Data mining and association rules to determine twitter trends
Opinion mining has been widely studied in the last decade due to its great interest in the field of research and countless real-world applications. This research proposes a system that combines association rules, generalization of rules, and sentiment analysis to catalog and discover opinion trends...
- Autores:
-
Silva, Jesús
Vargas, Jesús
Natteri, Domingo
Flores Marín, Darío Enrique
Pineda, Omar
Ahumada, Bridy
Valero, Lesbia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7735
- Acceso en línea:
- https://hdl.handle.net/11323/7735
https://doi.org/10.1007/978-981-15-4875-8_23
https://repositorio.cuc.edu.co/
- Palabra clave:
- Opinions mining
Association rules
Sentiment analysis
Analysis of trends
Unsupervised learning
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_8db68060eac051abd6b2669f749428db |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7735 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data mining and association rules to determine twitter trends |
title |
Data mining and association rules to determine twitter trends |
spellingShingle |
Data mining and association rules to determine twitter trends Opinions mining Association rules Sentiment analysis Analysis of trends Unsupervised learning |
title_short |
Data mining and association rules to determine twitter trends |
title_full |
Data mining and association rules to determine twitter trends |
title_fullStr |
Data mining and association rules to determine twitter trends |
title_full_unstemmed |
Data mining and association rules to determine twitter trends |
title_sort |
Data mining and association rules to determine twitter trends |
dc.creator.fl_str_mv |
Silva, Jesús Vargas, Jesús Natteri, Domingo Flores Marín, Darío Enrique Pineda, Omar Ahumada, Bridy Valero, Lesbia |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Vargas, Jesús Natteri, Domingo Flores Marín, Darío Enrique Pineda, Omar Ahumada, Bridy Valero, Lesbia |
dc.subject.spa.fl_str_mv |
Opinions mining Association rules Sentiment analysis Analysis of trends Unsupervised learning |
topic |
Opinions mining Association rules Sentiment analysis Analysis of trends Unsupervised learning |
description |
Opinion mining has been widely studied in the last decade due to its great interest in the field of research and countless real-world applications. This research proposes a system that combines association rules, generalization of rules, and sentiment analysis to catalog and discover opinion trends in Twitter [1]. The sentiment analysis is used to favor the generalization of the association rules. In this sense, an initial set of 1.6 million tweets captured in an undirected way is first summarized through text mining in an input set for the algorithms of rules and sentiment analysis of 158,354 tweets. On this last group, easily interpretable standard and generalized sets of rules are obtained about characters, which were revealed as an interesting result of the system. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:34:38Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:34:38Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7735 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-4875-8_23 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7735 https://doi.org/10.1007/978-981-15-4875-8_23 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache Spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016) 2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp. 487–499 (1994) 3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014) 4. Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017) 5. Yuan, M., Ouyang, Y., Xiong, Z., Sheng, H.: Sentiment classification of web review using association rules. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol 8029. Springer, Berlin, Heidelberg (2013) 6. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4 (2–3), pp. 163–192 (2000) 7. Amelec, Viloria, Carmen, Vasquez: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015) 8. Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019) 9. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018) 10. Cagliero, L., Fiori, A.: Analyzing Twitter User Behaviors and Topic Trends by Exploiting Dynamic Rules. Behavior Computing: Modeling, Analysis, Mining and Decision. Springer, pp. 267–287 (2012) 11. Erlandsson, F., Bro´dka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016) 12. Meduru, M., Mahimkar, A., Subramanian, K., Padiya, P.Y., Gunjgur, N.: Opinion mining using Twitter feeds for political analysis. Int. J. Comput. (IJC) 25(1), 116–123 (2017) 13. Abascal-Mena, R., Lo´pez-Ornelas, E., Zepeda-Herna´ndez, J.S.: User generated content: an analysis of user behavior by mining political tweets. In: Ozok A.A., Zaphiris, P. (eds.). Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol 8029. Springer, Berlin, Heidelberg (2013) 14. Dehkharghani, R., Mercan, H., Javeed, A., Saygin, Y.: Sentimental causal rule discovery from Twitter. Expert Syst. Appl. 41(10), 4950–4958 (2014) 15. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs Sampling. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363–370 (2005) 16. Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019) 17. Torres Samuel, M., Vásquez, C., Viloria, A., Hernández Fernandez, L., Portillo Medina, y.R.: Analysis of Patterns in the university Word Rankings Webometrics, Shangai, QS and SIRScimago: Case Latin American. Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligent and Lecture Notes in Bioinformatics) (2018) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Smart Innovation, Systems and Technologies |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-4875-8_23 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/db057e7f-f4e1-415b-8e46-f0d13a597d92/download https://repositorio.cuc.edu.co/bitstreams/85ab1f4e-8528-424c-8f62-8ccb3297e5dc/download https://repositorio.cuc.edu.co/bitstreams/17e7f1be-955a-458a-a8e5-b2345e8036bf/download https://repositorio.cuc.edu.co/bitstreams/08dfa797-e1df-491b-9216-6db910cd4c35/download https://repositorio.cuc.edu.co/bitstreams/1e1e9cb5-4812-42e7-90ed-2e5b09e04e4d/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad 3aed22ff8076319785848a6191dd6ae1 4460e5956bc1d1639be9ae6146a50347 6a0c476b3e02d36833cd5b9f68adc9f6 e267382726e6fa51429eb78d4899efb3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760716875563008 |
spelling |
Silva, JesúsVargas, JesúsNatteri, DomingoFlores Marín, Darío EnriquePineda, OmarAhumada, BridyValero, Lesbia2021-01-20T20:34:38Z2021-01-20T20:34:38Z2020https://hdl.handle.net/11323/7735https://doi.org/10.1007/978-981-15-4875-8_23Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Opinion mining has been widely studied in the last decade due to its great interest in the field of research and countless real-world applications. This research proposes a system that combines association rules, generalization of rules, and sentiment analysis to catalog and discover opinion trends in Twitter [1]. The sentiment analysis is used to favor the generalization of the association rules. In this sense, an initial set of 1.6 million tweets captured in an undirected way is first summarized through text mining in an input set for the algorithms of rules and sentiment analysis of 158,354 tweets. On this last group, easily interpretable standard and generalized sets of rules are obtained about characters, which were revealed as an interesting result of the system.Silva, JesúsVargas, JesúsNatteri, DomingoFlores Marín, Darío Enrique-will be generated-orcid-0000-0003-4180-8463-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Ahumada, BridyValero, Lesbiaapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_23Opinions miningAssociation rulesSentiment analysisAnalysis of trendsUnsupervised learningData mining and association rules to determine twitter trendsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache Spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp. 487–499 (1994)3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)4. Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)5. Yuan, M., Ouyang, Y., Xiong, Z., Sheng, H.: Sentiment classification of web review using association rules. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol 8029. Springer, Berlin, Heidelberg (2013)6. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4 (2–3), pp. 163–192 (2000)7. Amelec, Viloria, Carmen, Vasquez: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)8. Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019)9. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018)10. Cagliero, L., Fiori, A.: Analyzing Twitter User Behaviors and Topic Trends by Exploiting Dynamic Rules. Behavior Computing: Modeling, Analysis, Mining and Decision. Springer, pp. 267–287 (2012)11. Erlandsson, F., Bro´dka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016)12. Meduru, M., Mahimkar, A., Subramanian, K., Padiya, P.Y., Gunjgur, N.: Opinion mining using Twitter feeds for political analysis. Int. J. Comput. (IJC) 25(1), 116–123 (2017)13. Abascal-Mena, R., Lo´pez-Ornelas, E., Zepeda-Herna´ndez, J.S.: User generated content: an analysis of user behavior by mining political tweets. In: Ozok A.A., Zaphiris, P. (eds.). Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol 8029. Springer, Berlin, Heidelberg (2013)14. Dehkharghani, R., Mercan, H., Javeed, A., Saygin, Y.: Sentimental causal rule discovery from Twitter. Expert Syst. Appl. 41(10), 4950–4958 (2014)15. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs Sampling. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363–370 (2005)16. Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)17. Torres Samuel, M., Vásquez, C., Viloria, A., Hernández Fernandez, L., Portillo Medina, y.R.: Analysis of Patterns in the university Word Rankings Webometrics, Shangai, QS and SIRScimago: Case Latin American. Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligent and Lecture Notes in Bioinformatics) (2018)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/db057e7f-f4e1-415b-8e46-f0d13a597d92/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALData mining and association rules to determine twitter trends.pdfData mining and association rules to determine twitter trends.pdfapplication/pdf100012https://repositorio.cuc.edu.co/bitstreams/85ab1f4e-8528-424c-8f62-8ccb3297e5dc/download3aed22ff8076319785848a6191dd6ae1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/17e7f1be-955a-458a-a8e5-b2345e8036bf/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILData mining and association rules to determine twitter trends.pdf.jpgData mining and association rules to determine twitter trends.pdf.jpgimage/jpeg29863https://repositorio.cuc.edu.co/bitstreams/08dfa797-e1df-491b-9216-6db910cd4c35/download6a0c476b3e02d36833cd5b9f68adc9f6MD54TEXTData mining and association rules to determine twitter trends.pdf.txtData mining and association rules to determine twitter trends.pdf.txttext/plain1114https://repositorio.cuc.edu.co/bitstreams/1e1e9cb5-4812-42e7-90ed-2e5b09e04e4d/downloade267382726e6fa51429eb78d4899efb3MD5511323/7735oai:repositorio.cuc.edu.co:11323/77352024-09-17 10:47:01.106http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |