Risk analysis of using big data in computer sciences
Today, as technologies mature and people are encouraged to contribute data to organizations’ databases, more transactions are being captured than ever before. Meanwhile, improvements in data storage technologies have made the cost of evaluating, selecting, and destroying legacy data considerably gre...
- Autores:
-
Silva, Jesus
Pineda Lezama, Omar Bonerge
Romero Marin, Ligia Cielo
Solano, Darwin
Silva Fernández, Claudia Susana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5989
- Acceso en línea:
- https://hdl.handle.net/11323/5989
https://repositorio.cuc.edu.co/
- Palabra clave:
- Data management
Data quality
Decision making
Data analysis
Gestión de datos
Calidad de datos
Toma de decisiones
Análisis de datos
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_8c7eef40b61771cdf4a26f8ae028030d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5989 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Risk analysis of using big data in computer sciences |
dc.title.translated.spa.fl_str_mv |
Análisis de riesgos del uso de big data en ciencias de la computación |
title |
Risk analysis of using big data in computer sciences |
spellingShingle |
Risk analysis of using big data in computer sciences Data management Data quality Decision making Data analysis Gestión de datos Calidad de datos Toma de decisiones Análisis de datos |
title_short |
Risk analysis of using big data in computer sciences |
title_full |
Risk analysis of using big data in computer sciences |
title_fullStr |
Risk analysis of using big data in computer sciences |
title_full_unstemmed |
Risk analysis of using big data in computer sciences |
title_sort |
Risk analysis of using big data in computer sciences |
dc.creator.fl_str_mv |
Silva, Jesus Pineda Lezama, Omar Bonerge Romero Marin, Ligia Cielo Solano, Darwin Silva Fernández, Claudia Susana |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesus Pineda Lezama, Omar Bonerge Romero Marin, Ligia Cielo Solano, Darwin Silva Fernández, Claudia Susana |
dc.subject.spa.fl_str_mv |
Data management Data quality Decision making Data analysis Gestión de datos Calidad de datos Toma de decisiones Análisis de datos |
topic |
Data management Data quality Decision making Data analysis Gestión de datos Calidad de datos Toma de decisiones Análisis de datos |
description |
Today, as technologies mature and people are encouraged to contribute data to organizations’ databases, more transactions are being captured than ever before. Meanwhile, improvements in data storage technologies have made the cost of evaluating, selecting, and destroying legacy data considerably greater than simply letting it accumulate. On the one hand, the excess of stored data has considerably increased the opportunities to interrelate and analyze them, while the moderate enthusiasm generated by data warehousing and data mining in the 1990s has been replaced by a rampant euphoria about big data and data analytics. But, is this as wonderful as seems? This paper presents a risk analysis of Big Data and Big Data Analytics based on a review of quality factors. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-05T13:28:32Z |
dc.date.available.none.fl_str_mv |
2020-02-05T13:28:32Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00002010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5989 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00002010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5989 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Schroeck, M. et al. (2012). Analytics: The real-world use of big data. IBM Institute for Business Value. University of Oxford. [2] McAfee, A. & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Rev. 90, 61–68. [3] Clarke, R. (2014). Promise unfulfilled: the digital persona concept, two decades later. Information Technology & People 27(2), 182–207 [4] Jagadish, H. et al. (2014). Big data and its technical challenges. Communications of the ACM 57(7), 86–94 [5] Boyd, D. & Crawford, K. (2012). Critical questions for big data. Information, Comm. & Society 15(5), 662–679. [22] Clarke, R. (2014). What drones inherit from their ancestors. Computer Law & Security Review 30(3), 247–262 [6] Amelec, V. (2015). Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Advanced Science Letters, 21(5), 1406-1408. [8] Guo, P. (2013). Data science workflow: Overview and challenges. Communications of the ACM Blog. [9] Ariza, P., Pineres, M., Santiago, L., Mercado, N., & De la Hoz, A. (2014, November). Implementation of moprosoft level I and II in software development companies in the colombian caribbean, a commitment to the software product quality region. In 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV) (pp. 1-5). IEEE. [10] Lis-Gutiérrez JP., Lis-Gutiérrez M., Gaitán-Angulo M., Balaguera MI., Viloria A., Santander-Abril JE. (2018) Use of the Industrial Property System for New Creations in Colombia: A Departmental Analysis (2000–2016). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [11] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [12] Jesus Silva, Jenny Cubillos, Jesus Vargas Villa, Ligia Romero, Darwin Solano, Claudia Fernández. (2019). Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review. Procedia Computer Science 151; 1219–1224. [13] Adhvaryu R, Domadiya N (2012). An Improved EMHS Algorithm for Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database. In: Security in Computing and Communications Springer Berlin Heidelberg, pp: 272-280. [14] G Li, M Xi. An Improved Algorithm for Privacy-preserving Data Mining Based on NMF. In: Journal of Information & Computational Science, 12(9) (2015), pp. 3423-3430 [15] Lis-Gutiérrez J.P., Henao C., Zerda Á., Gaitán M., Correa J.C., Viloria A. (2018) Determinants of the Impact Factor of Publications: A Panel Model for Journals Indexed in Scopus 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [16] Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004) |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a7b96711-6246-4a3f-8527-127df9fe367a/download https://repositorio.cuc.edu.co/bitstreams/957ecf56-b3b9-42d5-94e0-81cbd3a0e5f2/download https://repositorio.cuc.edu.co/bitstreams/c9a89198-8096-48f5-b71c-1bb8289f58ff/download https://repositorio.cuc.edu.co/bitstreams/62134039-2539-47ef-8128-680f65f32f5d/download https://repositorio.cuc.edu.co/bitstreams/efd31f7e-8538-40b6-bf46-5ecf75b97260/download |
bitstream.checksum.fl_str_mv |
5ba73c31723500043c294743b47f6655 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 3330b3a34d2629fa7420fcf35e2954d8 ea3992d9b0b9f420b5b23567ccc2d821 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166828902318080 |
spelling |
Silva, JesusPineda Lezama, Omar BonergeRomero Marin, Ligia CieloSolano, DarwinSilva Fernández, Claudia Susana2020-02-05T13:28:32Z2020-02-05T13:28:32Z201900002010https://hdl.handle.net/11323/5989Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Today, as technologies mature and people are encouraged to contribute data to organizations’ databases, more transactions are being captured than ever before. Meanwhile, improvements in data storage technologies have made the cost of evaluating, selecting, and destroying legacy data considerably greater than simply letting it accumulate. On the one hand, the excess of stored data has considerably increased the opportunities to interrelate and analyze them, while the moderate enthusiasm generated by data warehousing and data mining in the 1990s has been replaced by a rampant euphoria about big data and data analytics. But, is this as wonderful as seems? This paper presents a risk analysis of Big Data and Big Data Analytics based on a review of quality factors.Hoy, a medida que las tecnologías maduran y se alienta a las personas a contribuir con datos a las bases de datos de las organizaciones, se capturan más transacciones que nunca. Mientras tanto, las mejoras en las tecnologías de almacenamiento de datos han hecho que el costo de evaluar, seleccionar y destruir datos heredados sea considerablemente mayor que simplemente dejar que se acumulen. Por un lado, el exceso de datos almacenados ha aumentado considerablemente las oportunidades para interrelacionarlos y analizarlos, mientras que el entusiasmo moderado generado por el almacenamiento de datos y la minería de datos en la década de 1990 ha sido reemplazado por una euforia desenfrenada sobre big data y análisis de datos. Pero, ¿es esto tan maravilloso como parece? Este documento presenta un análisis de riesgos de Big Data y Big Data Analytics basado en una revisión de factores de calidad.Silva, JesusPineda Lezama, Omar BonergeRomero Marin, Ligia Cielo-will be generated-orcid-0000-0002-1216-4489-600Solano, Darwin-will be generated-orcid-0000-0001-8996-0953-600Silva Fernández, Claudia Susana-will be generated-orcid-0000-0002-1931-2720-600engProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data managementData qualityDecision makingData analysisGestión de datosCalidad de datosToma de decisionesAnálisis de datosRisk analysis of using big data in computer sciencesAnálisis de riesgos del uso de big data en ciencias de la computaciónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Schroeck, M. et al. (2012). Analytics: The real-world use of big data. IBM Institute for Business Value. University of Oxford.[2] McAfee, A. & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Rev. 90, 61–68.[3] Clarke, R. (2014). Promise unfulfilled: the digital persona concept, two decades later. Information Technology & People 27(2), 182–207[4] Jagadish, H. et al. (2014). Big data and its technical challenges. Communications of the ACM 57(7), 86–94[5] Boyd, D. & Crawford, K. (2012). Critical questions for big data. Information, Comm. & Society 15(5), 662–679. [22] Clarke, R. (2014). What drones inherit from their ancestors. Computer Law & Security Review 30(3), 247–262[6] Amelec, V. (2015). Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Advanced Science Letters, 21(5), 1406-1408.[8] Guo, P. (2013). Data science workflow: Overview and challenges. Communications of the ACM Blog.[9] Ariza, P., Pineres, M., Santiago, L., Mercado, N., & De la Hoz, A. (2014, November). Implementation of moprosoft level I and II in software development companies in the colombian caribbean, a commitment to the software product quality region. In 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV) (pp. 1-5). IEEE.[10] Lis-Gutiérrez JP., Lis-Gutiérrez M., Gaitán-Angulo M., Balaguera MI., Viloria A., Santander-Abril JE. (2018) Use of the Industrial Property System for New Creations in Colombia: A Departmental Analysis (2000–2016). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.[11] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.[12] Jesus Silva, Jenny Cubillos, Jesus Vargas Villa, Ligia Romero, Darwin Solano, Claudia Fernández. (2019). Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review. Procedia Computer Science 151; 1219–1224.[13] Adhvaryu R, Domadiya N (2012). An Improved EMHS Algorithm for Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database. In: Security in Computing and Communications Springer Berlin Heidelberg, pp: 272-280.[14] G Li, M Xi. An Improved Algorithm for Privacy-preserving Data Mining Based on NMF. In: Journal of Information & Computational Science, 12(9) (2015), pp. 3423-3430[15] Lis-Gutiérrez J.P., Henao C., Zerda Á., Gaitán M., Correa J.C., Viloria A. (2018) Determinants of the Impact Factor of Publications: A Panel Model for Journals Indexed in Scopus 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[16] Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004)PublicationORIGINALRisk Analysis of Using Big Data in Computer Sciences.pdfRisk Analysis of Using Big Data in Computer Sciences.pdfapplication/pdf414937https://repositorio.cuc.edu.co/bitstreams/a7b96711-6246-4a3f-8527-127df9fe367a/download5ba73c31723500043c294743b47f6655MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/957ecf56-b3b9-42d5-94e0-81cbd3a0e5f2/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c9a89198-8096-48f5-b71c-1bb8289f58ff/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILRisk Analysis of Using Big Data in Computer Sciences.pdf.jpgRisk Analysis of Using Big Data in Computer Sciences.pdf.jpgimage/jpeg45053https://repositorio.cuc.edu.co/bitstreams/62134039-2539-47ef-8128-680f65f32f5d/download3330b3a34d2629fa7420fcf35e2954d8MD55TEXTRisk Analysis of Using Big Data in Computer Sciences.pdf.txtRisk Analysis of Using Big Data in Computer Sciences.pdf.txttext/plain52240https://repositorio.cuc.edu.co/bitstreams/efd31f7e-8538-40b6-bf46-5ecf75b97260/downloadea3992d9b0b9f420b5b23567ccc2d821MD5611323/5989oai:repositorio.cuc.edu.co:11323/59892024-09-17 14:14:59.897http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |