Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review

This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, a...

Full description

Autores:
Acosta Fontalvo, Luis Carlos
Martínez Marín, Sindy Johana
Jiménez Barros, Miguel
Parra Negrete, Kevin
Cortabarria, Laura
Ovallos, David
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9370
Acceso en línea:
https://hdl.handle.net/11323/9370
https://doi.org/10.1016/j.procs.2021.12.294
https://repositorio.cuc.edu.co/
Palabra clave:
Energy efficiency
Buildings
Educational buildings
Modeling
System dynamics
Rights
openAccess
License
© 2021 The Authors. Published by Elsevier B.V
id RCUC2_8f526be952bd3ffef4b5439ff8294c2e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9370
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
title Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
spellingShingle Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
Energy efficiency
Buildings
Educational buildings
Modeling
System dynamics
title_short Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
title_full Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
title_fullStr Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
title_full_unstemmed Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
title_sort Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
dc.creator.fl_str_mv Acosta Fontalvo, Luis Carlos
Martínez Marín, Sindy Johana
Jiménez Barros, Miguel
Parra Negrete, Kevin
Cortabarria, Laura
Ovallos, David
dc.contributor.author.spa.fl_str_mv Acosta Fontalvo, Luis Carlos
Martínez Marín, Sindy Johana
Jiménez Barros, Miguel
Parra Negrete, Kevin
Cortabarria, Laura
Ovallos, David
dc.subject.proposal.eng.fl_str_mv Energy efficiency
Buildings
Educational buildings
Modeling
System dynamics
topic Energy efficiency
Buildings
Educational buildings
Modeling
System dynamics
description This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-14T19:41:02Z
dc.date.available.none.fl_str_mv 2022-07-14T19:41:02Z
dc.date.issued.none.fl_str_mv 2022-01-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.
dc.identifier.issn.spa.fl_str_mv 18770509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9370
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.procs.2021.12.294
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2021.12.294
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.
18770509
10.1016/j.procs.2021.12.294
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9370
https://doi.org/10.1016/j.procs.2021.12.294
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Procedia Computer Science
dc.relation.references.spa.fl_str_mv [1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77.
[2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918.
[3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000
[4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975.
[5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679.
[6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”.
[7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155.
[8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136.
[9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173.
[10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773.
[11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142.
[12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252.
[13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118.
[14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261.
[15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292.
[16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714.
[17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052.
[18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922.
[19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822.
[20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219.
[21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182.
[22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261.
[23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26.
[24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201.
[25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272.
[26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000.
[27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89.
[28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217.
[29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226.
[30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142.
[31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13.
[32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374.
[33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20.
dc.relation.citationendpage.spa.fl_str_mv 613
dc.relation.citationstartpage.spa.fl_str_mv 608
dc.relation.citationvolume.spa.fl_str_mv 198
dc.rights.spa.fl_str_mv © 2021 The Authors. Published by Elsevier B.V
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2021 The Authors. Published by Elsevier B.V
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/09e75c5a-297e-47ad-bbcf-4f901cb425f2/download
https://repositorio.cuc.edu.co/bitstreams/eb03536a-c73d-4713-8670-41755303e9c5/download
https://repositorio.cuc.edu.co/bitstreams/7ad74319-1b66-40f3-9852-ff358c22c073/download
https://repositorio.cuc.edu.co/bitstreams/a971e14f-cdff-4777-ace8-ee02e7fd250e/download
bitstream.checksum.fl_str_mv f6f2e6ea15184e7b46a8040aa17310b5
e30e9215131d99561d40d6b0abbe9bad
0f098b7482e487fd6ae2baee65385113
e28e0f96dba5e7e9f09d1be90c96983f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760768537853952
spelling Acosta Fontalvo, Luis CarlosMartínez Marín, Sindy JohanaJiménez Barros, MiguelParra Negrete, KevinCortabarria, LauraOvallos, David2022-07-14T19:41:02Z2022-07-14T19:41:02Z2022-01-26Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.18770509https://hdl.handle.net/11323/9370https://doi.org/10.1016/j.procs.2021.12.29410.1016/j.procs.2021.12.294Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors.6 páginasapplication/pdfengElsevier BVNetherlands© 2021 The Authors. Published by Elsevier B.VAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modeling Energy-Efficient Policies in Educational Buildings - A Literature ReviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#!Procedia Computer Science[1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77.[2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918.[3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000[4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975.[5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679.[6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”.[7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155.[8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136.[9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173.[10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773.[11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142.[12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252.[13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118.[14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261.[15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292.[16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714.[17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052.[18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922.[19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822.[20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219.[21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182.[22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261.[23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26.[24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201.[25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272.[26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000.[27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89.[28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217.[29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226.[30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142.[31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13.[32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374.[33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20.613608198Energy efficiencyBuildingsEducational buildingsModelingSystem dynamicsPublicationORIGINAL1-s2.0-S1877050921025333-main.pdf1-s2.0-S1877050921025333-main.pdfapplication/pdf637162https://repositorio.cuc.edu.co/bitstreams/09e75c5a-297e-47ad-bbcf-4f901cb425f2/downloadf6f2e6ea15184e7b46a8040aa17310b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/eb03536a-c73d-4713-8670-41755303e9c5/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025333-main.pdf.txt1-s2.0-S1877050921025333-main.pdf.txttext/plain49264https://repositorio.cuc.edu.co/bitstreams/7ad74319-1b66-40f3-9852-ff358c22c073/download0f098b7482e487fd6ae2baee65385113MD53THUMBNAIL1-s2.0-S1877050921025333-main.pdf.jpg1-s2.0-S1877050921025333-main.pdf.jpgimage/jpeg12772https://repositorio.cuc.edu.co/bitstreams/a971e14f-cdff-4777-ace8-ee02e7fd250e/downloade28e0f96dba5e7e9f09d1be90c96983fMD5411323/9370oai:repositorio.cuc.edu.co:11323/93702024-09-17 11:03:35.763https://creativecommons.org/licenses/by/4.0/© 2021 The Authors. Published by Elsevier B.Vopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==