Diseño óptimo de armaduras empleando optimización con ondas del agua

Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el pes...

Full description

Autores:
Millán Páramo, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12175
Acceso en línea:
https://hdl.handle.net/11323/12175
https://doi.org/10.17981/ingecuc.13.2.2017.11
Palabra clave:
Water wave optimization
structural optimization
truss structures
metaheuristic
Optimización con ondas del agua
optimización estructural
armaduras
metaheurística
Rights
openAccess
License
INGE CUC - 2017
id RCUC2_8d7211069348626c6b32b6a151aa3e65
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12175
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Diseño óptimo de armaduras empleando optimización con ondas del agua
dc.title.translated.eng.fl_str_mv Optimal design of truss structures using water wave optimization
title Diseño óptimo de armaduras empleando optimización con ondas del agua
spellingShingle Diseño óptimo de armaduras empleando optimización con ondas del agua
Water wave optimization
structural optimization
truss structures
metaheuristic
Optimización con ondas del agua
optimización estructural
armaduras
metaheurística
title_short Diseño óptimo de armaduras empleando optimización con ondas del agua
title_full Diseño óptimo de armaduras empleando optimización con ondas del agua
title_fullStr Diseño óptimo de armaduras empleando optimización con ondas del agua
title_full_unstemmed Diseño óptimo de armaduras empleando optimización con ondas del agua
title_sort Diseño óptimo de armaduras empleando optimización con ondas del agua
dc.creator.fl_str_mv Millán Páramo, Carlos
dc.contributor.author.spa.fl_str_mv Millán Páramo, Carlos
dc.subject.eng.fl_str_mv Water wave optimization
structural optimization
truss structures
metaheuristic
topic Water wave optimization
structural optimization
truss structures
metaheuristic
Optimización con ondas del agua
optimización estructural
armaduras
metaheurística
dc.subject.spa.fl_str_mv Optimización con ondas del agua
optimización estructural
armaduras
metaheurística
description Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmos
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-06-28 00:00:00
2024-04-09T20:14:43Z
dc.date.available.none.fl_str_mv 2017-06-28 00:00:00
2024-04-09T20:14:43Z
dc.date.issued.none.fl_str_mv 2017-06-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12175
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.13.2.2017.11
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.13.2.2017.11
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.13.2.2017.11
2382-4700
url https://hdl.handle.net/11323/12175
https://doi.org/10.17981/ingecuc.13.2.2017.11
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671
Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201
J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105
X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1
J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968
M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436
F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-X
J. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5
C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002
K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007
O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005
C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)
L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020
R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013
L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004
A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011
A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003
A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021
M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003
S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022
S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011
C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020
A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012
A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003
A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006
A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056
A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002
Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008
C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01
dc.relation.citationendpage.none.fl_str_mv 111
dc.relation.citationstartpage.none.fl_str_mv 102
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/Mill%C3%A1n-P%C3%A1ramo
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/1704
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/1705
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2017 : (Julio - Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2017
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2017
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
image/jpeg
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1628
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/12175/1/ORE.xml
bitstream.checksum.fl_str_mv 8fd93017e09fd366fd6c6e1da53bcbd0
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1808400135653163008
spelling Millán Páramo, Carlos7217a10dda478b37b932eb909c89751b5002017-06-28 00:00:002024-04-09T20:14:43Z2017-06-28 00:00:002024-04-09T20:14:43Z2017-06-280122-6517https://hdl.handle.net/11323/12175https://doi.org/10.17981/ingecuc.13.2.2017.1110.17981/ingecuc.13.2.2017.112382-4700Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmosIntroduction:  In recent years, the importance of economic considerations in the field of structures has motivated many researchers to employ new methods for minimizing the weight of the structures. The main goal of the structural optimization is to minimize the weight of structures while satisfying all design requirements imposed by design codes.Objective: In this study, the Water Wave Optimization (WWO) algorithm is implemented to solve the problem of structural optimization of 2D and 3D truss structures.Methodology: The study is composed of three main phases: 1) formulation of the structural optimization problem; 2) study of the fundamentals and parameters that control the WWO algorithm and 3) evaluate the WWO performance in optimization problems of truss structures reported in the specialized literature.Results: The values of weight, average weight, standard deviation, and the total number of analyses executed to converge to the optimum design obtained with WWO indicate that the algorithm is a good tool to minimize the weight of truss structures subject to stress and displacements constrained.Conclusions: It was observed that the WWO algorithm is effective, efficient and robust to solve different types of problems, with different numbers of elements. Furthermore, WWO requires a lower number of analyses to converge to the optimum design compared to other algorithms. application/pdfimage/jpegapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheetspaUniversidad de la CostaINGE CUC - 2017https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1628Water wave optimizationstructural optimizationtruss structuresmetaheuristicOptimización con ondas del aguaoptimización estructuralarmadurasmetaheurísticaDiseño óptimo de armaduras empleando optimización con ondas del aguaOptimal design of truss structures using water wave optimizationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucS. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-XJ. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01111102213https://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/Mill%C3%A1n-P%C3%A1ramohttps://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/1704https://revistascientificas.cuc.edu.co/ingecuc/article/download/1628/1705Núm. 2 , Año 2017 : (Julio - Diciembre)OREORE.xmltext/xml2551https://repositorio.cuc.edu.co/bitstream/11323/12175/1/ORE.xml8fd93017e09fd366fd6c6e1da53bcbd0MD51open access11323/12175oai:repositorio.cuc.edu.co:11323/121752024-04-09 15:14:43.781An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/metadata only accessRepositorio Universidad de La Costarepdigital@cuc.edu.co