Diseño óptimo de armaduras empleando optimización con ondas del agua

Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el pes...

Full description

Autores:
Millán Páramo, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2466
Acceso en línea:
https://hdl.handle.net/11323/2466
https://doi.org/10.17981/ingecuc.13.2.2017.11
https://repositorio.cuc.edu.co/
Palabra clave:
Optimización con ondas del agua
Optimización estructural
Armaduras
Metaheurística
Water wave optimization
Structural optimization
Truss structures
Metaheuristic
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_8d21d20b1c8dfa695af91bcf0c8866b0
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2466
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Diseño óptimo de armaduras empleando optimización con ondas del agua
dc.title.translated.eng.fl_str_mv Optimal design of truss structures using water wave optimization
title Diseño óptimo de armaduras empleando optimización con ondas del agua
spellingShingle Diseño óptimo de armaduras empleando optimización con ondas del agua
Optimización con ondas del agua
Optimización estructural
Armaduras
Metaheurística
Water wave optimization
Structural optimization
Truss structures
Metaheuristic
title_short Diseño óptimo de armaduras empleando optimización con ondas del agua
title_full Diseño óptimo de armaduras empleando optimización con ondas del agua
title_fullStr Diseño óptimo de armaduras empleando optimización con ondas del agua
title_full_unstemmed Diseño óptimo de armaduras empleando optimización con ondas del agua
title_sort Diseño óptimo de armaduras empleando optimización con ondas del agua
dc.creator.fl_str_mv Millán Páramo, Carlos
dc.contributor.author.spa.fl_str_mv Millán Páramo, Carlos
dc.subject.proposal.spa.fl_str_mv Optimización con ondas del agua
Optimización estructural
Armaduras
Metaheurística
topic Optimización con ondas del agua
Optimización estructural
Armaduras
Metaheurística
Water wave optimization
Structural optimization
Truss structures
Metaheuristic
dc.subject.proposal.eng.fl_str_mv Water wave optimization
Structural optimization
Truss structures
Metaheuristic
description Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmos
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-07-01
dc.date.accessioned.none.fl_str_mv 2019-02-13T21:39:46Z
dc.date.available.none.fl_str_mv 2019-02-13T21:39:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv C. Millán Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, pp. 102-111, 2017. DOI: http://doi.org/10.17981/ingecuc.13.2.2017.11
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2466
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.13.2.2017.11
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.13.2.2017.11
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv C. Millán Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, pp. 102-111, 2017. DOI: http://doi.org/10.17981/ingecuc.13.2.2017.11
10.17981/ingecuc.13.2.2017.11
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2466
https://doi.org/10.17981/ingecuc.13.2.2017.11
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 13, Núm. 2 (2017)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671
[2] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201
[3] J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105
[4] X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1
[5] J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968
[6] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436
[7] F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-X
[8] J. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5
[9] C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
[10] K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002
[11] K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007
[12] O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005
[13] C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)
[14] L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020
[15] R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013
[16] L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004
[17] A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011
[18] A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003
[19] A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021
[20] M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003
[21] S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022
[22] S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011
[23] C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020
[24] A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012
[25] A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003
[26] A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006
[27] A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056
[28] A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002
[29] Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008
[30] C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01
dc.relation.citationendpage.spa.fl_str_mv 111
dc.relation.citationstartpage.spa.fl_str_mv 102
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1628
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2dbd149e-4783-402e-9468-d2079324d1d2/download
https://repositorio.cuc.edu.co/bitstreams/d439ad5f-2bef-4045-868d-11c7c43d0d63/download
https://repositorio.cuc.edu.co/bitstreams/93eb25db-e5ac-4d27-b324-38a81b8235c7/download
https://repositorio.cuc.edu.co/bitstreams/ecfd150a-ba43-489a-a86f-0ff01f58fca9/download
bitstream.checksum.fl_str_mv a367bad42ff7ccd8b2c7f80ea9641691
8a4605be74aa9ea9d79846c1fba20a33
ef84629b322984f72ee060c8a75abf58
749c88f352350e4cbe21060c07268e7b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760795320582144
spelling Millán Páramo, Carlos2019-02-13T21:39:46Z2019-02-13T21:39:46Z2017-07-01C. Millán Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, pp. 102-111, 2017. DOI: http://doi.org/10.17981/ingecuc.13.2.2017.11https://hdl.handle.net/11323/2466https://doi.org/10.17981/ingecuc.13.2.2017.1110.17981/ingecuc.13.2.2017.112382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmosIntroduction−In recent years, the importance of economic considerations in the field of structures has motivated many researchers to employ new meth-ods for minimizing the weight of the structures. The main goal of the struc-tural optimization is to minimize the weight of structures while satisfying all design requirements imposed by design codes.Objective−In this study, the Water Wave Optimization (WWO) algorithm is implemented to solve the problem of structural optimization of 2D and 3D truss structures.Methodology−The study is composed of three main phases: 1) formulation of the structural optimization problem; 2) study of the fundamentals and param-eters that control the WWO algorithm and 3) evaluate the WWO performance in optimization problems of truss structures reported in the specialized lit-erature.Results− The values of weight, average weight, standard deviation and the total number of analyses executed to converge to the optimum design obtained with WWO indicate that the algorithm is a good tool to minimize the weight of truss structures subject to stress and displacements constrained. Conclusions− It was observed that the WWO algorithm is effectively, effciently and robust to solve different types of problems, with different num-bers of elements. Furthermore, WWO requires a lower number of analyses to converge to the optimum design compared to other algorithmsMillán Páramo, Carlos-bd3a390a-0bcf-45ea-8c61-41dbfc908203-010 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 13, Núm. 2 (2017)INGE CUCINGE CUC[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671[2] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201[3] J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105[4] X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1[5] J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968[6] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436[7] F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-X[8] J. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5[9] C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)[10] K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002[11] K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007[12] O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005[13] C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)[14] L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020[15] R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013[16] L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004[17] A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011[18] A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003[19] A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021[20] M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003[21] S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022[22] S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011[23] C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020[24] A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012[25] A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003[26] A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006[27] A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056[28] A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002[29] Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008[30] C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01111102213INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1628Diseño óptimo de armaduras empleando optimización con ondas del aguaOptimal design of truss structures using water wave optimizationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimización con ondas del aguaOptimización estructuralArmadurasMetaheurísticaWater wave optimizationStructural optimizationTruss structuresMetaheuristicPublicationORIGINALDiseño óptimo de armaduras empleando optimización con ondas del agua.pdfDiseño óptimo de armaduras empleando optimización con ondas del agua.pdfapplication/pdf470346https://repositorio.cuc.edu.co/bitstreams/2dbd149e-4783-402e-9468-d2079324d1d2/downloada367bad42ff7ccd8b2c7f80ea9641691MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d439ad5f-2bef-4045-868d-11c7c43d0d63/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDiseño óptimo de armaduras empleando optimización con ondas del agua.pdf.jpgDiseño óptimo de armaduras empleando optimización con ondas del agua.pdf.jpgimage/jpeg41968https://repositorio.cuc.edu.co/bitstreams/93eb25db-e5ac-4d27-b324-38a81b8235c7/downloadef84629b322984f72ee060c8a75abf58MD54TEXTDiseño óptimo de armaduras empleando optimización con ondas del agua.pdf.txtDiseño óptimo de armaduras empleando optimización con ondas del agua.pdf.txttext/plain40001https://repositorio.cuc.edu.co/bitstreams/ecfd150a-ba43-489a-a86f-0ff01f58fca9/download749c88f352350e4cbe21060c07268e7bMD5511323/2466oai:repositorio.cuc.edu.co:11323/24662024-09-17 12:44:38.455open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=