Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review
This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, a...
- Autores:
-
Acosta Fontalvo, Luis Carlos
Martínez Marín, Sindy Johana
Jiménez Barros, Miguel
Parra Negrete, Kevin
Cortabarria, Laura
Ovallos, David
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9370
- Acceso en línea:
- https://hdl.handle.net/11323/9370
https://doi.org/10.1016/j.procs.2021.12.294
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energy efficiency
Buildings
Educational buildings
Modeling
System dynamics
- Rights
- openAccess
- License
- © 2021 The Authors. Published by Elsevier B.V
id |
RCUC2_8f526be952bd3ffef4b5439ff8294c2e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9370 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
title |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
spellingShingle |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review Energy efficiency Buildings Educational buildings Modeling System dynamics |
title_short |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
title_full |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
title_fullStr |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
title_full_unstemmed |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
title_sort |
Modeling Energy-Efficient Policies in Educational Buildings - A Literature Review |
dc.creator.fl_str_mv |
Acosta Fontalvo, Luis Carlos Martínez Marín, Sindy Johana Jiménez Barros, Miguel Parra Negrete, Kevin Cortabarria, Laura Ovallos, David |
dc.contributor.author.spa.fl_str_mv |
Acosta Fontalvo, Luis Carlos Martínez Marín, Sindy Johana Jiménez Barros, Miguel Parra Negrete, Kevin Cortabarria, Laura Ovallos, David |
dc.subject.proposal.eng.fl_str_mv |
Energy efficiency Buildings Educational buildings Modeling System dynamics |
topic |
Energy efficiency Buildings Educational buildings Modeling System dynamics |
description |
This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-14T19:41:02Z |
dc.date.available.none.fl_str_mv |
2022-07-14T19:41:02Z |
dc.date.issued.none.fl_str_mv |
2022-01-26 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294. |
dc.identifier.issn.spa.fl_str_mv |
18770509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9370 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2021.12.294 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.procs.2021.12.294 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294. 18770509 10.1016/j.procs.2021.12.294 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9370 https://doi.org/10.1016/j.procs.2021.12.294 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Procedia Computer Science |
dc.relation.references.spa.fl_str_mv |
[1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77. [2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918. [3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000 [4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975. [5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679. [6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”. [7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155. [8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136. [9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173. [10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773. [11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142. [12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252. [13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118. [14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261. [15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292. [16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714. [17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052. [18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922. [19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822. [20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219. [21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182. [22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261. [23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26. [24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201. [25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272. [26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000. [27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89. [28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217. [29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226. [30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142. [31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13. [32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374. [33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20. |
dc.relation.citationendpage.spa.fl_str_mv |
613 |
dc.relation.citationstartpage.spa.fl_str_mv |
608 |
dc.relation.citationvolume.spa.fl_str_mv |
198 |
dc.rights.spa.fl_str_mv |
© 2021 The Authors. Published by Elsevier B.V Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2021 The Authors. Published by Elsevier B.V Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/09e75c5a-297e-47ad-bbcf-4f901cb425f2/download https://repositorio.cuc.edu.co/bitstreams/eb03536a-c73d-4713-8670-41755303e9c5/download https://repositorio.cuc.edu.co/bitstreams/7ad74319-1b66-40f3-9852-ff358c22c073/download https://repositorio.cuc.edu.co/bitstreams/a971e14f-cdff-4777-ace8-ee02e7fd250e/download |
bitstream.checksum.fl_str_mv |
f6f2e6ea15184e7b46a8040aa17310b5 e30e9215131d99561d40d6b0abbe9bad 0f098b7482e487fd6ae2baee65385113 e28e0f96dba5e7e9f09d1be90c96983f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760768537853952 |
spelling |
Acosta Fontalvo, Luis CarlosMartínez Marín, Sindy JohanaJiménez Barros, MiguelParra Negrete, KevinCortabarria, LauraOvallos, David2022-07-14T19:41:02Z2022-07-14T19:41:02Z2022-01-26Luis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.18770509https://hdl.handle.net/11323/9370https://doi.org/10.1016/j.procs.2021.12.29410.1016/j.procs.2021.12.294Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors.6 páginasapplication/pdfengElsevier BVNetherlands© 2021 The Authors. Published by Elsevier B.VAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modeling Energy-Efficient Policies in Educational Buildings - A Literature ReviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#!Procedia Computer Science[1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77.[2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918.[3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000[4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975.[5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679.[6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”.[7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155.[8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136.[9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173.[10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773.[11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142.[12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252.[13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118.[14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261.[15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292.[16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714.[17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052.[18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922.[19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822.[20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219.[21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182.[22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261.[23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26.[24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201.[25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272.[26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000.[27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89.[28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217.[29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226.[30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142.[31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13.[32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374.[33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20.613608198Energy efficiencyBuildingsEducational buildingsModelingSystem dynamicsPublicationORIGINAL1-s2.0-S1877050921025333-main.pdf1-s2.0-S1877050921025333-main.pdfapplication/pdf637162https://repositorio.cuc.edu.co/bitstreams/09e75c5a-297e-47ad-bbcf-4f901cb425f2/downloadf6f2e6ea15184e7b46a8040aa17310b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/eb03536a-c73d-4713-8670-41755303e9c5/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025333-main.pdf.txt1-s2.0-S1877050921025333-main.pdf.txttext/plain49264https://repositorio.cuc.edu.co/bitstreams/7ad74319-1b66-40f3-9852-ff358c22c073/download0f098b7482e487fd6ae2baee65385113MD53THUMBNAIL1-s2.0-S1877050921025333-main.pdf.jpg1-s2.0-S1877050921025333-main.pdf.jpgimage/jpeg12772https://repositorio.cuc.edu.co/bitstreams/a971e14f-cdff-4777-ace8-ee02e7fd250e/downloade28e0f96dba5e7e9f09d1be90c96983fMD5411323/9370oai:repositorio.cuc.edu.co:11323/93702024-09-17 11:03:35.763https://creativecommons.org/licenses/by/4.0/© 2021 The Authors. Published by Elsevier B.Vopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |