Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors
Currently, the feasibility to replace standard efficiency electric motors with higher efficiency ones is assessed with considerations differing from real operating conditions in the industry. This study compares the feasibility of replacing 26 standard efficiency motors (IE1) with high-efficiency ef...
- Autores:
-
R. Gómez, Julio
Sousa, Vladimir
Cabello Eras, Juan José
Sagastume Gutiérrez, Alexis
Viego, Percy R.
Quispe, Enrique C.
de León, Gabriel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9213
- Acceso en línea:
- https://hdl.handle.net/11323/9213
https://doi.org/10.1016/j.energy.2021.121877
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energy efficiency
Energy-saving
Feasibility studies
High-efficiency electric motors
Replacing electric motors
- Rights
- embargoedAccess
- License
- © 2021 Elsevier Ltd. All rights reserved.
id |
RCUC2_8f3ef1b12798d821688898ca9a35a838 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9213 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
title |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
spellingShingle |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors Energy efficiency Energy-saving Feasibility studies High-efficiency electric motors Replacing electric motors |
title_short |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
title_full |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
title_fullStr |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
title_full_unstemmed |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
title_sort |
Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors |
dc.creator.fl_str_mv |
R. Gómez, Julio Sousa, Vladimir Cabello Eras, Juan José Sagastume Gutiérrez, Alexis Viego, Percy R. Quispe, Enrique C. de León, Gabriel |
dc.contributor.author.spa.fl_str_mv |
R. Gómez, Julio Sousa, Vladimir Cabello Eras, Juan José Sagastume Gutiérrez, Alexis Viego, Percy R. Quispe, Enrique C. de León, Gabriel |
dc.contributor.corporatename.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.subject.proposal.eng.fl_str_mv |
Energy efficiency Energy-saving Feasibility studies High-efficiency electric motors Replacing electric motors |
topic |
Energy efficiency Energy-saving Feasibility studies High-efficiency electric motors Replacing electric motors |
description |
Currently, the feasibility to replace standard efficiency electric motors with higher efficiency ones is assessed with considerations differing from real operating conditions in the industry. This study compares the feasibility of replacing 26 standard efficiency motors (IE1) with high-efficiency efficiency ones (IE2 and IE3) in a sugar plant, based on three different energy scenarios and considering the incremental costs or depreciated costs of motors. Energy scenario 1 consider that motors operate for 6000 h/year at full load and nominal efficiency. While scenarios 2 and 3 consider the measured operating time and the load factor of motors. The results show that scenario 1 overestimates electricity consumption between 2 and 18 times, contrasted with a difference of 1e7% in scenarios 2 and 3, leading to saving potentials in scenario 1 between 1.2 and 33.4 times higher than for scenarios 2 and 3. Considering the incremental costs in scenario 1, it is feasibly to replace all the motors in the plant, while it is only feasibly to replace three motors in scenarios 2 and 3 with the depreciated costs. Therefore, the use of scenario 1 based on unrealistic conditions and leading to economic loss, should be avoided in future studies. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-08-26 |
dc.date.accessioned.none.fl_str_mv |
2022-06-07T17:23:41Z |
dc.date.available.none.fl_str_mv |
2022-08-26 2022-06-07T17:23:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0360-5442 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9213 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.energy.2021.121877 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.energy.2021.121877 |
dc.identifier.eissn.spa.fl_str_mv |
1873-6785 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0360-5442 10.1016/j.energy.2021.121877 1873-6785 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9213 https://doi.org/10.1016/j.energy.2021.121877 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Energy |
dc.relation.references.spa.fl_str_mv |
[1] Zuberi MJS, Tijdink A, Patel MK. Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Appl Energy 2017;205:85e104. https://doi.org/10.1016/j.apenergy.2017.07.121. [2] Sousa Santos V, Cabello Eras JJ, Sagastume Gutierrez A, Cabello Ulloa MJ. Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Measurement 2019;136:237e47. https:// doi.org/10.1016/j.measurement.2018.12.080. [3] Acar Ç, Soygenc OC, Ergene LT. Increasing the efficiency to IE4 class for 5.5 kW induction motor used in industrial applications. Int Rev Electr Eng 2019;14:67. https://doi.org/10.15866/iree.v14i1.16307. [4] Waide P, Brunner CU. Energy-efficiency policy opportunities for electric motor-driven systems. Cedex, Fr Int Energy Agency 2011;132. https://doi.org/ 10.1787/5kgg52gb9gjd-en. [5] Williams DR, Good L. Guide to the energy policy Act of 1992. Liburn, GA (United States): United States: Fairmont Press, Inc.; 1994. [6] International Electrotechnical Commission. IEC 60034-30-1:2014 rotating electrical Machines : efficiency classes of line operated AC motors. 2014. p. 50. [7] De Almeida AT, Ferreira FJTE, Duarte AQ. Technical and economical considerations on super high-efficiency three-phase motors. IEEE Trans Ind Appl 2014;50:1274e85. https://doi.org/10.1109/TIA.2013.2272548. [8] Ferreira FJTE, de Almeida AT. Reducing energy costs in electric-motor-driven systems: savings through output power reduction and energy regeneration. IEEE Ind Appl Mag 2018;24:84e97. https://doi.org/10.1109/ MIAS.2016.2600685. [9] Sivakumar A, Muthu Selvan NB. Reduction of source current harmonics in ANN controlled induction motor. Alexandria Eng J 2018. https://doi.org/ 10.1016/j.aej.2017.03.048. [10] Quintero Sarmiento DR, Rosero García J, Mejía Lopez W. Methodology to measure electric discharge machining ( EDM ) bearing currents in induction motors with supply from a variable speed drive ( VSD ). INGE CUC 2014;9: 83e93. [11] Bin Z, Lili M, Hao D. Principle of optimal voltage regulation and energy-saving for induction motor with unknown constant-torque working condition. IEEE Access 2020;8:187307e16. https://doi.org/10.1109/ACCESS.2020.3030936. [12] Saidur R. A review on electrical motors energy use and energy savings. Renew Sustain Energy Rev 2010;14:877e98. https://doi.org/10.1016/ j.rser.2009.10.018. [13] Trianni A, Cagno E, Accordini D. Energy efficiency measures in electric motors systems: a novel classification highlighting specific implications in their adoption. Appl Energy 2019;252:113481. https://doi.org/10.1016/ j.apenergy.2019.113481. [14] McAllister P, Nase I. The impact of minimum energy efficiency standards: some evidence from the London office market. Energy Pol 2019;132:714e22. https://doi.org/10.1016/j.enpol.2019.05.060. [15] de Almeida AT, Fong J, Falkner H, Bertoldi P. Policy options to promote energy efficient electric motors and drives in the EU. Renew Sustain Energy Rev 2017;74:1275e86. https://doi.org/10.1016/j.rser.2017.01.112. [16] Saidur R, Mahlia TMI. Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries. Energy Pol 2010;38:4617e25. https://doi.org/https://doi.org/ 10.1016/j.enpol.2010.04.017. [17] Hasanuzzaman M, Rahim NA, Saidur R, Kazi SN. Energy savings and emissions reductions for rewinding and replacement of industrial motor. Energy 2011;36:233e40. https://doi.org/10.1016/j.energy.2010.10.046. [18] Habib MA, Hasanuzzaman M, Hosenuzzaman M, Salman A, Mehadi MR. Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh. Energy 2016;112:91e100. https://doi.org/ 10.1016/j.energy.2016.06.062. [19] De Almeida A, Fong J, Brunner CU, Werle R, Van Werkhoven M. New technology trends and policy needs in energy efficient motor systems - a major opportunity for energy and carbon savings. Renew Sustain Energy Rev 2019;115:109384. https://doi.org/10.1016/j.rser.2019.109384. [20] Nugroho HS, Mahardhiko SW, Haryoseno HW. Life cycle cost assessment of replacing standard induction motor with high efficiency induction motor used in salt industry. AIP Conf Proc 2019;2062. https://doi.org/10.1063/1.5086580. [21] Sagastume Gutierrez A, Cabello Eras JJ, Sousa Santos V, Hern andez Herrera H, Hens L, Vandecasteele C. Electricity management in the production of leadacid batteries: the industrial case of a production plant in Colombia. J Clean Prod 2018;198:1443e58. https://doi.org/10.1016/j.jclepro.2018.07.105. [22] Sauer IL, Tatizawa H, Salotti FAM, Mercedes SS. A comparative assessment of Brazilian electric motors performance with minimum efficiency standards. Renew Sustain Energy Rev 2015;41:308e18. https://doi.org/10.1016/ j.rser.2014.08.053. [23] Electric Weg. Motors catolog. 2020. https://www.weg.net/catalog/weg/US/en/ J.R. Gomez, V. Sousa, J.J. Cabello Eras et al. Energy 239 (2022) 121877 Electric-Motors/c/US_MT [24] Lu B, Habetler TG, Harley RG. A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring. IEEE Trans Ind Appl 2008;44:1666e74. https://doi.org/10.1109/ TIA.2008.2006297. [25] Siraki AG, Pillay P. An in situ efficiency estimation technique for induction machines working with unbalanced supplies. IEEE Trans Energy Convers 2012;27:85e95. https://doi.org/10.1109/TEC.2011.2168563. [26] Sousa Santos V, Cabello Eras JJ, Sagastume Gutierrez A, Cabello Ulloa MJ. Data to support the assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Data Br 2020;30:105512. https://doi.org/10.1016/j.dib.2020.105512. [27] Ozkara Y, Atak M. Regional total-factor energy ef € ficiency and electricity saving potential of manufacturing industry in Turkey. Energy 2015;93:495e510. https://doi.org/10.1016/j.energy.2015.09.036. [28] OCDE. ISDB 98 international sectoral data base user's guide. 1999. Paris. [29] Gao C, Gao W, Song K, Na H, Tian F, Zhang S. Comprehensive evaluation on energy-water saving effects in iron and steel industry. Sci Total Environ 2019;670:346e60. https://doi.org/10.1016/j.scitotenv.2019.03.101. |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
239 |
dc.rights.spa.fl_str_mv |
© 2021 Elsevier Ltd. All rights reserved. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2021 Elsevier Ltd. All rights reserved. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0360544221021253?via%3Dihub#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d6a904ca-b849-4bcd-a9f7-4e94ed2303aa/download https://repositorio.cuc.edu.co/bitstreams/d10a58fe-098b-4ebd-ad3f-e760e854c2f5/download https://repositorio.cuc.edu.co/bitstreams/5bf6d58a-d56a-47f5-948c-aaa908f19d47/download https://repositorio.cuc.edu.co/bitstreams/083ae28f-a6bb-4e31-a042-7b01cd69958f/download |
bitstream.checksum.fl_str_mv |
8a6984a75dcdbffdb0beceb4aec33b04 e30e9215131d99561d40d6b0abbe9bad edeaae9ff6850b1e2b37bae3ccbb7b17 ff8f384f529542d008a11f96261f5114 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760661993095168 |
spelling |
R. Gómez, JulioSousa, VladimirCabello Eras, Juan JoséSagastume Gutiérrez, AlexisViego, Percy R.Quispe, Enrique C.de León, GabrielCorporación Universidad de la Costa2022-06-07T17:23:41Z2022-08-262022-06-07T17:23:41Z2021-08-260360-5442https://hdl.handle.net/11323/9213https://doi.org/10.1016/j.energy.2021.12187710.1016/j.energy.2021.1218771873-6785Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Currently, the feasibility to replace standard efficiency electric motors with higher efficiency ones is assessed with considerations differing from real operating conditions in the industry. This study compares the feasibility of replacing 26 standard efficiency motors (IE1) with high-efficiency efficiency ones (IE2 and IE3) in a sugar plant, based on three different energy scenarios and considering the incremental costs or depreciated costs of motors. Energy scenario 1 consider that motors operate for 6000 h/year at full load and nominal efficiency. While scenarios 2 and 3 consider the measured operating time and the load factor of motors. The results show that scenario 1 overestimates electricity consumption between 2 and 18 times, contrasted with a difference of 1e7% in scenarios 2 and 3, leading to saving potentials in scenario 1 between 1.2 and 33.4 times higher than for scenarios 2 and 3. Considering the incremental costs in scenario 1, it is feasibly to replace all the motors in the plant, while it is only feasibly to replace three motors in scenarios 2 and 3 with the depreciated costs. Therefore, the use of scenario 1 based on unrealistic conditions and leading to economic loss, should be avoided in future studies.13 páginasapplication/pdfengElsevier Ltd.United Kingdom© 2021 Elsevier Ltd. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAssessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motorsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0360544221021253?via%3Dihub#!Energy[1] Zuberi MJS, Tijdink A, Patel MK. Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Appl Energy 2017;205:85e104. https://doi.org/10.1016/j.apenergy.2017.07.121.[2] Sousa Santos V, Cabello Eras JJ, Sagastume Gutierrez A, Cabello Ulloa MJ. Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Measurement 2019;136:237e47. https:// doi.org/10.1016/j.measurement.2018.12.080.[3] Acar Ç, Soygenc OC, Ergene LT. Increasing the efficiency to IE4 class for 5.5 kW induction motor used in industrial applications. Int Rev Electr Eng 2019;14:67. https://doi.org/10.15866/iree.v14i1.16307.[4] Waide P, Brunner CU. Energy-efficiency policy opportunities for electric motor-driven systems. Cedex, Fr Int Energy Agency 2011;132. https://doi.org/ 10.1787/5kgg52gb9gjd-en.[5] Williams DR, Good L. Guide to the energy policy Act of 1992. Liburn, GA (United States): United States: Fairmont Press, Inc.; 1994.[6] International Electrotechnical Commission. IEC 60034-30-1:2014 rotating electrical Machines : efficiency classes of line operated AC motors. 2014. p. 50.[7] De Almeida AT, Ferreira FJTE, Duarte AQ. Technical and economical considerations on super high-efficiency three-phase motors. IEEE Trans Ind Appl 2014;50:1274e85. https://doi.org/10.1109/TIA.2013.2272548.[8] Ferreira FJTE, de Almeida AT. Reducing energy costs in electric-motor-driven systems: savings through output power reduction and energy regeneration. IEEE Ind Appl Mag 2018;24:84e97. https://doi.org/10.1109/ MIAS.2016.2600685.[9] Sivakumar A, Muthu Selvan NB. Reduction of source current harmonics in ANN controlled induction motor. Alexandria Eng J 2018. https://doi.org/ 10.1016/j.aej.2017.03.048.[10] Quintero Sarmiento DR, Rosero García J, Mejía Lopez W. Methodology to measure electric discharge machining ( EDM ) bearing currents in induction motors with supply from a variable speed drive ( VSD ). INGE CUC 2014;9: 83e93.[11] Bin Z, Lili M, Hao D. Principle of optimal voltage regulation and energy-saving for induction motor with unknown constant-torque working condition. IEEE Access 2020;8:187307e16. https://doi.org/10.1109/ACCESS.2020.3030936.[12] Saidur R. A review on electrical motors energy use and energy savings. Renew Sustain Energy Rev 2010;14:877e98. https://doi.org/10.1016/ j.rser.2009.10.018.[13] Trianni A, Cagno E, Accordini D. Energy efficiency measures in electric motors systems: a novel classification highlighting specific implications in their adoption. Appl Energy 2019;252:113481. https://doi.org/10.1016/ j.apenergy.2019.113481.[14] McAllister P, Nase I. The impact of minimum energy efficiency standards: some evidence from the London office market. Energy Pol 2019;132:714e22. https://doi.org/10.1016/j.enpol.2019.05.060.[15] de Almeida AT, Fong J, Falkner H, Bertoldi P. Policy options to promote energy efficient electric motors and drives in the EU. Renew Sustain Energy Rev 2017;74:1275e86. https://doi.org/10.1016/j.rser.2017.01.112.[16] Saidur R, Mahlia TMI. Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries. Energy Pol 2010;38:4617e25. https://doi.org/https://doi.org/ 10.1016/j.enpol.2010.04.017.[17] Hasanuzzaman M, Rahim NA, Saidur R, Kazi SN. Energy savings and emissions reductions for rewinding and replacement of industrial motor. Energy 2011;36:233e40. https://doi.org/10.1016/j.energy.2010.10.046.[18] Habib MA, Hasanuzzaman M, Hosenuzzaman M, Salman A, Mehadi MR. Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh. Energy 2016;112:91e100. https://doi.org/ 10.1016/j.energy.2016.06.062.[19] De Almeida A, Fong J, Brunner CU, Werle R, Van Werkhoven M. New technology trends and policy needs in energy efficient motor systems - a major opportunity for energy and carbon savings. Renew Sustain Energy Rev 2019;115:109384. https://doi.org/10.1016/j.rser.2019.109384.[20] Nugroho HS, Mahardhiko SW, Haryoseno HW. Life cycle cost assessment of replacing standard induction motor with high efficiency induction motor used in salt industry. AIP Conf Proc 2019;2062. https://doi.org/10.1063/1.5086580.[21] Sagastume Gutierrez A, Cabello Eras JJ, Sousa Santos V, Hern andez Herrera H, Hens L, Vandecasteele C. Electricity management in the production of leadacid batteries: the industrial case of a production plant in Colombia. J Clean Prod 2018;198:1443e58. https://doi.org/10.1016/j.jclepro.2018.07.105.[22] Sauer IL, Tatizawa H, Salotti FAM, Mercedes SS. A comparative assessment of Brazilian electric motors performance with minimum efficiency standards. Renew Sustain Energy Rev 2015;41:308e18. https://doi.org/10.1016/ j.rser.2014.08.053.[23] Electric Weg. Motors catolog. 2020. https://www.weg.net/catalog/weg/US/en/ J.R. Gomez, V. Sousa, J.J. Cabello Eras et al. Energy 239 (2022) 121877 Electric-Motors/c/US_MT[24] Lu B, Habetler TG, Harley RG. A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring. IEEE Trans Ind Appl 2008;44:1666e74. https://doi.org/10.1109/ TIA.2008.2006297.[25] Siraki AG, Pillay P. An in situ efficiency estimation technique for induction machines working with unbalanced supplies. IEEE Trans Energy Convers 2012;27:85e95. https://doi.org/10.1109/TEC.2011.2168563.[26] Sousa Santos V, Cabello Eras JJ, Sagastume Gutierrez A, Cabello Ulloa MJ. Data to support the assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Data Br 2020;30:105512. https://doi.org/10.1016/j.dib.2020.105512.[27] Ozkara Y, Atak M. Regional total-factor energy ef € ficiency and electricity saving potential of manufacturing industry in Turkey. Energy 2015;93:495e510. https://doi.org/10.1016/j.energy.2015.09.036.[28] OCDE. ISDB 98 international sectoral data base user's guide. 1999. Paris.[29] Gao C, Gao W, Song K, Na H, Tian F, Zhang S. Comprehensive evaluation on energy-water saving effects in iron and steel industry. Sci Total Environ 2019;670:346e60. https://doi.org/10.1016/j.scitotenv.2019.03.101.131239Energy efficiencyEnergy-savingFeasibility studiesHigh-efficiency electric motorsReplacing electric motorsPublicationORIGINAL1-s2.0-S0360544221021253-main.pdf1-s2.0-S0360544221021253-main.pdfapplication/pdf2524169https://repositorio.cuc.edu.co/bitstreams/d6a904ca-b849-4bcd-a9f7-4e94ed2303aa/download8a6984a75dcdbffdb0beceb4aec33b04MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d10a58fe-098b-4ebd-ad3f-e760e854c2f5/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S0360544221021253-main.pdf.txt1-s2.0-S0360544221021253-main.pdf.txttext/plain51048https://repositorio.cuc.edu.co/bitstreams/5bf6d58a-d56a-47f5-948c-aaa908f19d47/downloadedeaae9ff6850b1e2b37bae3ccbb7b17MD53THUMBNAIL1-s2.0-S0360544221021253-main.pdf.jpg1-s2.0-S0360544221021253-main.pdf.jpgimage/jpeg15465https://repositorio.cuc.edu.co/bitstreams/083ae28f-a6bb-4e31-a042-7b01cd69958f/downloadff8f384f529542d008a11f96261f5114MD5411323/9213oai:repositorio.cuc.edu.co:11323/92132024-09-16 16:35:43.4https://creativecommons.org/licenses/by-nc-nd/4.0/© 2021 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |