Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments

The integrated management of water resources is a requirement for environmental preservation and economic development, with the removal of nutrients being one of the main drawbacks. In this work, the efficiency of a bacterial consortium (Ecobacter WP) made up of eight bacterial strains of the genus...

Full description

Autores:
Marquez Fontalvo, Nubia
MORGADO GAMERO, WENDY BEATRIZ
Maury Ardila, Henry Alfonso
Pulgar Gonzalez, Andres
Gindri Ramos, Claudete
Parody Muñoz, Alexander Elias
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9483
Acceso en línea:
https://hdl.handle.net/11323/9483
https://doi.org/10.1007/s11270-022-05754-y
https://repositorio.cuc.edu.co/
Palabra clave:
Bioaugmentation
Nitrogen compounds
Bacterial consortium
Denitrifcation
Nitrifcation
Water resource management
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_8e0dce6dc8821b50065fd7637b29bd11
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9483
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
title Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
spellingShingle Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
Bioaugmentation
Nitrogen compounds
Bacterial consortium
Denitrifcation
Nitrifcation
Water resource management
title_short Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
title_full Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
title_fullStr Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
title_full_unstemmed Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
title_sort Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatments
dc.creator.fl_str_mv Marquez Fontalvo, Nubia
MORGADO GAMERO, WENDY BEATRIZ
Maury Ardila, Henry Alfonso
Pulgar Gonzalez, Andres
Gindri Ramos, Claudete
Parody Muñoz, Alexander Elias
dc.contributor.author.spa.fl_str_mv Marquez Fontalvo, Nubia
MORGADO GAMERO, WENDY BEATRIZ
Maury Ardila, Henry Alfonso
Pulgar Gonzalez, Andres
Gindri Ramos, Claudete
Parody Muñoz, Alexander Elias
dc.subject.proposal.eng.fl_str_mv Bioaugmentation
Nitrogen compounds
Bacterial consortium
Denitrifcation
Nitrifcation
Water resource management
topic Bioaugmentation
Nitrogen compounds
Bacterial consortium
Denitrifcation
Nitrifcation
Water resource management
description The integrated management of water resources is a requirement for environmental preservation and economic development, with the removal of nutrients being one of the main drawbacks. In this work, the efficiency of a bacterial consortium (Ecobacter WP) made up of eight bacterial strains of the genus Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Bacillus cereus, Arthrobacter sp., Acinetobacter paraffineus, Corynebacterium sp., and Streptomyces globisporus was evaluated in the removal of nitrogen compounds in domestic wastewater in a plug flow system, in the extended aeration and bioaugmentation (FLAEBI). To promote the nitrification and denitrification processes, three doses were tested to establish the optimal concentration of the bacterial consortium on a laboratory scale and its subsequent application in an outdoor wastewater treatment plant (WWTP). The evaluation period was 15 days for each treatment in the laboratory and WWTP. The parameters monitored both at laboratory and outdoor were pH, temperature, dissolved oxygen, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium, nitrites, and nitrates. The results indicated that the optimal concentration of the consortium was 30 mg L−1, with a removal of 92% of nitrate at the laboratory and 62% outdoor. Such a difference is attributed to the different operation residence times and the volume that caused different concentration gradients. The consortium studied can be used to promote nitrification and denitrification processes that intervene in the removal of nitrogenous compounds in plants with similar operating conditions, without investment in restructuring or design modification of the WWTP.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-30T13:55:20Z
dc.date.available.none.fl_str_mv 2022-08-30T13:55:20Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Fontalvo, N.P.M., Gamero, W.B.M., Ardila, H.A.M. et al. Removal of Nitrogenous Compounds from Municipal Wastewater Using a Bacterial Consortium: an Opportunity for More Sustainable Water Treatments. Water Air Soil Pollut 233, 339 (2022). https://doi.org/10.1007/s11270-022-05754-y
dc.identifier.issn.spa.fl_str_mv 0049-6979
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9483
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1007/s11270-022-05754-y
dc.identifier.doi.spa.fl_str_mv 10.1007/s11270-022-05754-y
dc.identifier.eissn.spa.fl_str_mv 1573-2932
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Fontalvo, N.P.M., Gamero, W.B.M., Ardila, H.A.M. et al. Removal of Nitrogenous Compounds from Municipal Wastewater Using a Bacterial Consortium: an Opportunity for More Sustainable Water Treatments. Water Air Soil Pollut 233, 339 (2022). https://doi.org/10.1007/s11270-022-05754-y
0049-6979
10.1007/s11270-022-05754-y
1573-2932
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9483
https://doi.org/10.1007/s11270-022-05754-y
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Water, Air, and Soil Pollution
dc.relation.references.spa.fl_str_mv Achak, M., Mandi, L., & Ouazzani, N. (2009). Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Journal of Environmental Management, 90, 2771–2779. https://doi.org/10.1016/j.jenvman.2009.03.012
Adolfo, G.,Castillo, S., (2016). Nutrient removal through biofilm treatments. https://doi.org/10.20868/UPM.thesis.39458.
AFCEE (2008) Technical protocol for enhanced anaerobic bioremediation using permeable mulch biowalls and bioreactors, Technical Directorate, Environmental Science Division. https://www.cluin.org/download/techfocus/prb/Final-Biowall-Protocol-05-08.pdf
AhnH, Y. (2006). Sustainable nitrogen elimination biotechnologies: A review. In Process Biochemistry, 41(8), 1709–1721. https://doi.org/10.1016/j.procbio.2006.03.033
Aragaw, T., (2020). Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: A review. In International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-03022-2
Aragaw, T., Asmare, A., (2018). Phycoremediation of textile wastewater using indigenous microalgae. In Water Practice & Technology. 13, Issue 2, pp. 274–284. IWA Publishing. https://doi.org/10.2166/wpt.2018.037.
Atolia, E., Cesar, S., Arjes, H. A., Rajendram, M., Shi., H., Knapp, B. D., Khare, S., Aranda, A., Lenski, R. E., Huang, K.C., (2020). Environmental and physiological factors affecting high-throughput measurements of bacterial growth. Downloaded from. https://doi.org/10.1128/mBio
Baumann, B., Snozzi, M., Zehnder, A. J. B., Roelof, J., (1996). Dynamics of Denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. In Journal of Bacteriology Vol. 178, Issue 15. http://jb.asm.org/
Bedoya, C., 2012. study of the nitrification and denitrification process via nitrite for the biological treatment of waste water currents with high ammonia nitrogen load. https://doi.org/10.4995/Thesis/10251/17653
Baird, R., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.
Camargo, J. A., Alonso, Á, (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. In Environment International. 32, Issue 6, pp. 831–849. Elsevier Ltd. https://doi.org/10.1016/j.envint.2006.05.002
Cárdenas, G., Sánchez, I., (2013) Nitrogen in wastewater: Origins, effects and removal mechanisms to preserve the environment and public health. 15, Issue 1.
Cervantes, F., Pérez, J., Gómez, J, (2000). Advances in the biological elimination of nitrogen from wastewater. Latin American Journal of Microbiology, 42, 73–82. https://www.medigraphic.com/pdfs/lamicro/mi-2000/mi002e.pdf
Cockburn, A., Heppner, W., Dorne, M., (2014). Environmental contaminants: Nitrate and nitrite. In Encyclopedia of Food Safety 2, pp. 332–336. Elsevier. https://doi.org/10.1016/B978-0-12-378612-8.00199-2
De Laia, G., Tosta dos Reis, J., Ferrei, A., and Silva, F., (2019). Methodology for minimum nitrogen compounds removal efficiencies estimation and wastewater treatment systems pre-selection: A watershed approach. Brazilian Journal of Water Resources.https://doi.org/10.1590/2318-0331.241920180173
Dennis, M. J., Wilson, L. A. 2003. Nitrates and nitrites. In Encyclopedia of food sciences and nutrition pp. 4136–4141. Elsevier. https://doi.org/10.1016/b0-12-227055-x/00830-0
Ekama, G. A. (2011). Biological nutrient removal. Treatise on Water Science, 4(August), 409–526. https://doi.org/10.1016/B978-0-444-53199-5.00094-4
Eliašová, A., Hrivnák, R., Štefánová, P., Svitok, M., Kochjarová, J., Oťaheľová, H., Novikmec, M., & Palove, P. (2021). Effects of ammonium levels on growth and accumulation of antioxidative flavones of the submerged macrophyte Ceratophyllum demersum. Aquatic Botany, 10, 33–76. https://doi.org/10.1016/j.aquabot.2021.103376
EPA. (2000). Wastewater technology fact sheet package plants. Packing plants. Washington DC: URL for the United States Environmental Protection Agency (EPA). https://www.epa.gov/npdes/pubs/package_plant.pdf
Fan, A. M. (2014). Nitrate. Encyclopedia of Toxicology. Elsevier., 3, 523–527. https://doi.org/10.1016/B978-0-12-386454-3.01067-8
Fan, A.M., (2019). Health, exposure and regulatory implications of nitrate and nitrite in drinking water. Encyclopedia of Environmental Health. Elsevier. 417-435. https://doi.org/10.1016/B978-0-12-409548-9.11837-8
García, S.C., (2011). Bacterias simbióticas fijadoras de nitrógeno. In CT. 3, 173–186. https://dialnet.unirioja.es/servle.t/articulo?codigo=3761553.
Garrido, J., Paredes, R., Alonso, B., (2019. Elimination of nitrogenous compounds in wastewater by nitrification and denitrification. https://hdl.handle.net/11673/48774.
Gealt, M.A., Levin, M.A., (1993). Biotreatment of industrial and hazardous waste. McGraw-Hill. //catalog.hathitrust.org/Record/002710706.
Herrero, M., & Stuckey, D. C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033
Hiren, P.K., (1997). Ammonia reduction through bioaugmentation. http://www.labamerex.com/images/1997-Proteccion-ambiental-Triverdi-MSChE.pdf.
Hong, P., Wu, X., Shu, Y., Wang, C., Tian, C., Wu, H., Xiao, B., 2020.Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor. Bioresource Technology. 303https://doi.org/10.1016/j.biortech.2020.122905
IDEAM. (2017). Ideam water monitoring protocol (N. Vargas, T. Tetaty, and A. Vesga, Eds.). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023773/PROTOCOLO_MONITOREO_AGUA_IDEAM.pdf
IDEAM (2019). National water study 2018. Bogotá: Ideam: 452 pp. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdf
Igiri BE et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology.https://doi.org/10.1155/2018/2568038
Ipuz, A., and Reyes, M., (2015). Design, construction and start-up of an anaerobic piston flow reactor (RAP) with Guadua as a support medium, for the treatment of domestic wastewater from a workers' camp of a fish farm. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria.
Jaibiba, P., Naga, S., Hariharan, S., (2020). Working principle of typical bioreactors. Bioreactors. 145-173https://doi.org/10.1016/b978-0-12-821264-6.00010-3
Jia, L., Jiang, B., Huang, F., and Hu, X. (2019). Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresource Technology, 294https://doi.org/10.1016/j.biortech.2019.122140
John, E.M., Krishnapriya, K., Sankar, T.V., 2020.Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture. 526https://doi.org/10.1016/j.aquaculture.2020.735390
Kallistova, A. Y., Dorofeev, A. G., Nikolaev, Y. A., Kozlov, M. N., Kevbrina, M. V., & Pimenov, N. V. (2016). Role of anammox bacteria in removal of nitrogen compounds from wastewater. Microbiology Russian Federation., 85, 140–156. https://doi.org/10.1134/S0026261716020089
Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51, 265–271. https://doi.org/10.1016/S0045-6535(02)00807-X
Li, W., Cai, Z., Duo, Z. J., Lu, Y. F., Gao, K. X., Abbas, G., Zhang, M., & Zheng, P. (2017). Heterotrophic ammonia and nitrate bio-removal over nitrite (Hanbon): Performance and microflora. Chemosphere, 182, 532–538. https://doi.org/10.1016/j.chemosphere.2017.05.068
Liu, S., (2017). Ideal flow reactors. Bioprocess Engineering. 179-257.https://doi.org/10.1016/b978-0-444-63783-3.00005-8
López, C., Buitrón, G., García, H., Cervantes, F., 2017. Biological wastewater treatment: Principles, modeling and design. Cambridge University Press. https://doi.org/10.2166/9781780409146
Lucena, J., Schneider, J., & Leydens, J. A. (2010). Engineering and sustainable community development. Synthesis Lectures on Engineers, Technology, and Society, 11, 1–230. https://doi.org/10.2200/S00247ED1V01Y201001ETS011
Mažeikienė, A., Grubliauskas, R., (2021). Biotechnological wastewater treatment in small-scale wastewater treatment plants. Journal of Cleaner Production. 279.https://doi.org/10.1016/j.jclepro.2020.123750
Metcalf, E., Asano, T., Burton, F., Leverenz, H., 2007. Water reuse: Issues, technologies, and applications. McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071459273.
Mytilinaios, I., Bernigaud, I., Belot, V., & Lambert, R. J. (2015). Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of Applied Microbiology., 118, 161–174. https://doi.org/10.1111/jam.12695
Niño, E.D., Martínez, N.C., (2013). Study of domestic gray water in three socioeconomic levels of the city of Bogotá. Pontifical Javeriana University. http://hdl.handle.net/10554/11139 .
Nzila, A., Razzak, S.A., Zhu, J., 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health. 13.https://doi.org/10.3390/ijerph13090846
Okoduwa, S. I. R., et al. (2017). Tannery effluent treatment by yeast species isolates from watermelon. Toxics, 5, 6. https://doi.org/10.3390/toxics5010006
Orellana, R., et al. (2018). Living at the frontiers of life: Extremophiles in Chile and their potential for bioremediation. Frontiers in Microbiology, 9, 2309. https://doi.org/10.3389/fmicb.2018.02309
Pal, P., (2017).Biological treatment technology. Industrial Water Treatment Process Technology. 65-144.https://doi.org/10.1016/b978-0-12-810391-3.00003-5
Peñafiel, R. D., Moreno, C., Ochoa-Herrera, V. D. L. (2016). Eliminación de nitrógeno y contaminación orgánica de agua residual industrial pretratada en lagunas anaeróbicas mediante un biofiltro de arena. Avances En Ciencias e Ingeniería, -8–14. https://doi.org/10.18272/aci.v8i1.299
Pérez-Uz, B., Arregui, L., Calvo, P., Salvadó, H., Fernández, N., Rodríguez, E., Zornoza, A., & Serrano, S. (2010). Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Research, 17, 5059–5069. https://doi.org/10.1016/j.watres.2010.07.024
Pillai, N. N., Wheeler, W. C., and Prince, R. P. (1971). Design and operation of an extended aeration plant. Journal (Water Pollution Control Federation), 7, 1484–1498. http://www.jstor.org/stable/25037127
Ramakrishnan VV, G. A. 2015. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects and Control, 02 https://doi.org/10.4172/2375-4397.1000136
Ramos, A. F., Gómez, M. A., Hontoria, E., & González-López, J. (2007). Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. Journal of Hazardous Materials, 142(1–2), 175–183. https://doi.org/10.1016/j.jhazmat.2006.08.079
Raper, E., Stephenson, T., Anderson, D. R., Fisher, R., Soares, A. (2018). Industrial wastewater treatment through bioaugmentation. In Process Safety and Environmental Protection (Vol. 118, pp. 178–187. Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2018.06.035
Rathna, R., Nakkeeran, E., (2020). The intertwined facets of membrane technology for industrial effluents. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels pp. 133–147. Elsevier. https://doi.org/10.1016/b978-0-12-817951-2.00007-9
Ruscalleda, M., Balaguer, M.D., Colprim, J., Pellicer-Nàcher, C., Smets, S. P., (2011). Biological nitrogen removal from domestic wastewater. In Comprehensive biotechnology, second edition (Vol. 6, pp. 329–340. Elsevier Inc. https://doi.org/10.1016/B978-0-08-088504-9.00533-X
Samer M (2015) Biological and chemical wastewater treatment processes. In: Wastewater treatment engineering, InTech, pp 1–50.
Sepehri, A., Sarrafzadeh, M. H., Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164
Shapleigh, J. P. (2013). Denitrifying prokaryotes. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson (Eds.), The prokaryotes: Prokaryotic physiology and biochemistry pp. 405–425. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_71
Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916. https://doi.org/10.1016/j.cej.2015.08.100
Suárez Oquedo Victor. (2019). Analysis of alternatives for the elimination of nutrients in the WWTP “La Poveda” (Rivas-VaciaMadrid, Madrid). Retrieved from https://pdfs.semanticscholar.org/def5/7d1f16f271995bfb5fdc085165b76d5a3677.pdf
Venegas, C. (2015). Biological removal of nutrients in high nitrogen ammoniacal wastewater using a biological sequencing reactor. Retrieved from URL: http://hdl.handle.net/10902/8451
Yang, N., Liu, H., Zhan, G. qiang, Li, D. ping. (2020). Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell. Journal of Cleaner Production, 245.https://doi.org/10.1016/j.jclepro.2019.118923
Zornoza, A., Avendaño, L., Aguado, D., Borrás, L., & Alonso, J. L. (2012). Analysis of the correlations between the abundance of nitrifying bacteria, operational and physicochemical parameters related to the biological process of nitrification in activated sludge.
Zornoza, A., Alonso-Molina, J. L., Serrano, S. (2010). New metagenomics and molecular based tools for European scale identification and control of emergent microbial contaminants in irrigation water. View project. https://www.researchgate.net/publication/234154599
Zou, S., Guan, L., Taylor, D. P., Kuhn, D., & He, Z. (2018). Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture, 497, 74–81. https://doi.org/10.1016/j.aquaculture.2018.07.036
dc.relation.citationissue.spa.fl_str_mv 339
dc.relation.citationvolume.spa.fl_str_mv 233
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© The Author(s) 2022
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© The Author(s) 2022
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Netherlands
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11270-022-05754-y
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a82e4dfb-d092-45da-a014-5ef9d62a0017/download
https://repositorio.cuc.edu.co/bitstreams/f5303057-7c0b-4b8a-a31f-515ebf77e266/download
https://repositorio.cuc.edu.co/bitstreams/f07d57ff-b36f-4672-a801-9e8bf9bcbac2/download
https://repositorio.cuc.edu.co/bitstreams/052b604c-d11e-4863-b5fc-a6ea8b2e8bf5/download
bitstream.checksum.fl_str_mv ad3954278da5e4552016988054f82410
e30e9215131d99561d40d6b0abbe9bad
16fb400e07a63e125c878b35c13aeb7b
689bd972786a5e24690463e3ccf4278c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760680426012672
spelling Marquez Fontalvo, NubiaMORGADO GAMERO, WENDY BEATRIZMaury Ardila, Henry AlfonsoPulgar Gonzalez, AndresGindri Ramos, ClaudeteParody Muñoz, Alexander Elias2022-08-30T13:55:20Z2022-08-30T13:55:20Z2022Fontalvo, N.P.M., Gamero, W.B.M., Ardila, H.A.M. et al. Removal of Nitrogenous Compounds from Municipal Wastewater Using a Bacterial Consortium: an Opportunity for More Sustainable Water Treatments. Water Air Soil Pollut 233, 339 (2022). https://doi.org/10.1007/s11270-022-05754-y0049-6979https://hdl.handle.net/11323/9483https://doi.org/10.1007/s11270-022-05754-y10.1007/s11270-022-05754-y1573-2932Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The integrated management of water resources is a requirement for environmental preservation and economic development, with the removal of nutrients being one of the main drawbacks. In this work, the efficiency of a bacterial consortium (Ecobacter WP) made up of eight bacterial strains of the genus Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Bacillus cereus, Arthrobacter sp., Acinetobacter paraffineus, Corynebacterium sp., and Streptomyces globisporus was evaluated in the removal of nitrogen compounds in domestic wastewater in a plug flow system, in the extended aeration and bioaugmentation (FLAEBI). To promote the nitrification and denitrification processes, three doses were tested to establish the optimal concentration of the bacterial consortium on a laboratory scale and its subsequent application in an outdoor wastewater treatment plant (WWTP). The evaluation period was 15 days for each treatment in the laboratory and WWTP. The parameters monitored both at laboratory and outdoor were pH, temperature, dissolved oxygen, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium, nitrites, and nitrates. The results indicated that the optimal concentration of the consortium was 30 mg L−1, with a removal of 92% of nitrate at the laboratory and 62% outdoor. Such a difference is attributed to the different operation residence times and the volume that caused different concentration gradients. The consortium studied can be used to promote nitrification and denitrification processes that intervene in the removal of nitrogenous compounds in plants with similar operating conditions, without investment in restructuring or design modification of the WWTP.20 páginasapplication/pdfengSpringer NetherlandsNetherlandsAtribución 4.0 Internacional (CC BY 4.0)© The Author(s) 2022https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatmentsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link.springer.com/article/10.1007/s11270-022-05754-yWater, Air, and Soil PollutionAchak, M., Mandi, L., & Ouazzani, N. (2009). Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Journal of Environmental Management, 90, 2771–2779. https://doi.org/10.1016/j.jenvman.2009.03.012Adolfo, G.,Castillo, S., (2016). Nutrient removal through biofilm treatments. https://doi.org/10.20868/UPM.thesis.39458.AFCEE (2008) Technical protocol for enhanced anaerobic bioremediation using permeable mulch biowalls and bioreactors, Technical Directorate, Environmental Science Division. https://www.cluin.org/download/techfocus/prb/Final-Biowall-Protocol-05-08.pdfAhnH, Y. (2006). Sustainable nitrogen elimination biotechnologies: A review. In Process Biochemistry, 41(8), 1709–1721. https://doi.org/10.1016/j.procbio.2006.03.033Aragaw, T., (2020). Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: A review. In International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-03022-2Aragaw, T., Asmare, A., (2018). Phycoremediation of textile wastewater using indigenous microalgae. In Water Practice & Technology. 13, Issue 2, pp. 274–284. IWA Publishing. https://doi.org/10.2166/wpt.2018.037.Atolia, E., Cesar, S., Arjes, H. A., Rajendram, M., Shi., H., Knapp, B. D., Khare, S., Aranda, A., Lenski, R. E., Huang, K.C., (2020). Environmental and physiological factors affecting high-throughput measurements of bacterial growth. Downloaded from. https://doi.org/10.1128/mBioBaumann, B., Snozzi, M., Zehnder, A. J. B., Roelof, J., (1996). Dynamics of Denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. In Journal of Bacteriology Vol. 178, Issue 15. http://jb.asm.org/Bedoya, C., 2012. study of the nitrification and denitrification process via nitrite for the biological treatment of waste water currents with high ammonia nitrogen load. https://doi.org/10.4995/Thesis/10251/17653Baird, R., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.Camargo, J. A., Alonso, Á, (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. In Environment International. 32, Issue 6, pp. 831–849. Elsevier Ltd. https://doi.org/10.1016/j.envint.2006.05.002Cárdenas, G., Sánchez, I., (2013) Nitrogen in wastewater: Origins, effects and removal mechanisms to preserve the environment and public health. 15, Issue 1.Cervantes, F., Pérez, J., Gómez, J, (2000). Advances in the biological elimination of nitrogen from wastewater. Latin American Journal of Microbiology, 42, 73–82. https://www.medigraphic.com/pdfs/lamicro/mi-2000/mi002e.pdfCockburn, A., Heppner, W., Dorne, M., (2014). Environmental contaminants: Nitrate and nitrite. In Encyclopedia of Food Safety 2, pp. 332–336. Elsevier. https://doi.org/10.1016/B978-0-12-378612-8.00199-2De Laia, G., Tosta dos Reis, J., Ferrei, A., and Silva, F., (2019). Methodology for minimum nitrogen compounds removal efficiencies estimation and wastewater treatment systems pre-selection: A watershed approach. Brazilian Journal of Water Resources.https://doi.org/10.1590/2318-0331.241920180173Dennis, M. J., Wilson, L. A. 2003. Nitrates and nitrites. In Encyclopedia of food sciences and nutrition pp. 4136–4141. Elsevier. https://doi.org/10.1016/b0-12-227055-x/00830-0Ekama, G. A. (2011). Biological nutrient removal. Treatise on Water Science, 4(August), 409–526. https://doi.org/10.1016/B978-0-444-53199-5.00094-4Eliašová, A., Hrivnák, R., Štefánová, P., Svitok, M., Kochjarová, J., Oťaheľová, H., Novikmec, M., & Palove, P. (2021). Effects of ammonium levels on growth and accumulation of antioxidative flavones of the submerged macrophyte Ceratophyllum demersum. Aquatic Botany, 10, 33–76. https://doi.org/10.1016/j.aquabot.2021.103376EPA. (2000). Wastewater technology fact sheet package plants. Packing plants. Washington DC: URL for the United States Environmental Protection Agency (EPA). https://www.epa.gov/npdes/pubs/package_plant.pdfFan, A. M. (2014). Nitrate. Encyclopedia of Toxicology. Elsevier., 3, 523–527. https://doi.org/10.1016/B978-0-12-386454-3.01067-8Fan, A.M., (2019). Health, exposure and regulatory implications of nitrate and nitrite in drinking water. Encyclopedia of Environmental Health. Elsevier. 417-435. https://doi.org/10.1016/B978-0-12-409548-9.11837-8García, S.C., (2011). Bacterias simbióticas fijadoras de nitrógeno. In CT. 3, 173–186. https://dialnet.unirioja.es/servle.t/articulo?codigo=3761553.Garrido, J., Paredes, R., Alonso, B., (2019. Elimination of nitrogenous compounds in wastewater by nitrification and denitrification. https://hdl.handle.net/11673/48774.Gealt, M.A., Levin, M.A., (1993). Biotreatment of industrial and hazardous waste. McGraw-Hill. //catalog.hathitrust.org/Record/002710706.Herrero, M., & Stuckey, D. C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033Hiren, P.K., (1997). Ammonia reduction through bioaugmentation. http://www.labamerex.com/images/1997-Proteccion-ambiental-Triverdi-MSChE.pdf.Hong, P., Wu, X., Shu, Y., Wang, C., Tian, C., Wu, H., Xiao, B., 2020.Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor. Bioresource Technology. 303https://doi.org/10.1016/j.biortech.2020.122905IDEAM. (2017). Ideam water monitoring protocol (N. Vargas, T. Tetaty, and A. Vesga, Eds.). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023773/PROTOCOLO_MONITOREO_AGUA_IDEAM.pdfIDEAM (2019). National water study 2018. Bogotá: Ideam: 452 pp. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdfIgiri BE et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology.https://doi.org/10.1155/2018/2568038Ipuz, A., and Reyes, M., (2015). Design, construction and start-up of an anaerobic piston flow reactor (RAP) with Guadua as a support medium, for the treatment of domestic wastewater from a workers' camp of a fish farm. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria.Jaibiba, P., Naga, S., Hariharan, S., (2020). Working principle of typical bioreactors. Bioreactors. 145-173https://doi.org/10.1016/b978-0-12-821264-6.00010-3Jia, L., Jiang, B., Huang, F., and Hu, X. (2019). Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresource Technology, 294https://doi.org/10.1016/j.biortech.2019.122140John, E.M., Krishnapriya, K., Sankar, T.V., 2020.Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture. 526https://doi.org/10.1016/j.aquaculture.2020.735390Kallistova, A. Y., Dorofeev, A. G., Nikolaev, Y. A., Kozlov, M. N., Kevbrina, M. V., & Pimenov, N. V. (2016). Role of anammox bacteria in removal of nitrogen compounds from wastewater. Microbiology Russian Federation., 85, 140–156. https://doi.org/10.1134/S0026261716020089Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51, 265–271. https://doi.org/10.1016/S0045-6535(02)00807-XLi, W., Cai, Z., Duo, Z. J., Lu, Y. F., Gao, K. X., Abbas, G., Zhang, M., & Zheng, P. (2017). Heterotrophic ammonia and nitrate bio-removal over nitrite (Hanbon): Performance and microflora. Chemosphere, 182, 532–538. https://doi.org/10.1016/j.chemosphere.2017.05.068Liu, S., (2017). Ideal flow reactors. Bioprocess Engineering. 179-257.https://doi.org/10.1016/b978-0-444-63783-3.00005-8López, C., Buitrón, G., García, H., Cervantes, F., 2017. Biological wastewater treatment: Principles, modeling and design. Cambridge University Press. https://doi.org/10.2166/9781780409146Lucena, J., Schneider, J., & Leydens, J. A. (2010). Engineering and sustainable community development. Synthesis Lectures on Engineers, Technology, and Society, 11, 1–230. https://doi.org/10.2200/S00247ED1V01Y201001ETS011Mažeikienė, A., Grubliauskas, R., (2021). Biotechnological wastewater treatment in small-scale wastewater treatment plants. Journal of Cleaner Production. 279.https://doi.org/10.1016/j.jclepro.2020.123750Metcalf, E., Asano, T., Burton, F., Leverenz, H., 2007. Water reuse: Issues, technologies, and applications. McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071459273.Mytilinaios, I., Bernigaud, I., Belot, V., & Lambert, R. J. (2015). Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of Applied Microbiology., 118, 161–174. https://doi.org/10.1111/jam.12695Niño, E.D., Martínez, N.C., (2013). Study of domestic gray water in three socioeconomic levels of the city of Bogotá. Pontifical Javeriana University. http://hdl.handle.net/10554/11139 .Nzila, A., Razzak, S.A., Zhu, J., 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health. 13.https://doi.org/10.3390/ijerph13090846Okoduwa, S. I. R., et al. (2017). Tannery effluent treatment by yeast species isolates from watermelon. Toxics, 5, 6. https://doi.org/10.3390/toxics5010006Orellana, R., et al. (2018). Living at the frontiers of life: Extremophiles in Chile and their potential for bioremediation. Frontiers in Microbiology, 9, 2309. https://doi.org/10.3389/fmicb.2018.02309Pal, P., (2017).Biological treatment technology. Industrial Water Treatment Process Technology. 65-144.https://doi.org/10.1016/b978-0-12-810391-3.00003-5Peñafiel, R. D., Moreno, C., Ochoa-Herrera, V. D. L. (2016). Eliminación de nitrógeno y contaminación orgánica de agua residual industrial pretratada en lagunas anaeróbicas mediante un biofiltro de arena. Avances En Ciencias e Ingeniería, -8–14. https://doi.org/10.18272/aci.v8i1.299Pérez-Uz, B., Arregui, L., Calvo, P., Salvadó, H., Fernández, N., Rodríguez, E., Zornoza, A., & Serrano, S. (2010). Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Research, 17, 5059–5069. https://doi.org/10.1016/j.watres.2010.07.024Pillai, N. N., Wheeler, W. C., and Prince, R. P. (1971). Design and operation of an extended aeration plant. Journal (Water Pollution Control Federation), 7, 1484–1498. http://www.jstor.org/stable/25037127Ramakrishnan VV, G. A. 2015. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects and Control, 02 https://doi.org/10.4172/2375-4397.1000136Ramos, A. F., Gómez, M. A., Hontoria, E., & González-López, J. (2007). Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. Journal of Hazardous Materials, 142(1–2), 175–183. https://doi.org/10.1016/j.jhazmat.2006.08.079Raper, E., Stephenson, T., Anderson, D. R., Fisher, R., Soares, A. (2018). Industrial wastewater treatment through bioaugmentation. In Process Safety and Environmental Protection (Vol. 118, pp. 178–187. Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2018.06.035Rathna, R., Nakkeeran, E., (2020). The intertwined facets of membrane technology for industrial effluents. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels pp. 133–147. Elsevier. https://doi.org/10.1016/b978-0-12-817951-2.00007-9Ruscalleda, M., Balaguer, M.D., Colprim, J., Pellicer-Nàcher, C., Smets, S. P., (2011). Biological nitrogen removal from domestic wastewater. In Comprehensive biotechnology, second edition (Vol. 6, pp. 329–340. Elsevier Inc. https://doi.org/10.1016/B978-0-08-088504-9.00533-XSamer M (2015) Biological and chemical wastewater treatment processes. In: Wastewater treatment engineering, InTech, pp 1–50.Sepehri, A., Sarrafzadeh, M. H., Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164Shapleigh, J. P. (2013). Denitrifying prokaryotes. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson (Eds.), The prokaryotes: Prokaryotic physiology and biochemistry pp. 405–425. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_71Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916. https://doi.org/10.1016/j.cej.2015.08.100Suárez Oquedo Victor. (2019). Analysis of alternatives for the elimination of nutrients in the WWTP “La Poveda” (Rivas-VaciaMadrid, Madrid). Retrieved from https://pdfs.semanticscholar.org/def5/7d1f16f271995bfb5fdc085165b76d5a3677.pdfVenegas, C. (2015). Biological removal of nutrients in high nitrogen ammoniacal wastewater using a biological sequencing reactor. Retrieved from URL: http://hdl.handle.net/10902/8451Yang, N., Liu, H., Zhan, G. qiang, Li, D. ping. (2020). Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell. Journal of Cleaner Production, 245.https://doi.org/10.1016/j.jclepro.2019.118923Zornoza, A., Avendaño, L., Aguado, D., Borrás, L., & Alonso, J. L. (2012). Analysis of the correlations between the abundance of nitrifying bacteria, operational and physicochemical parameters related to the biological process of nitrification in activated sludge.Zornoza, A., Alonso-Molina, J. L., Serrano, S. (2010). New metagenomics and molecular based tools for European scale identification and control of emergent microbial contaminants in irrigation water. View project. https://www.researchgate.net/publication/234154599Zou, S., Guan, L., Taylor, D. P., Kuhn, D., & He, Z. (2018). Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture, 497, 74–81. https://doi.org/10.1016/j.aquaculture.2018.07.036339233BioaugmentationNitrogen compoundsBacterial consortiumDenitrifcationNitrifcationWater resource managementPublicationORIGINALRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdfRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdfapplication/pdf1163961https://repositorio.cuc.edu.co/bitstreams/a82e4dfb-d092-45da-a014-5ef9d62a0017/downloadad3954278da5e4552016988054f82410MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f5303057-7c0b-4b8a-a31f-515ebf77e266/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdf.txtRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdf.txttext/plain66458https://repositorio.cuc.edu.co/bitstreams/f07d57ff-b36f-4672-a801-9e8bf9bcbac2/download16fb400e07a63e125c878b35c13aeb7bMD53THUMBNAILRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdf.jpgRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium. an opportunity for more sustainable water treatments.pdf.jpgimage/jpeg14982https://repositorio.cuc.edu.co/bitstreams/052b604c-d11e-4863-b5fc-a6ea8b2e8bf5/download689bd972786a5e24690463e3ccf4278cMD5411323/9483oai:repositorio.cuc.edu.co:11323/94832024-09-16 16:46:39.692https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==