Da Potência E a Eficiência Do Sistema. Dissertação de Mestrado, Universidade Federal de Itajubá, Itajubá, Brazil, 2013.
5. Woodland, B.J.; Ziviani, D.; Braun, J.E.; Groll, E.A. Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery. Energy 2020, 193, 116810. [CrossRef]
6. Abrosimov, K.A.; Baccioli, A.; Bischi, A. Techno-economic analysis of combined inverted Brayton—Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. 2020, 207, 112336. [CrossRef]
7. Liu, X.; Nguyen, M.Q.; Chu, J.; Lan, T.; He, M. A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. J. Clean. Prod. 2020, 265, 121502. [CrossRef]
8. Xu, B.; Rathod, D.; Yebi, A.; Filipi, Z. A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems. Appl. Therm. Eng. 2020, 164, 114442. [CrossRef]
9. Elakhdar, M.; Landoulsi, H.; Tashtoush, B.; Nehdi, E.; Kairouani, L. A combined thermal system of ejector refrigeration and Organic Rankine cycles for power generation using a solar parabolic trough. Energy Convers. Manag. 2019, 199, 111947. [CrossRef]
10. Arteconi, A.; Del Zotto, L.; Tascioni, R.; Cioccolanti, L. Modelling system integration of a micro solar organic Rankine Cycle plant into a residential building. Appl. Energy 2019, 251, 113408. [CrossRef]
11. Khanmohammadi, S.; Saadat-Targhi, M.; Ahmed, F.W.; Afrand, M. Potential of thermoelectric waste heat recovery in a combined geothermal, fuel cell and organic Rankine flash cycle (thermodynamic and economic evaluation). Int. J. Hydrogen Energy 2020, 45, 6934–6948. [CrossRef]
12. Han, J.; Wang, X.; Xu, J.; Yi, N.; Talesh, S.S.A. Thermodynamic analysis and optimization of an innovative geothermalbased organic Rankine cycle using zeotropic mixtures for power and hydrogen production. Int. J. Hydrogen Energy 2020, 45, 8282–8299. [CrossRef]
13. Simpson, M.C.; Chatzopoulou, M.A.; Oyewunmi, O.A.; Le Brun, N.; Sapin, P.; Markides, C.N. Technoeconomic analysis of internal combustion engine—Organic Rankine cycle systems for combined heat and power in energy-intensive buildings. Appl. Energy 2019, 253, 113462. [CrossRef]
14. Shi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110. [CrossRef]
15. Kim, D.K.; Choi, H.W.; Kim, M.S. Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat. Appl. Therm. Eng. 2019, 163, 114326. [CrossRef]
16. Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Advanced exergy analysis for organic Rankine Cycle-based layout to recover waste heat of flue gas. Appl. Energy 2020, 266, 114891. [CrossRef]
17. Lin, Y.-P.; Wang, W.-H.; Pan, S.-Y.; Ho, C.-C.; Hou, C.-J.; Chiang, P.-C. Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry. Appl. Energy 2016, 183, 369–379. [CrossRef]
18. Yang, H.; Xu, C.; Yang, B.; Yu, X.; Zhang, Y.; Mu, Y. Performance analysis of an organic Rankine Cycle system using evaporative condenser for sewage heat recovery in the petrochemical industry. Energy Convers. Manag. 2020, 205, 112402. [CrossRef]
19. de Campos, G.B.; Bringhenti, C.; Traverso, A.; Tomita, J.T. Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines. Appl. Therm. Eng. 2020, 164, 114477. [CrossRef]
20. Zhai, L.; Xu, G.; Wen, J.; Quan, Y.; Fu, J.; Wu, H.; Li, T. An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine. Energy Convers. Manag. 2017, 153, 60–70. [CrossRef]
21. Li, Y.-R.; Du, M.-T.; Wu, C.-M.; Wu, S.-Y.; Liu, C. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 2014, 77, 509–519. [CrossRef]
22. Rayegan, R.; Tao, Y.X. A procedure to select working fluids for solar Organic Rankine Cycles (ORCs). Renew. Energy 2011, 36, 659–670. [CrossRef]
23. Li, Y.; Ren, X.-d. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl. Therm. Eng. 2016, 96, 547–554. [CrossRef]
24. Kang, S.H. Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine. Energy 2016, 96, 142–154. [CrossRef]
25. Al Jubori, A.M.; Al-Dadah, R.; Mahmoud, S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle. Energy Convers. Manag. 2017, 144, 18–33. [CrossRef]
26. Wang, Z.; Zhang, Z.; Xia, X.; Zhao, B.; He, N.; Peng, D. Preliminary design and numerical analysis of a radial inflow turbine in organic Rankine cycle using zeotropic mixtures. Appl. Therm. Eng. 2019, 162, 114266. [CrossRef]
27. Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342. [CrossRef]
28. Sauret, E.; Rowlands, A.S. Candidate radial-inflow turbines and high-density working fluids for geothermal power systems. Energy 2011, 36, 4460–4467. [CrossRef]
29. Atkinson, M.J. The Design of Efficient Radial Turbines for Low Power Applications. Ph.D. Thesis, University of Sussex, Falmer, UK, 1998.
30. Salih, U.M. Numerical Simulation, Design and Optimization of Radial Inflow Turbine for Energy Recovery Usage of Automobile. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2015.
31. Miranda, R. Projeto de Turbinas Radiais Operadas Com Fluidos Orgânicos Para Baixas Potências. Ph.D. Thesis, Universidade Federal de Itajubá, Itajubá, Brazil, 2015.
32. Song, J.; Gu, C.-W.; Ren, X. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system. Energy Convers. Manag. 2016, 123, 308–316. [CrossRef]
33. Song, Y.; Sun, X.; Huang, D. Preliminary design and performance analysis of a centrifugal turbine for Organic Rankine Cycle (ORC) applications. Energy 2017, 140, 1239–1251. [CrossRef]
34. Da Lio, L.; Manente, G.; Lazzaretto, A. A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems. Appl. Energy 2017, 205, 187–209. [CrossRef]
35. Zheng, Y.; Hu, D.; Cao, Y.; Dai, Y. Preliminary design and off-design performance analysis of an organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method. Appl. Therm. Eng. 2017, 112, 25–37. [CrossRef]
36. Han, Z.; Jia, X.; Li, P. Preliminary design of radial inflow turbine and working fluid selection based on particle swarm optimization. Energy Convers. Manag. 2019, 199, 111933. [CrossRef]
37. Li, Y.; Li, W.; Gao, X.; Ling, X. Thermodynamic analysis and optimization of organic Rankine cycles based on radial-inflow turbine design. Appl. Therm. Eng. 2021, 184, 116277. [CrossRef]
38. Carrillo Caballero, G.; Escorcia, Y.C.; Mendoza Castellanos, L.S.; Galindo Noguera, A.L.; Venturini, O.J.; Silva Lora, E.E.; Gutiérrez Velásquez, E.I.; Alviz Meza, A. Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil. Energies 2022, 15, 8261. [CrossRef]
39. Carrillo Caballero, G. Modelagem Do Comportamento Integrado de Um Sistema de Coletor Cilíndrico Parabólico Operando com Ciclo Rankine Orgânico E Armazenamento Térmico de Dois Tanques. Ph.D. Thesis, Universidade Federal de Itajubá, Itajubá, Brazil, 2018.
40. Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [CrossRef] [PubMed]
41. Moustapha, H.; Zelesky, M.F.; Baines, N.C.; Japikse, D. Axial and Radial Turbines; Concepts NREC: White River Junction, VT, USA, 2003.
42. Aungier, R.H. Turbine Aerodynamics: Axial-Flow and Radial-Inflow Trubine Design and Analysis; ASME Press: New York, NY, USA, 2006.
43. Japikse, D.; Baines, N. Introduction to Turbomachinery; Concepts ETI: Oxfordshire, UK, 1997.
44. Dixon, S. Fluid Mechanics and Thermodynamics of Turbomachinery; Elsevier: Oxford, UK, 1998; pp. 1–27.
45. Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine. Energy Convers. Manag. 2015, 91, 186–198. [CrossRef]
46. Benson, R.S. A review of methods for assessing loss coefficients in radial gas turbines. Int. J. Mech. Sci. 1970, 12, 905–932. [CrossRef]
47. Glassman, A.J. Turbine Design and Application; Technical Report; Scientific and Technical Information Office, National Aeronautics and and Space Administration: Washington, DC, USA, 1990; Volume 1.
48. Balje, O.E. Turbomachines: A Guide to Design Selection and Theory; John Wiley & Sons: Hoboken, NJ, USA, 1981.
49. Ventura, C.A.M.; Jacobs, P.A.; Rowlands, A.S.; Petrie-Repar, P.; Sauret, E. Preliminary design and performance estimation of radial inflow turbines: An automated approach. J. Fluids Eng. 2012, 134, 031102. [CrossRef]
50. Al Jubori, A.; Al-Dadah, R.K.; Mahmoud, S.; Bahr Ennil, A.S.; Rahbar, K. Three dimensional optimization of small-scale axial turbine for low temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2017, 133, 411–426. [CrossRef]
51. Watanabe, I.; Ariga, I.; Mashimo, T. Effect of dimensional parameters of impellers on performance characteristics of a radial-inflow turbine. J. Eng. Power 1971, 93, 81–102. [CrossRef]
52. Paltrinieri, A. A Mean-Line Model to Predict the Design Performance of Radial Inflow Turbines in Organic Rankine Cycles. Master’s Thesis, Università Degli Studi Di Padova, Technische Universität Berlin, Berlin, Germany, 2014.
53. Baloni, B.D.; Channiwala, S.A.; Mayavanshi, V.K. Pressure recovery and loss coefficient variations in the two different centrifugal blower volute designs. Appl. Energy 2012, 90, 335–343. [CrossRef]
54. Suhrmann, J.F.; Peitsch, D.; Gugau, M.; Heuer, T.; Tomm, U. Validation and development of loss models for small size radial turbines. Turbo Expo Power Land Sea Air 2010, 44021, 1937–1949.
55. Churchill, S.W. Friction factor equation spans all fluid flow regimes. Chem. Eng. J. 1977, 84, 91–92.
56. Wasserbauer, C.A.; Glassman, A.J. FORTRAN Program for Predicting the Off-Design Performance of Radial Inflow Turbines; NASA Technical Note TN D-8063; NASA: Cleveland, OH, USA, 1975.
57. Rudinger, G. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng. 1960, 82, 230. [CrossRef]
58. Erbas, M.; Sofuoglu, M.A.; Biyikoglu, A.; Uslan, I. Design and optimization of a low temperature organic rankine cycle and turbine. In ASME 2013 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2013; pp. 1–7.
59. Glassman, A.J. Computer Program for Design Analysis of Radial-Inflow Turbines; Technical Report; NASA: Washington, DC, USA, 1976.
60. Abas, N.; Kalair, A.R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M.S. Natural and synthetic refrigerants, global warming: A review. Renew. Sustain. Energy Rev. 2018, 90, 557–569. [CrossRef]
61. Long, R.; Bao, Y.J.; Huang, X.M.; Liu, W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy 2014, 73, 475–483. [CrossRef]
62. Lim, T.-W.; Choi, Y.-S.; Hwang, D.-H. Optimal working fluids and economic estimation for both double stage organic Rankine cycle and added double stage organic Rankine cycle used for waste heat recovery from liquefied natural gas fueled ships. Energy Convers. Manag. 2021, 242, 114323. [CrossRef]
63. Wei, Z. Meanline Analisis of Radial Inflow Turbines. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2014.
64. Sauret, E.; Gu, Y. 3D CFD simulations of a candidate R143A radial-inflow turbine for geothermal power applications. In Proceedings of the ASME Power 2014, 32158; American Society of Mechanical Engineers: Baltimore, MD, USA, 2014.
65. Al Jubori, A.; Daabo, A.; Al-Dadah, R.K.; Mahmoud, S.; Ennil, A.B. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2016, 130, 141–155. [CrossRef]
dc.relation.citationendpage.spa.fl_str_mv 31
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 8
dc.relation.citationvolume.spa.fl_str_mv 16
dc.rights.eng.fl_str_mv © 2023 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 by the authors. Licensee MDPI, Basel, Switzerland
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 31 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Switzerland
dc.source.spa.fl_str_mv https://www.mdpi.com/1996-1073/16/8/3383
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/11628444-d859-4400-8e73-3f04f002bf82/download
https://repositorio.cuc.edu.co/bitstreams/5cac5bf5-36af-4f47-b233-6ba067874b70/download
https://repositorio.cuc.edu.co/bitstreams/56e61ab8-c288-4410-b4f4-2a4be1bf7c00/download
https://repositorio.cuc.edu.co/bitstreams/a503f70c-98e3-47ed-8edb-1673c073cae4/download
bitstream.checksum.fl_str_mv 50bd127f45251493453f26421b54a113
2f9959eaf5b71fae44bbf9ec84150c7a
7e2107629e0b0b56167f12bb725ea69f
b5f629170dcfb6bb015213eaa425228e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760789922512896
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors. Licensee MDPI, Basel, Switzerlandhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carrillo Caballero, GaylordCardenas Escorcia, YulinethVenturini, Osvaldo JoséSilva Lora, Electo EduardoAlviz Meza, AnibalMendoza Castellanos, Luis Sebastián2023-11-20T15:43:10Z2023-11-20T15:43:10Z2023-04-12Carrillo Caballero, G.; Cardenas Escorcia, Y.; Venturini, O.J.; Silva Lora, E.E.; Alviz Meza, A.; Mendoza Castellanos, L.S. Unidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions. Energies 2023, 16, 3383. https://doi.org/10.3390/en16083383https://hdl.handle.net/11323/1060210.3390/en160833831996-1073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The organic Rankine cycle (ORC) is an efficient technology for electricity generation from low- and medium-temperature heat sources. In this type of power cycle, the radial inflow turbine is the option usually selected for electricity generation. As a critical ORC component, turbine performance markedly affects the efficiency of the system. Therefore, the challenge is to model the behavior of the radial inflow turbine operating with organic fluids for heat recovery applications. In this context, various groups of fluids are highlighted in the scientific literature, including R-123, R-245fa, and R-141b, which are the fluids used in this research. Since little research has focused on the turbine efficiency effect on the power cycle design and analysis, this study presents an analysis of a radial inflow turbine based on a mathematical model of a one-dimensional design of the turbine. From this analysis, geometric, thermal, and operating parameters were determined, as well as volute, stator, and rotor losses. For this purpose, an algorithm was implemented in MATLAB to calculate the one-dimensional parameters of the turbine. Using these parameters, a 3D model of the turbine was designed in ANSYS-CFX, with performance curves of each projected turbine under design and off-design conditions. The numerical results suggest that the isentropic efficiency of all the proposed turbines under design conditions can surpass 75%. Additionally, the findings indicate that different design conditions, such as specific speed, pressure ratio, and turbine size, can affect the efficiency of radial inflow turbines in ORC systems.31 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1996-1073/16/8/3383Unidimensional and 3D analyses of a radial inflow turbine for an organic rankine cycle under design and off-design conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Energies1. Wang, H.; Wang, G.; Qi, J.; Schandl, H.; Li, Y.; Feng, C.; Yang, X.; Wang, Y.; Wang, X.; Liang, S. Scarcity-weighted fossil fuel footprint of China at the provincial level. Appl. Energy 2020, 258, 114081. [CrossRef]2. Curtin, J.; McInerney, C.; Gallachóir, B.Ó.; Hickey, C.; Deane, P.; Deeney, P. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renew. Sustain. Energy Rev. 2019, 116, 109402. [CrossRef]3. Gaete-Morales, C.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period. J. Clean. Prod. 2019, 232, 1499–1512. [CrossRef]4. Carrillo Caballero, G. Estudo E Modelagem Dos Componentes de Um Sistema Dish Stirling Visando à Otimização Da Potência E a Eficiência Do Sistema. Dissertação de Mestrado, Universidade Federal de Itajubá, Itajubá, Brazil, 2013.5. Woodland, B.J.; Ziviani, D.; Braun, J.E.; Groll, E.A. Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery. Energy 2020, 193, 116810. [CrossRef]6. Abrosimov, K.A.; Baccioli, A.; Bischi, A. Techno-economic analysis of combined inverted Brayton—Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. 2020, 207, 112336. [CrossRef]7. Liu, X.; Nguyen, M.Q.; Chu, J.; Lan, T.; He, M. A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. J. Clean. Prod. 2020, 265, 121502. [CrossRef]8. Xu, B.; Rathod, D.; Yebi, A.; Filipi, Z. A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems. Appl. Therm. Eng. 2020, 164, 114442. [CrossRef]9. Elakhdar, M.; Landoulsi, H.; Tashtoush, B.; Nehdi, E.; Kairouani, L. A combined thermal system of ejector refrigeration and Organic Rankine cycles for power generation using a solar parabolic trough. Energy Convers. Manag. 2019, 199, 111947. [CrossRef]10. Arteconi, A.; Del Zotto, L.; Tascioni, R.; Cioccolanti, L. Modelling system integration of a micro solar organic Rankine Cycle plant into a residential building. Appl. Energy 2019, 251, 113408. [CrossRef]11. Khanmohammadi, S.; Saadat-Targhi, M.; Ahmed, F.W.; Afrand, M. Potential of thermoelectric waste heat recovery in a combined geothermal, fuel cell and organic Rankine flash cycle (thermodynamic and economic evaluation). Int. J. Hydrogen Energy 2020, 45, 6934–6948. [CrossRef]12. Han, J.; Wang, X.; Xu, J.; Yi, N.; Talesh, S.S.A. Thermodynamic analysis and optimization of an innovative geothermalbased organic Rankine cycle using zeotropic mixtures for power and hydrogen production. Int. J. Hydrogen Energy 2020, 45, 8282–8299. [CrossRef]13. Simpson, M.C.; Chatzopoulou, M.A.; Oyewunmi, O.A.; Le Brun, N.; Sapin, P.; Markides, C.N. Technoeconomic analysis of internal combustion engine—Organic Rankine cycle systems for combined heat and power in energy-intensive buildings. Appl. Energy 2019, 253, 113462. [CrossRef]14. Shi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110. [CrossRef]15. Kim, D.K.; Choi, H.W.; Kim, M.S. Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat. Appl. Therm. Eng. 2019, 163, 114326. [CrossRef]16. Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Advanced exergy analysis for organic Rankine Cycle-based layout to recover waste heat of flue gas. Appl. Energy 2020, 266, 114891. [CrossRef]17. Lin, Y.-P.; Wang, W.-H.; Pan, S.-Y.; Ho, C.-C.; Hou, C.-J.; Chiang, P.-C. Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry. Appl. Energy 2016, 183, 369–379. [CrossRef]18. Yang, H.; Xu, C.; Yang, B.; Yu, X.; Zhang, Y.; Mu, Y. Performance analysis of an organic Rankine Cycle system using evaporative condenser for sewage heat recovery in the petrochemical industry. Energy Convers. Manag. 2020, 205, 112402. [CrossRef]19. de Campos, G.B.; Bringhenti, C.; Traverso, A.; Tomita, J.T. Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines. Appl. Therm. Eng. 2020, 164, 114477. [CrossRef]20. Zhai, L.; Xu, G.; Wen, J.; Quan, Y.; Fu, J.; Wu, H.; Li, T. An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine. Energy Convers. Manag. 2017, 153, 60–70. [CrossRef]21. Li, Y.-R.; Du, M.-T.; Wu, C.-M.; Wu, S.-Y.; Liu, C. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 2014, 77, 509–519. [CrossRef]22. Rayegan, R.; Tao, Y.X. A procedure to select working fluids for solar Organic Rankine Cycles (ORCs). Renew. Energy 2011, 36, 659–670. [CrossRef]23. Li, Y.; Ren, X.-d. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl. Therm. Eng. 2016, 96, 547–554. [CrossRef]24. Kang, S.H. Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine. Energy 2016, 96, 142–154. [CrossRef]25. Al Jubori, A.M.; Al-Dadah, R.; Mahmoud, S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle. Energy Convers. Manag. 2017, 144, 18–33. [CrossRef]26. Wang, Z.; Zhang, Z.; Xia, X.; Zhao, B.; He, N.; Peng, D. Preliminary design and numerical analysis of a radial inflow turbine in organic Rankine cycle using zeotropic mixtures. Appl. Therm. Eng. 2019, 162, 114266. [CrossRef]27. Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342. [CrossRef]28. Sauret, E.; Rowlands, A.S. Candidate radial-inflow turbines and high-density working fluids for geothermal power systems. Energy 2011, 36, 4460–4467. [CrossRef]29. Atkinson, M.J. The Design of Efficient Radial Turbines for Low Power Applications. Ph.D. Thesis, University of Sussex, Falmer, UK, 1998.30. Salih, U.M. Numerical Simulation, Design and Optimization of Radial Inflow Turbine for Energy Recovery Usage of Automobile. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2015.31. Miranda, R. Projeto de Turbinas Radiais Operadas Com Fluidos Orgânicos Para Baixas Potências. Ph.D. Thesis, Universidade Federal de Itajubá, Itajubá, Brazil, 2015.32. Song, J.; Gu, C.-W.; Ren, X. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system. Energy Convers. Manag. 2016, 123, 308–316. [CrossRef]33. Song, Y.; Sun, X.; Huang, D. Preliminary design and performance analysis of a centrifugal turbine for Organic Rankine Cycle (ORC) applications. Energy 2017, 140, 1239–1251. [CrossRef]34. Da Lio, L.; Manente, G.; Lazzaretto, A. A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems. Appl. Energy 2017, 205, 187–209. [CrossRef]35. Zheng, Y.; Hu, D.; Cao, Y.; Dai, Y. Preliminary design and off-design performance analysis of an organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method. Appl. Therm. Eng. 2017, 112, 25–37. [CrossRef]36. Han, Z.; Jia, X.; Li, P. Preliminary design of radial inflow turbine and working fluid selection based on particle swarm optimization. Energy Convers. Manag. 2019, 199, 111933. [CrossRef]37. Li, Y.; Li, W.; Gao, X.; Ling, X. Thermodynamic analysis and optimization of organic Rankine cycles based on radial-inflow turbine design. Appl. Therm. Eng. 2021, 184, 116277. [CrossRef]38. Carrillo Caballero, G.; Escorcia, Y.C.; Mendoza Castellanos, L.S.; Galindo Noguera, A.L.; Venturini, O.J.; Silva Lora, E.E.; Gutiérrez Velásquez, E.I.; Alviz Meza, A. Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil. Energies 2022, 15, 8261. [CrossRef]39. Carrillo Caballero, G. Modelagem Do Comportamento Integrado de Um Sistema de Coletor Cilíndrico Parabólico Operando com Ciclo Rankine Orgânico E Armazenamento Térmico de Dois Tanques. Ph.D. Thesis, Universidade Federal de Itajubá, Itajubá, Brazil, 2018.40. Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [CrossRef] [PubMed]41. Moustapha, H.; Zelesky, M.F.; Baines, N.C.; Japikse, D. Axial and Radial Turbines; Concepts NREC: White River Junction, VT, USA, 2003.42. Aungier, R.H. Turbine Aerodynamics: Axial-Flow and Radial-Inflow Trubine Design and Analysis; ASME Press: New York, NY, USA, 2006.43. Japikse, D.; Baines, N. Introduction to Turbomachinery; Concepts ETI: Oxfordshire, UK, 1997.44. Dixon, S. Fluid Mechanics and Thermodynamics of Turbomachinery; Elsevier: Oxford, UK, 1998; pp. 1–27.45. Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine. Energy Convers. Manag. 2015, 91, 186–198. [CrossRef]46. Benson, R.S. A review of methods for assessing loss coefficients in radial gas turbines. Int. J. Mech. Sci. 1970, 12, 905–932. [CrossRef]47. Glassman, A.J. Turbine Design and Application; Technical Report; Scientific and Technical Information Office, National Aeronautics and and Space Administration: Washington, DC, USA, 1990; Volume 1.48. Balje, O.E. Turbomachines: A Guide to Design Selection and Theory; John Wiley & Sons: Hoboken, NJ, USA, 1981.49. Ventura, C.A.M.; Jacobs, P.A.; Rowlands, A.S.; Petrie-Repar, P.; Sauret, E. Preliminary design and performance estimation of radial inflow turbines: An automated approach. J. Fluids Eng. 2012, 134, 031102. [CrossRef]50. Al Jubori, A.; Al-Dadah, R.K.; Mahmoud, S.; Bahr Ennil, A.S.; Rahbar, K. Three dimensional optimization of small-scale axial turbine for low temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2017, 133, 411–426. [CrossRef]51. Watanabe, I.; Ariga, I.; Mashimo, T. Effect of dimensional parameters of impellers on performance characteristics of a radial-inflow turbine. J. Eng. Power 1971, 93, 81–102. [CrossRef]52. Paltrinieri, A. A Mean-Line Model to Predict the Design Performance of Radial Inflow Turbines in Organic Rankine Cycles. Master’s Thesis, Università Degli Studi Di Padova, Technische Universität Berlin, Berlin, Germany, 2014.53. Baloni, B.D.; Channiwala, S.A.; Mayavanshi, V.K. Pressure recovery and loss coefficient variations in the two different centrifugal blower volute designs. Appl. Energy 2012, 90, 335–343. [CrossRef]54. Suhrmann, J.F.; Peitsch, D.; Gugau, M.; Heuer, T.; Tomm, U. Validation and development of loss models for small size radial turbines. Turbo Expo Power Land Sea Air 2010, 44021, 1937–1949.55. Churchill, S.W. Friction factor equation spans all fluid flow regimes. Chem. Eng. J. 1977, 84, 91–92.56. Wasserbauer, C.A.; Glassman, A.J. FORTRAN Program for Predicting the Off-Design Performance of Radial Inflow Turbines; NASA Technical Note TN D-8063; NASA: Cleveland, OH, USA, 1975.57. Rudinger, G. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng. 1960, 82, 230. [CrossRef]58. Erbas, M.; Sofuoglu, M.A.; Biyikoglu, A.; Uslan, I. Design and optimization of a low temperature organic rankine cycle and turbine. In ASME 2013 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2013; pp. 1–7.59. Glassman, A.J. Computer Program for Design Analysis of Radial-Inflow Turbines; Technical Report; NASA: Washington, DC, USA, 1976.60. Abas, N.; Kalair, A.R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M.S. Natural and synthetic refrigerants, global warming: A review. Renew. Sustain. Energy Rev. 2018, 90, 557–569. [CrossRef]61. Long, R.; Bao, Y.J.; Huang, X.M.; Liu, W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy 2014, 73, 475–483. [CrossRef]62. Lim, T.-W.; Choi, Y.-S.; Hwang, D.-H. Optimal working fluids and economic estimation for both double stage organic Rankine cycle and added double stage organic Rankine cycle used for waste heat recovery from liquefied natural gas fueled ships. Energy Convers. Manag. 2021, 242, 114323. [CrossRef]63. Wei, Z. Meanline Analisis of Radial Inflow Turbines. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2014.64. Sauret, E.; Gu, Y. 3D CFD simulations of a candidate R143A radial-inflow turbine for geothermal power applications. In Proceedings of the ASME Power 2014, 32158; American Society of Mechanical Engineers: Baltimore, MD, USA, 2014.65. Al Jubori, A.; Daabo, A.; Al-Dadah, R.K.; Mahmoud, S.; Ennil, A.B. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2016, 130, 141–155. [CrossRef]311816Radial turbineOrganic Rankine cycleOff-design conditionsTurbine designThree-dimensional analysisPublicationORIGINALUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdfUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdfArtículoapplication/pdf6303976https://repositorio.cuc.edu.co/bitstreams/11628444-d859-4400-8e73-3f04f002bf82/download50bd127f45251493453f26421b54a113MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/5cac5bf5-36af-4f47-b233-6ba067874b70/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdf.txtUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdf.txtExtracted texttext/plain106925https://repositorio.cuc.edu.co/bitstreams/56e61ab8-c288-4410-b4f4-2a4be1bf7c00/download7e2107629e0b0b56167f12bb725ea69fMD53THUMBNAILUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdf.jpgUnidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions.pdf.jpgGenerated Thumbnailimage/jpeg16004https://repositorio.cuc.edu.co/bitstreams/a503f70c-98e3-47ed-8edb-1673c073cae4/downloadb5f629170dcfb6bb015213eaa425228eMD5411323/10602oai:repositorio.cuc.edu.co:11323/106022024-09-17 11:09:58.04https://creativecommons.org/licenses/by/4.0/© 2023 by the authors. Licensee MDPI, Basel, Switzerlandopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=