Assessing temporal complementarity between three variable energy sources through correlation and compromise programming

Renewable energies are deployed worldwide to mitigate climate change and push power systems towards sustainability. However, the weather-dependent nature of renewable energy sources often hinders their integration to national grids. Combining different sources to profit from beneficial complementarity...

Full description

Autores:
Canales, Fausto
Jurasz, Jakub
Beluco, Alexandre
Kies, Alexander
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5871
Acceso en línea:
https://hdl.handle.net/11323/5871
https://repositorio.cuc.edu.co/
Palabra clave:
Energetic complementarity
Renewable energy
Hybrid power systems
Variable renewables
Compromise programming
Correlation
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_8ed6f773290ab5af17878349e6ee8d6d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5871
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
title Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
spellingShingle Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
Energetic complementarity
Renewable energy
Hybrid power systems
Variable renewables
Compromise programming
Correlation
title_short Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
title_full Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
title_fullStr Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
title_full_unstemmed Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
title_sort Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
dc.creator.fl_str_mv Canales, Fausto
Jurasz, Jakub
Beluco, Alexandre
Kies, Alexander
dc.contributor.author.spa.fl_str_mv Canales, Fausto
Jurasz, Jakub
Beluco, Alexandre
Kies, Alexander
dc.subject.spa.fl_str_mv Energetic complementarity
Renewable energy
Hybrid power systems
Variable renewables
Compromise programming
Correlation
topic Energetic complementarity
Renewable energy
Hybrid power systems
Variable renewables
Compromise programming
Correlation
description Renewable energies are deployed worldwide to mitigate climate change and push power systems towards sustainability. However, the weather-dependent nature of renewable energy sources often hinders their integration to national grids. Combining different sources to profit from beneficial complementarity has often been proposed as a partial solution to overcome these issues. This paper introduces a novel method for quantifying total temporal energetic complementarity between three different variable renewable sources, based on well-known mathematical techniques: correlation coefficients and compromise programming. It has the major advantage of allowing the simultaneous assessment of partial and total complementarity. The method is employed to study the complementarity of wind, solar and hydro resources on different temporal scales in a region of Poland. Results show that timescale selection has a determinant impact on the total temporal complementarity.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-17T22:23:28Z
dc.date.available.none.fl_str_mv 2020-01-17T22:23:28Z
dc.date.issued.none.fl_str_mv 2020-02-01
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5871
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5871
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Bo Ming, Pan Liu, Shenglian Guo, Xiaoqi Zhang, Maoyuan Feng, and Xianxun Wang. Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long-and short-term operational decisions. Applied Energy, 204:432–445, 2017.
[2] Hossein Safaei and David W Keith. How much bulk energy storage is needed to decarbonize electricity? Energy & Environmental Science, 8(12):3409–3417, 2015.
[3] Hengxu Zhang, Yongji Cao, Yi Zhang, and Vladimir Terzija. Quantitative synergy assessment of regional wind-solar energy resources based on merra reanalysis data. Applied energy, 216:172–182, 2018.
[4] Petar Gburcik, Verica Gburˇ cik, Milivoj Gavrilov, Vladimir Srdanoviˇ c, and Sreten Mastilovi´ c. Complementary´ regimes of solar and wind energy in serbia. Geographica Pannonica, (10):22–25, 2006.
[5] Yi Li, Vassilios G Agelidis, and Yash Shrivastava. Wind-solar resource complementarity and its combined correlation with electricity load demand. In 2009 4th IEEE conference on Industrial electronics and applications, pages 3623–3628. IEEE, 2009.
[6] V. Lazarov L. Stoyanov, G. Notton and M. Ezzat. Wind and solar energies production complementarity for various bulgarian sites. page 311–325, 2010.
[7] Christina E Hoicka and Ian H Rowlands. Solar and wind resource complementarity: Advancing options for renewable electricity integration in ontario, canada. Renewable Energy, 36(1):97–107, 2011.
[8] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro pv generating plants. Renewable Energy, 45:24–30, 2012.
[9] A Beluco, PK Souza, and A Krenzinger. Influence of different degrees of complementarity of solar and hydro energy availability on the performance of hybrid hydro pv generating plants. energy and power engineering, 5, 332-342, 2013.
[10] P De Jong, AS Sánchez, K Esquerre, Ricardo de Araújo Kalid, and Ednildo Andrade Torres. Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of brazil. Renewable and Sustainable Energy Reviews, 23:526–535, 2013.
[11] DS Ramos, LAS Camargo, E Guarnier, and LT Witzler. Minimizing market risk by trading hydro-wind portfolio: a complementarity approach. In 2013 10th International Conference on the European Energy Market (EEM), pages 1–8. IEEE, 2013.
[12] Allan Rodrigues Silva, Felipe Mendonca Pimenta, Arcilan Trevenzoli Assireu, and Maria Helena Constantino Spyrides. Complementarity of brazils hydro and offshore wind power. Renewable and Sustainable Energy Reviews, 56:413–427, 2016.
[13] Johannes Schmidt, Rafael Cancella, and Amaro O Pereira Jr. An optimal mix of solar pv, wind and hydro power for a low-carbon electricity supply in brazil. Renewable Energy, 85:137–147, 2016.
[14] Mauricio P Cantão, Marcelo R Bessa, Renê Bettega, Daniel HM Detzel, and João M Lima. Evaluation of hydrowind complementarity in the brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.
[15] Michel Denault, Debbie Dupuis, and Sébastien Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.
[16] Gilberto Pianezzola, Arno Krenzinger, and Fausto Alfredo Canales Vega. Complementarity maps of wind and solar energy resources for rio grande do sul, brazil. Energy and power engineering [recurso eletrônico].[Wuhan, China]. Vol. 9, no. 9 (2017), p. 489-504, 2017.
[17] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157–2165, 2008.
[18] Caroline de Oliveira Costa Souza Rosa, Kelly Costa, Eliane da Silva Christo, and Pâmela Braga Bertahone. Complementarity of hydro, photovoltaic, and wind power in rio de janeiro state. Sustainability, 9(7):1130, 2017.
[19] Marcos Bagatini, Mariana G Benevit, Alexandre Beluco, and Alfonso Risso. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.
[20] Alfonso Risso, Alexandre Beluco, and Rita Marques Alves. Complementarity roses evaluating spatial complementarity in time between energy resources. Energies, 11(7):1918, 2018.
[21] F Monforti, T Huld, K Bódis, L Vitali, M D’isidoro, and R Lacal-Arántegui. Assessing complementarity of wind and solar resources for energy production in italy. a monte carlo approach. Renewable Energy, 63:576–586, 2014.
[22] Surendra B Kunwar. Complementarity of wind, solar and hydro resources for combating seasonal power shortage in nepal. In World Sustainability Forum, 2014.
[23] Baptiste Francois, Marco Borga, Jean-Dominique Creutin, Benoit Hingray, Damien Raynaud, and Julian-Friedrich Sauterleute. Complementarity between solar and hydro power: Sensitivity study to climate characteristics in northern-italy. Renewable energy, 86:543–553, 2016.
[24] Ioannis Kougias, Sándor Szabó, Fabio Monforti-Ferrario, Thomas Huld, and Katalin Bódis. A methodology for optimization of the complementarity between small-hydropower plants and solar pv systems. Renewable Energy, 87:1023–1030, 2016.
[25] AA Solomon, Daniel M Kammen, and D Callaway. Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Applied energy, 168:130–145, 2016.
[26] B François, D Zoccatelli, and M Borga. Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods. Energy, 127:716–729, 2017.
[27] Jakub Jurasz, Adam Piasecki, and Marcin Wdowikowski. Assessing temporal complementarity of solar, wind and hydrokinetic energy. In E3S web of conferences, volume 10, page 00032. EDP Sciences, 2016.
[28] Lanjing Xu, Zhiwei Wang, and Yanfeng Liu. The spatial and temporal variation features of wind-sun complementarity in china. Energy Conversion and Management, 154:138–148, 2017.
[29] Ashish Gulagi, Manish Ram, and Christian Breyer. Solar-wind complementarity with optimal storage and transmission in mitigating the monsoon effect in achieving a fully sustainable electricity system for india. In 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, pages 6–8, 2017.
[30] Abhnil A Prasad, Robert A Taylor, and Merlinde Kay. Assessment of solar and wind resource synergy in australia. Applied Energy, 190:354–367, 2017.
[31] Frederico A During Fo, Alexandre Beluco, Elton G Rossini, and José de Souza. Influence of time complementarity on energy storage through batteries in hydro pv hybrid energy system. Computational Water, Energy, and Environmental Engineering, 7(03):142, 2018.
[32] Jakub Jurasz, Marcin Wdowikowski, Bartosz Kaz´mierczak, and Paweł Da˛bek. Temporal and spatial complementarity of wind and solar resources in lower silesia (poland). In E3S web of conferences, volume 22, page 00074. EDP Sciences, 2017.
[33] Jakub Jurasz, Paweł B Da˛bek, Bartosz Kaz´mierczak, Alexander Kies, and Marcin Wdowikowski. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for lower silesia (poland). Energy, 161:183–192, 2018.
[34] Jakub Jurasz, Alexandre Beluco, and Fausto A Canales. The impact of complementarity on power supply reliability of small scale hybrid energy systems. Energy, 161:737–743, 2018.
[35] Jakub Jurasz and Jerzy Mikulik. Site selection for wind and solar parks based on resources temporal and spatial complementarity–mathematical modelling approach. Przegla˛d Elektrotechniczny, 93(7):86–91, 2017.
[36] Maurel Aza-Gnandji, François Xavier Fifatin, A Hypolite J Hounnou, Frédéric Dubas, Didier Chamagne, Christophe Espanet, and Antoine Vianou. Complementarity between solar and wind energy potentials in benin republic. In Advanced Engineering Forum, volume 28, pages 128–138. Trans Tech Publ, 2018.
[37] Jizhong Zhu, Xiaofu Xiong, and Peizheng Xuan. Dynamic economic dispatching strategy based on multi-timescale complementarity of various heterogeneous energy. DEStech Transactions on Environment, Energy and Earth Sciences, (appeec), 2018.
[38] Yanmei Zhu, Shijun Chen, Weibin Huang, Li Wang, and Guangwen Ma. Complementary operational research for a hydro-wind-solar hybrid power system on the upper jinsha river. Journal of Renewable and Sustainable Energy, 10(4):043309, 2018.
[39] Xinshuo Zhang, Guangwen Ma, Weibin Huang, Shijun Chen, and Shuai Zhang. Short-term optimal operation of a wind-pv-hydro complementary installation: Yalong river, sichuan province, china. Energies, 11(4):868, 2018.
[40] Matthew R Shaner, Steven J Davis, Nathan S Lewis, and Ken Caldeira. Geophysical constraints on the reliability of solar and wind power in the united states. Energy & Environmental Science, 11(4):914–925, 2018.
[41] Felipe Henao, Yeny Rodriguez, Juan Pablo Viteri, and Isaac Dyner. Optimising the insertion of renewables in the colombian power sector. Renewable Energy, 132:81–92, 2019.
[42] B François, B Hingray, D Raynaud, M Borga, and JD Creutin. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy, 87:686–696, 2016.
[43] Maria Krutova, Alexander Kies, Bruno U Schyska, and Lueder von Bremen. The smoothing effect for renewable resources in an afro-eurasian power grid. Advances in Science and Research, 14:253–260, 2017.
[44] Mario Marcello Miglietta, Thomas Huld, and Fabio Monforti-Ferrario. Local complementarity of wind and solar energy resources over europe: an assessment study from a meteorological perspective. Journal of Applied Meteorology and Climatology, 56(1):217–234, 2017.
[45] Sebastian Sterl, Stefan Liersch, Hagen Koch, Nicole PM van Lipzig, and Wim Thiery. A new approach for assessing synergies of solar and wind power: implications for west africa. Environmental Research Letters, 13(9):094009, 2018.
[46] Lion Hirth and Simon Müller. System-friendly wind power: How advanced wind turbine design can increase the economic value of electricity generated through wind power. Energy Economics, 56:51–63, 2016.
[47] Kabitri Chattopadhyay, Alexander Kies, Elke Lorenz, Lüder von Bremen, and Detlev Heinemann. The impact of different pv module configurations on storage and additional balancing needs for a fully renewable european power system. Renewable energy, 113:176–189, 2017.
[48] Elizando M Borba and Renato M Brito. An index assessing the energetic complementarity in time between more than two energy resources. Energy and Power Engineering, 9(09):505, 2017.
[49] Shuang Han, Lu-na Zhang, Yong-qian Liu, Hao Zhang, Jie Yan, Li Li, Xiao-hui Lei, and Xu Wang. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Applied Energy, 236:973–984, 2019.
[50] René Carmona. Statistical analysis of financial data in R, volume 2. Springer, 2014.
[51] Miguel A Vega-Sánchez, Paulina D Castañeda-Jiménez, Rafael Peña-Gallardo, Antonio Ruiz-Alonso, Jorge A Morales-Saldaña, and Elvia R Palacios-Hernández. Evaluation of complementarity of wind and solar energy resources over mexico using an image processing approach. In 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pages 1–5. IEEE, 2017.
[52] Mark Gershon and Lucien Duckstein. Multiobjective approaches to river basin planning. Journal of Water Resources Planning and Management, 109(1):13–28, 1983.
[53] Edeltrauda Helios-Rybicka, Agnieszka Hołda, and Elzbieta Jarosz. Monitoring and quality assessment of selected˙ physical and chemical parameters of the sola river system, south poland. Inzynieria˙ Srodowiska/Akademia´ Górniczo-Hutnicza im. S. Staszica w Krakowie, 10:45–58, 2005.
[54] Global modeling and assimilation office (gmao). http://doi.org/10.5067/VJAFPLI1CSIV. Accessed: Oct14, 2018.
[55] Copernicus atmosphere monitoring service products. http://www.soda-pro.com/web-services/radiati on/camsradiation-service. Accessed: 15-Nov-2018.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/faf830f7-57a1-4e59-96af-dfdb055a61a9/download
https://repositorio.cuc.edu.co/bitstreams/cf93e433-ce47-44a3-8a01-eebdb3f8370b/download
https://repositorio.cuc.edu.co/bitstreams/91faaf0c-a12e-4068-8ef1-5478ea238c58/download
https://repositorio.cuc.edu.co/bitstreams/3fcd5f7a-bba1-4eaa-b8dd-5b62b75c78e2/download
https://repositorio.cuc.edu.co/bitstreams/7b121b1f-d432-450b-ac78-64308a6bb1a7/download
bitstream.checksum.fl_str_mv d9ac1bdcf317f13e4d4f29d09b2e7ecf
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
d721009a53cc8e546dbc5adc2f15b5d1
06dd52d27262622c4d18347c707ab2f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760720456450048
spelling Canales, FaustoJurasz, JakubBeluco, AlexandreKies, Alexander2020-01-17T22:23:28Z2020-01-17T22:23:28Z2020-02-01https://hdl.handle.net/11323/5871Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Renewable energies are deployed worldwide to mitigate climate change and push power systems towards sustainability. However, the weather-dependent nature of renewable energy sources often hinders their integration to national grids. Combining different sources to profit from beneficial complementarity has often been proposed as a partial solution to overcome these issues. This paper introduces a novel method for quantifying total temporal energetic complementarity between three different variable renewable sources, based on well-known mathematical techniques: correlation coefficients and compromise programming. It has the major advantage of allowing the simultaneous assessment of partial and total complementarity. The method is employed to study the complementarity of wind, solar and hydro resources on different temporal scales in a region of Poland. Results show that timescale selection has a determinant impact on the total temporal complementarity.Canales, Fausto-will be generated-orcid-0000-0002-6858-1855-600Jurasz, JakubBeluco, Alexandre-will be generated-orcid-0000-0003-1507-9519-600Kies, AlexanderengUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energetic complementarityRenewable energyHybrid power systemsVariable renewablesCompromise programmingCorrelationAssessing temporal complementarity between three variable energy sources through correlation and compromise programmingPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] Bo Ming, Pan Liu, Shenglian Guo, Xiaoqi Zhang, Maoyuan Feng, and Xianxun Wang. Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long-and short-term operational decisions. Applied Energy, 204:432–445, 2017.[2] Hossein Safaei and David W Keith. How much bulk energy storage is needed to decarbonize electricity? Energy & Environmental Science, 8(12):3409–3417, 2015.[3] Hengxu Zhang, Yongji Cao, Yi Zhang, and Vladimir Terzija. Quantitative synergy assessment of regional wind-solar energy resources based on merra reanalysis data. Applied energy, 216:172–182, 2018.[4] Petar Gburcik, Verica Gburˇ cik, Milivoj Gavrilov, Vladimir Srdanoviˇ c, and Sreten Mastilovi´ c. Complementary´ regimes of solar and wind energy in serbia. Geographica Pannonica, (10):22–25, 2006.[5] Yi Li, Vassilios G Agelidis, and Yash Shrivastava. Wind-solar resource complementarity and its combined correlation with electricity load demand. In 2009 4th IEEE conference on Industrial electronics and applications, pages 3623–3628. IEEE, 2009.[6] V. Lazarov L. Stoyanov, G. Notton and M. Ezzat. Wind and solar energies production complementarity for various bulgarian sites. page 311–325, 2010.[7] Christina E Hoicka and Ian H Rowlands. Solar and wind resource complementarity: Advancing options for renewable electricity integration in ontario, canada. Renewable Energy, 36(1):97–107, 2011.[8] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro pv generating plants. Renewable Energy, 45:24–30, 2012.[9] A Beluco, PK Souza, and A Krenzinger. Influence of different degrees of complementarity of solar and hydro energy availability on the performance of hybrid hydro pv generating plants. energy and power engineering, 5, 332-342, 2013.[10] P De Jong, AS Sánchez, K Esquerre, Ricardo de Araújo Kalid, and Ednildo Andrade Torres. Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of brazil. Renewable and Sustainable Energy Reviews, 23:526–535, 2013.[11] DS Ramos, LAS Camargo, E Guarnier, and LT Witzler. Minimizing market risk by trading hydro-wind portfolio: a complementarity approach. In 2013 10th International Conference on the European Energy Market (EEM), pages 1–8. IEEE, 2013.[12] Allan Rodrigues Silva, Felipe Mendonca Pimenta, Arcilan Trevenzoli Assireu, and Maria Helena Constantino Spyrides. Complementarity of brazils hydro and offshore wind power. Renewable and Sustainable Energy Reviews, 56:413–427, 2016.[13] Johannes Schmidt, Rafael Cancella, and Amaro O Pereira Jr. An optimal mix of solar pv, wind and hydro power for a low-carbon electricity supply in brazil. Renewable Energy, 85:137–147, 2016.[14] Mauricio P Cantão, Marcelo R Bessa, Renê Bettega, Daniel HM Detzel, and João M Lima. Evaluation of hydrowind complementarity in the brazilian territory by means of correlation maps. Renewable Energy, 101:1215–1225, 2017.[15] Michel Denault, Debbie Dupuis, and Sébastien Couture-Cardinal. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12):5376–5384, 2009.[16] Gilberto Pianezzola, Arno Krenzinger, and Fausto Alfredo Canales Vega. Complementarity maps of wind and solar energy resources for rio grande do sul, brazil. Energy and power engineering [recurso eletrônico].[Wuhan, China]. Vol. 9, no. 9 (2017), p. 489-504, 2017.[17] Alexandre Beluco, Paulo Kroeff de Souza, and Arno Krenzinger. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renewable Energy, 33(10):2157–2165, 2008.[18] Caroline de Oliveira Costa Souza Rosa, Kelly Costa, Eliane da Silva Christo, and Pâmela Braga Bertahone. Complementarity of hydro, photovoltaic, and wind power in rio de janeiro state. Sustainability, 9(7):1130, 2017.[19] Marcos Bagatini, Mariana G Benevit, Alexandre Beluco, and Alfonso Risso. Complementarity in time between hydro, wind and solar energy resources in the state of rio grande do sul, in southern brazil. Energy and Power Engineering, 9(09):515, 2017.[20] Alfonso Risso, Alexandre Beluco, and Rita Marques Alves. Complementarity roses evaluating spatial complementarity in time between energy resources. Energies, 11(7):1918, 2018.[21] F Monforti, T Huld, K Bódis, L Vitali, M D’isidoro, and R Lacal-Arántegui. Assessing complementarity of wind and solar resources for energy production in italy. a monte carlo approach. Renewable Energy, 63:576–586, 2014.[22] Surendra B Kunwar. Complementarity of wind, solar and hydro resources for combating seasonal power shortage in nepal. In World Sustainability Forum, 2014.[23] Baptiste Francois, Marco Borga, Jean-Dominique Creutin, Benoit Hingray, Damien Raynaud, and Julian-Friedrich Sauterleute. Complementarity between solar and hydro power: Sensitivity study to climate characteristics in northern-italy. Renewable energy, 86:543–553, 2016.[24] Ioannis Kougias, Sándor Szabó, Fabio Monforti-Ferrario, Thomas Huld, and Katalin Bódis. A methodology for optimization of the complementarity between small-hydropower plants and solar pv systems. Renewable Energy, 87:1023–1030, 2016.[25] AA Solomon, Daniel M Kammen, and D Callaway. Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Applied energy, 168:130–145, 2016.[26] B François, D Zoccatelli, and M Borga. Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods. Energy, 127:716–729, 2017.[27] Jakub Jurasz, Adam Piasecki, and Marcin Wdowikowski. Assessing temporal complementarity of solar, wind and hydrokinetic energy. In E3S web of conferences, volume 10, page 00032. EDP Sciences, 2016.[28] Lanjing Xu, Zhiwei Wang, and Yanfeng Liu. The spatial and temporal variation features of wind-sun complementarity in china. Energy Conversion and Management, 154:138–148, 2017.[29] Ashish Gulagi, Manish Ram, and Christian Breyer. Solar-wind complementarity with optimal storage and transmission in mitigating the monsoon effect in achieving a fully sustainable electricity system for india. In 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, pages 6–8, 2017.[30] Abhnil A Prasad, Robert A Taylor, and Merlinde Kay. Assessment of solar and wind resource synergy in australia. Applied Energy, 190:354–367, 2017.[31] Frederico A During Fo, Alexandre Beluco, Elton G Rossini, and José de Souza. Influence of time complementarity on energy storage through batteries in hydro pv hybrid energy system. Computational Water, Energy, and Environmental Engineering, 7(03):142, 2018.[32] Jakub Jurasz, Marcin Wdowikowski, Bartosz Kaz´mierczak, and Paweł Da˛bek. Temporal and spatial complementarity of wind and solar resources in lower silesia (poland). In E3S web of conferences, volume 22, page 00074. EDP Sciences, 2017.[33] Jakub Jurasz, Paweł B Da˛bek, Bartosz Kaz´mierczak, Alexander Kies, and Marcin Wdowikowski. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for lower silesia (poland). Energy, 161:183–192, 2018.[34] Jakub Jurasz, Alexandre Beluco, and Fausto A Canales. The impact of complementarity on power supply reliability of small scale hybrid energy systems. Energy, 161:737–743, 2018.[35] Jakub Jurasz and Jerzy Mikulik. Site selection for wind and solar parks based on resources temporal and spatial complementarity–mathematical modelling approach. Przegla˛d Elektrotechniczny, 93(7):86–91, 2017.[36] Maurel Aza-Gnandji, François Xavier Fifatin, A Hypolite J Hounnou, Frédéric Dubas, Didier Chamagne, Christophe Espanet, and Antoine Vianou. Complementarity between solar and wind energy potentials in benin republic. In Advanced Engineering Forum, volume 28, pages 128–138. Trans Tech Publ, 2018.[37] Jizhong Zhu, Xiaofu Xiong, and Peizheng Xuan. Dynamic economic dispatching strategy based on multi-timescale complementarity of various heterogeneous energy. DEStech Transactions on Environment, Energy and Earth Sciences, (appeec), 2018.[38] Yanmei Zhu, Shijun Chen, Weibin Huang, Li Wang, and Guangwen Ma. Complementary operational research for a hydro-wind-solar hybrid power system on the upper jinsha river. Journal of Renewable and Sustainable Energy, 10(4):043309, 2018.[39] Xinshuo Zhang, Guangwen Ma, Weibin Huang, Shijun Chen, and Shuai Zhang. Short-term optimal operation of a wind-pv-hydro complementary installation: Yalong river, sichuan province, china. Energies, 11(4):868, 2018.[40] Matthew R Shaner, Steven J Davis, Nathan S Lewis, and Ken Caldeira. Geophysical constraints on the reliability of solar and wind power in the united states. Energy & Environmental Science, 11(4):914–925, 2018.[41] Felipe Henao, Yeny Rodriguez, Juan Pablo Viteri, and Isaac Dyner. Optimising the insertion of renewables in the colombian power sector. Renewable Energy, 132:81–92, 2019.[42] B François, B Hingray, D Raynaud, M Borga, and JD Creutin. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy, 87:686–696, 2016.[43] Maria Krutova, Alexander Kies, Bruno U Schyska, and Lueder von Bremen. The smoothing effect for renewable resources in an afro-eurasian power grid. Advances in Science and Research, 14:253–260, 2017.[44] Mario Marcello Miglietta, Thomas Huld, and Fabio Monforti-Ferrario. Local complementarity of wind and solar energy resources over europe: an assessment study from a meteorological perspective. Journal of Applied Meteorology and Climatology, 56(1):217–234, 2017.[45] Sebastian Sterl, Stefan Liersch, Hagen Koch, Nicole PM van Lipzig, and Wim Thiery. A new approach for assessing synergies of solar and wind power: implications for west africa. Environmental Research Letters, 13(9):094009, 2018.[46] Lion Hirth and Simon Müller. System-friendly wind power: How advanced wind turbine design can increase the economic value of electricity generated through wind power. Energy Economics, 56:51–63, 2016.[47] Kabitri Chattopadhyay, Alexander Kies, Elke Lorenz, Lüder von Bremen, and Detlev Heinemann. The impact of different pv module configurations on storage and additional balancing needs for a fully renewable european power system. Renewable energy, 113:176–189, 2017.[48] Elizando M Borba and Renato M Brito. An index assessing the energetic complementarity in time between more than two energy resources. Energy and Power Engineering, 9(09):505, 2017.[49] Shuang Han, Lu-na Zhang, Yong-qian Liu, Hao Zhang, Jie Yan, Li Li, Xiao-hui Lei, and Xu Wang. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Applied Energy, 236:973–984, 2019.[50] René Carmona. Statistical analysis of financial data in R, volume 2. Springer, 2014.[51] Miguel A Vega-Sánchez, Paulina D Castañeda-Jiménez, Rafael Peña-Gallardo, Antonio Ruiz-Alonso, Jorge A Morales-Saldaña, and Elvia R Palacios-Hernández. Evaluation of complementarity of wind and solar energy resources over mexico using an image processing approach. In 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pages 1–5. IEEE, 2017.[52] Mark Gershon and Lucien Duckstein. Multiobjective approaches to river basin planning. Journal of Water Resources Planning and Management, 109(1):13–28, 1983.[53] Edeltrauda Helios-Rybicka, Agnieszka Hołda, and Elzbieta Jarosz. Monitoring and quality assessment of selected˙ physical and chemical parameters of the sola river system, south poland. Inzynieria˙ Srodowiska/Akademia´ Górniczo-Hutnicza im. S. Staszica w Krakowie, 10:45–58, 2005.[54] Global modeling and assimilation office (gmao). http://doi.org/10.5067/VJAFPLI1CSIV. Accessed: Oct14, 2018.[55] Copernicus atmosphere monitoring service products. http://www.soda-pro.com/web-services/radiati on/camsradiation-service. Accessed: 15-Nov-2018.PublicationORIGINALAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdfAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdfapplication/pdf3246199https://repositorio.cuc.edu.co/bitstreams/faf830f7-57a1-4e59-96af-dfdb055a61a9/downloadd9ac1bdcf317f13e4d4f29d09b2e7ecfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/cf93e433-ce47-44a3-8a01-eebdb3f8370b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/91faaf0c-a12e-4068-8ef1-5478ea238c58/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdf.jpgAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdf.jpgimage/jpeg57255https://repositorio.cuc.edu.co/bitstreams/3fcd5f7a-bba1-4eaa-b8dd-5b62b75c78e2/downloadd721009a53cc8e546dbc5adc2f15b5d1MD55TEXTAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdf.txtAssessing temporal complementarity between three variable energy sources through correlation and compromise programming.pdf.txttext/plain51899https://repositorio.cuc.edu.co/bitstreams/7b121b1f-d432-450b-ac78-64308a6bb1a7/download06dd52d27262622c4d18347c707ab2f8MD5611323/5871oai:repositorio.cuc.edu.co:11323/58712024-09-17 10:47:48.873http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=