Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines

Improving the thermal efficiency of internal combustion engines is essential to reduce the operating costs and complaints with the increasing environmental requirements. Thermoelectric generators came up as an opportunity to reuse part of the heat loss with the exhausts. This paper evaluates the per...

Full description

Autores:
Ramírez Restrepo, Rafael Antonio
Sagastume, Alexis
Cabello Eras, Juan José
Hernández, B
Duarte Forero, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9012
Acceso en línea:
https://hdl.handle.net/11323/9012
https://repositorio.cuc.edu.co/
Palabra clave:
Energy efficiency
Internal combustion engine
Thermoelectric generator
Thermoelectric module
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_8c4976fd093eb1399ce3f3c336159d5d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9012
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
title Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
spellingShingle Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
Energy efficiency
Internal combustion engine
Thermoelectric generator
Thermoelectric module
title_short Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
title_full Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
title_fullStr Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
title_full_unstemmed Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
title_sort Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines
dc.creator.fl_str_mv Ramírez Restrepo, Rafael Antonio
Sagastume, Alexis
Cabello Eras, Juan José
Hernández, B
Duarte Forero, Jorge
dc.contributor.author.spa.fl_str_mv Ramírez Restrepo, Rafael Antonio
Sagastume, Alexis
Cabello Eras, Juan José
Hernández, B
Duarte Forero, Jorge
dc.subject.spa.fl_str_mv Energy efficiency
Internal combustion engine
Thermoelectric generator
Thermoelectric module
topic Energy efficiency
Internal combustion engine
Thermoelectric generator
Thermoelectric module
description Improving the thermal efficiency of internal combustion engines is essential to reduce the operating costs and complaints with the increasing environmental requirements. Thermoelectric generators came up as an opportunity to reuse part of the heat loss with the exhausts. This paper evaluates the performance of a thermoelectric generator to improve the efficiency of a stationary diesel engine under different rotational speeds and torques. The data was obtained through CFD simulations and validated with experiments. The proposed solution uses a cooling system to control the temperature of the thermoelectric modules. The results show that the torque and the rotational speed of the engine are the most significant performance parameters of the thermoelectric generator, while the influence of the cooling water temperature has a minor but still significant influence. Additionally, the results show a change from 1.3% to 6.2% in the thermoelectric generator efficiency, while the exergy efficiency varies between 1.8% and 7.9%. The exergy balance indicates that most of the exergy is loss because of the irreversibilities in the thermoelectric generator and of the exergy loss with the exhausts. The exergy loss can be reduced by optimizing the design of the heat exchanger. Since the thermoelectric generator improved the engine efficiency by a marginal 0.2%-0.8%. Therefore, it is important to further research how to improve the design of heat exchangers for thermoelectric generators to increase their energy conversion efficiency and their impact on the energy efficiency of internal combustion engines.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-28T21:11:58Z
dc.date.available.none.fl_str_mv 2022-01-28T21:11:58Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2405-8440
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9012
dc.identifier.doi.spa.fl_str_mv DOI: 10.1016/j.heliyon.2021.e08273
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2405-8440
DOI: 10.1016/j.heliyon.2021.e08273
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9012
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Y. Azoumah, J. Blin, T. Daho, Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels, Renew. Energy. 34 (2009) 1494–1500. https://doi.org/10.1016/j.renene.2008.10.026.
[2] K. Eckart, P. Henshaw, Jatropha curcas L. and multifunctional platforms for the development of rural subSaharan Africa, Energy Sustain. Dev. 16 (2012) 303–311. https://doi.org/10.1016/j.esd.2012.03.002.
[3] S.S. Sidibé, J. Blin, G. Vaitilingom, Y. Azoumah, Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review, Renew. Sustain. Energy Rev. 14 (2010) 2748–2759. https://doi.org/10.1016/j.rser.2010.06.018.
[4] D. Agarwal, A.K. Agarwal, Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine, Appl. Therm. Eng. 27 (2007) 2314–2323. https://doi.org/10.1016/j.applthermaleng.2007.01.009.
[5] G.A. Diaz, J.D. Forero, J. Garcia, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics, J. Energy Resour. Technol. 139 (2017) 032903. https://doi.org/10.1115/1.4035021.
[6] E. Hanff, M.-H. Dabat, J. Blin, Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso, Renew. Sustain. Energy Rev. 15 (2011) 2199–2209. https://doi.org/10.1016/j.rser.2011.01.014.
[7] G. Baquero, B. Esteban, J.-R. Riba, A. Rius, R. Puig, An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture, Biomass and Bioenergy. 35 (2011) 3687–3697. https://doi.org/10.1016/j.biombioe.2011.05.028.
[8] R. Escobar-Yonoff, D. Maestre-Cambronel, S. Charry, A. Rincón-Montenegro, I. Portnoy, Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation, Heliyon. 7 (2021) e06506. https://doi.org/10.1016/j.heliyon.2021.e06506.
[9] F. Consuegra, A. Bula, W. Guillín, J. Sánchez, J. Duarte Forero, Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines, Energies. 12 (2019) 1437. https://doi.org/10.3390/en12081437.
[10] A. Ziolkowski, Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine, MATEC Web Conf. 118 (2017) 00024. https://doi.org/10.1051/matecconf/201711800024.
[11] A. Mejía, M. Leiva, A. Rincón-Montenegro, A. Gonzalez-Quiroga, J. Duarte-Forero, Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends, Case Stud. Therm. Eng. 19 (2020) 100613. https://doi.org/10.1016/j.csite.2020.100613.
[12] G. Valencia Ochoa, C. Acevedo Peñaloza, J. Duarte Forero, Combustion and Performance Study of LowDisplacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends, Appl. Sci. 10 (2020) 907. https://doi.org/10.3390/app10030907.
[13] Z.-G. Shen, L.-L. Tian, X. Liu, Automotive exhaust thermoelectric generators: Current status, challenges and future prospects, Energy Convers. Manag. 195 (2019) 1138–1173. https://doi.org/10.1016/j.enconman.2019.05.087.
[14] J. Vazquez, M. a Sanz-Bobi, R. Palacios, A. Arenas, State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles, 7th Eur. Work. Thermoelectr. (2002).
[15] D. Maestre-Cambronel, J. Guzmán Barros, A. Gonzalez-Quiroga, A. Bula, J. Duarte-Forero, Thermoeconomic analysis of improved exhaust waste heat recovery system for natural gas engine based on Vortex Tube heat booster and supercritical CO2 Brayton cycle, Sustain. Energy Technol. Assessments. 47 (2021) 101355. https://doi.org/10.1016/j.seta.2021.101355.
[16] G. Von Maltitz, W. Stafford, Assessing opportunities and constraints for biofuel development in subSaharan Africa, CIFOR, 2011.
[17] B. Hernández-Comas, D. Maestre-Cambronel, C. Pardo-García, M.D.S. Fonseca-Vigoya, J. Pabón-León, Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines, Lubricants. 9 (2021) 25–57. https://doi.org/10.3390/lubricants9030025.
[18] A. Domingues, H. Santos, M. Costa, Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle, Energy. 49 (2013) 71–85. https://doi.org/10.1016/j.energy.2012.11.001.
[19] U. Larsen, T.-V. Nguyen, T. Knudsen, F. Haglind, System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines, Energy. 64 (2014) 484–494. https://doi.org/10.1016/j.energy.2013.10.069.
[20] V. Chintala, S. Kumar, J.K. Pandey, A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle, Renew. Sustain. Energy Rev. 81 (2018) 493–509. https://doi.org/10.1016/j.rser.2017.08.016.
[21] G. Valencia Ochoa, J. Piero Rojas, J. Duarte Forero, Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine, Energies. 13 (2020) 267. https://doi.org/10.3390/en13010267.
[22] G. Valencia Ochoa, J. Cárdenas Gutierrez, J. Duarte Forero, Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine, Resources. 9 (2020) 2. https://doi.org/10.3390/resources9010002.
[23] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/10.1016/J.TSEP.2018.04.017.
[24] S.. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Appl. Therm. Eng. 23 (2003) 913–935. https://doi.org/10.1016/S1359-4311(03)00012-7.
[25] R. Ramírez, A. Sagastume, J.J. Cabello, K. Valencia, B. Hernández, J. Duarte, Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, J. Clean. Prod. 241 (2019) 118412– 118419. https://doi.org/10.1016/j.jclepro.2019.118412.
[26] R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, M. Hasanuzzaman, Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev. 16 (2012) 5649–5659. https://doi.org/10.1016/j.rser.2012.05.018.
[27] T.Y. Kim, A.A. Negash, G. Cho, Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine, Energy. 128 (2017) 531–539. https://doi.org/10.1016/j.energy.2017.04.060.
[28] A. Massaguer, E. Massaguer, M. Comamala, T. Pujol, L. Montoro, M.D. Cardenas, D. Carbonell, A.J. Bueno, Transient behavior under a normalized driving cycle of an automotive thermoelectric generator, Appl. Energy. 206 (2017) 1282–1296. https://doi.org/10.1016/j.apenergy.2017.10.015.
[29] B. Li, K. Huang, Y. Yan, Y. Li, S. Twaha, J. Zhu, Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles, Appl. Energy. 205 (2017) 868–879. https://doi.org/10.1016/j.apenergy.2017.08.092.
[30] M. Comamala, I.R. Cózar, A. Massaguer, E. Massaguer, T. Pujol, Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator, Energies. 11 (2018) 3274. https://doi.org/10.3390/en11123274.
[31] D. Luo, R. Wang, W. Yu, Z. Sun, X. Meng, Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery, Appl. Therm. Eng. 153 (2019) 837–847. https://doi.org/10.1016/j.applthermaleng.2019.03.060.
[32] C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, C.Q. Su, Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator, Appl. Therm. Eng. 108 (2016) 916–926. https://doi.org/10.1016/j.applthermaleng.2016.07.175.
[33] A. Marvão, P.J. Coelho, H.C. Rodrigues, Optimization of a thermoelectric generator for heavy-duty vehicles, Energy Convers. Manag. 179 (2019) 178–191. https://doi.org/10.1016/j.enconman.2018.10.045.
[34] C. Lu, S. Wang, C. Chen, Y. Li, Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator, Appl. Therm. Eng. 89 (2015) 270–279. https://doi.org/10.1016/j.applthermaleng.2015.05.086.
[35] A. Rezania, L.A. Rosendahl, S.J. Andreasen, Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink, Int. Commun. Heat Mass Transf. 39 (2012) 1054–1058. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.010.
[36] M.A. Karri, E.F. Thacher, B.T. Helenbrook, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manag. 52 (2011) 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013.
[37] D. Li, Y. Xuan, Q. Li, H. Hong, Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems, Energy. 126 (2017) 343–351. https://doi.org/10.1016/j.energy.2017.03.042.
[38] A. Makki, S. Omer, Y. Su, H. Sabir, Numerical investigation of heat pipe-based photovoltaic-- thermoelectric generator (HP-PV/TEG) hybrid system, Energy Convers. Manag. 112 (2016) 274–287.
[39] H. Yang, G. Shu, H. Tian, X. Ma, T. Chen, P. Liu, Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine’s exhaust waste heat, Appl. Therm. Eng. 144 (2018) 628–638. https://doi.org/10.1016/j.applthermaleng.2018.07.091.
[40] G. Shu, X. Ma, H. Tian, H. Yang, T. Chen, X. Li, Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery, Energy. 160 (2018) 612–624. https://doi.org/10.1016/j.energy.2018.06.175.
[41] F. Frobenius, G. Gaiser, U. Rusche, B. Weller, Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles, J. Electron. Mater. 45 (2016) 1433–1440. https://doi.org/10.1007/s11664-015-4059-z.
[42] S. Lan, Z. Yang, R. Chen, R. Stobart, A dynamic model for thermoelectric generator applied to vehicle waste heat recovery, Appl. Energy. 210 (2018) 327–338. https://doi.org/10.1016/j.apenergy.2017.11.004.
[43] F. Zhou, J. Fu, D. Li, J. Liu, C.F. Lee, Y. Yin, Experimental study on combustion, emissions and thermal balance of high compression ratio engine fueled with liquefied methane gas, Appl. Therm. Eng. 161 (2019) 114125. https://doi.org/10.1016/j.applthermaleng.2019.114125.
[44] T.Y. Kim, J. Kwak, B. Kim, Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions, Energy Convers. Manag. 201 (2019) 112150. https://doi.org/10.1016/j.enconman.2019.112150.
[45] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, C. Su, Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger, Appl. Energy. 218 (2018) 391–401. https://doi.org/10.1016/j.apenergy.2018.02.176.
[46] A. Montecucco, J. Siviter, A.R. Knox, The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel, Appl. Energy. 123 (2014) 47–54. https://doi.org/10.1016/J.APENERGY.2014.02.030.
[47] M.A. Rosen, Clarifying thermodynamic efficiencies and losses via exergy, Exergy, An Int. J. 2 (2002) 3–5.
[48] M. Ghazikhani, M. Hatami, D.D. Ganji, M. Gorji-Bandpy, A. Behravan, G. Shahi, Exergy recovery from the exhaust cooling in a DI diesel engine for BSFC reduction purposes, Energy. 65 (2014) 44–51. https://doi.org/10.1016/j.energy.2013.12.004.
[49] S. Sarıkoç, İ. Örs, S. Ünalan, An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, Fuel. 268 (2020) 117321. https://doi.org/10.1016/j.fuel.2020.117321.
[50] G. Min, D.M. Rowe, Conversion Efficiency of Thermoelectric Combustion Systems, IEEE Trans. Energy Convers. 22 (2007) 528–534. https://doi.org/10.1109/TEC.2006.877375.
[51] X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator, J. Power Sources. 188 (2009) 621–626. https://doi.org/10.1016/j.jpowsour.2008.12.067.
[52] W.-H. Chen, P.-H. Wu, X.-D. Wang, Y.-L. Lin, Power output and efficiency of a thermoelectric generator under temperature control, Energy Convers. Manag. 127 (2016) 404–415. https://doi.org/10.1016/j.enconman.2016.09.039.
[53] T.Y. Kim, A. Negash, G. Cho, Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator, Energy Convers. Manag. 140 (2017) 273–280. https://doi.org/10.1016/j.enconman.2017.03.014.
[54] S. Nag, A. Dhar, A. Gupta, Exhaust Heat Recovery Using Thermoelectric Generators: A Review, in: Adv. Intern. Combust. Engine Res., Springer, 2018: pp. 193–206. https://doi.org/10.1007/978-981-10-7575- 9_10.
[55] C. Liu, X. Pan, X. Zheng, Y. Yan, W. Li, An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust, J. Energy Inst. 89 (2016) 271–281. https://doi.org/10.1016/j.joei.2015.01.019.
[56] GlobalPetrolPrices.com, Diesel prices, GlobalPetrolPrices.Com. (2021). https://es.globalpetrolprices.com/diesel_prices/ (accessed July 31, 2021).
[57] D.R. Karana, R.R. Sahoo, Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator, Sustain. Energy Technol. Assessments. 40 (2020) 100742. https://doi.org/10.1016/j.seta.2020.100742.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Heliyon
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://pubmed.ncbi.nlm.nih.gov/34765787/
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e71e37cb-f69b-467a-a997-5468840d7ff1/download
https://repositorio.cuc.edu.co/bitstreams/1c42018e-8d26-42eb-b43e-c630fc137f00/download
https://repositorio.cuc.edu.co/bitstreams/27306520-25ce-403d-b41b-0329011cf87d/download
https://repositorio.cuc.edu.co/bitstreams/de2018ea-a237-400d-9234-2c7135734f00/download
https://repositorio.cuc.edu.co/bitstreams/22a897c4-b188-45fa-b61f-3e3548e38f38/download
bitstream.checksum.fl_str_mv e019501c87ffbe603dc8070c85233faa
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d4491bc0f36ec88f0ce4a1e0d83da049
523aaaf176727a26bfae18b6745277ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760731621687296
spelling Ramírez Restrepo, Rafael AntonioSagastume, AlexisCabello Eras, Juan JoséHernández, BDuarte Forero, Jorge2022-01-28T21:11:58Z2022-01-28T21:11:58Z20212405-8440https://hdl.handle.net/11323/9012DOI: 10.1016/j.heliyon.2021.e08273Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Improving the thermal efficiency of internal combustion engines is essential to reduce the operating costs and complaints with the increasing environmental requirements. Thermoelectric generators came up as an opportunity to reuse part of the heat loss with the exhausts. This paper evaluates the performance of a thermoelectric generator to improve the efficiency of a stationary diesel engine under different rotational speeds and torques. The data was obtained through CFD simulations and validated with experiments. The proposed solution uses a cooling system to control the temperature of the thermoelectric modules. The results show that the torque and the rotational speed of the engine are the most significant performance parameters of the thermoelectric generator, while the influence of the cooling water temperature has a minor but still significant influence. Additionally, the results show a change from 1.3% to 6.2% in the thermoelectric generator efficiency, while the exergy efficiency varies between 1.8% and 7.9%. The exergy balance indicates that most of the exergy is loss because of the irreversibilities in the thermoelectric generator and of the exergy loss with the exhausts. The exergy loss can be reduced by optimizing the design of the heat exchanger. Since the thermoelectric generator improved the engine efficiency by a marginal 0.2%-0.8%. Therefore, it is important to further research how to improve the design of heat exchangers for thermoelectric generators to increase their energy conversion efficiency and their impact on the energy efficiency of internal combustion engines.Ramírez Restrepo, Rafael Antonio-will be generated-orcid-0000-0001-6947-4122-600Sagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600Cabello Eras, Juan José-will be generated-orcid-0000-0003-0949-0862-600Hernández, BDuarte Forero, Jorge-will be generated-orcid-0000-0001-7345-9590-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Heliyonhttps://pubmed.ncbi.nlm.nih.gov/34765787/Energy efficiencyInternal combustion engineThermoelectric generatorThermoelectric moduleExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel enginesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Y. Azoumah, J. Blin, T. Daho, Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels, Renew. Energy. 34 (2009) 1494–1500. https://doi.org/10.1016/j.renene.2008.10.026.[2] K. Eckart, P. Henshaw, Jatropha curcas L. and multifunctional platforms for the development of rural subSaharan Africa, Energy Sustain. Dev. 16 (2012) 303–311. https://doi.org/10.1016/j.esd.2012.03.002.[3] S.S. Sidibé, J. Blin, G. Vaitilingom, Y. Azoumah, Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review, Renew. Sustain. Energy Rev. 14 (2010) 2748–2759. https://doi.org/10.1016/j.rser.2010.06.018.[4] D. Agarwal, A.K. Agarwal, Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine, Appl. Therm. Eng. 27 (2007) 2314–2323. https://doi.org/10.1016/j.applthermaleng.2007.01.009.[5] G.A. Diaz, J.D. Forero, J. Garcia, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics, J. Energy Resour. Technol. 139 (2017) 032903. https://doi.org/10.1115/1.4035021.[6] E. Hanff, M.-H. Dabat, J. Blin, Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso, Renew. Sustain. Energy Rev. 15 (2011) 2199–2209. https://doi.org/10.1016/j.rser.2011.01.014.[7] G. Baquero, B. Esteban, J.-R. Riba, A. Rius, R. Puig, An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture, Biomass and Bioenergy. 35 (2011) 3687–3697. https://doi.org/10.1016/j.biombioe.2011.05.028.[8] R. Escobar-Yonoff, D. Maestre-Cambronel, S. Charry, A. Rincón-Montenegro, I. Portnoy, Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation, Heliyon. 7 (2021) e06506. https://doi.org/10.1016/j.heliyon.2021.e06506.[9] F. Consuegra, A. Bula, W. Guillín, J. Sánchez, J. Duarte Forero, Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines, Energies. 12 (2019) 1437. https://doi.org/10.3390/en12081437.[10] A. Ziolkowski, Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine, MATEC Web Conf. 118 (2017) 00024. https://doi.org/10.1051/matecconf/201711800024.[11] A. Mejía, M. Leiva, A. Rincón-Montenegro, A. Gonzalez-Quiroga, J. Duarte-Forero, Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends, Case Stud. Therm. Eng. 19 (2020) 100613. https://doi.org/10.1016/j.csite.2020.100613.[12] G. Valencia Ochoa, C. Acevedo Peñaloza, J. Duarte Forero, Combustion and Performance Study of LowDisplacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends, Appl. Sci. 10 (2020) 907. https://doi.org/10.3390/app10030907.[13] Z.-G. Shen, L.-L. Tian, X. Liu, Automotive exhaust thermoelectric generators: Current status, challenges and future prospects, Energy Convers. Manag. 195 (2019) 1138–1173. https://doi.org/10.1016/j.enconman.2019.05.087.[14] J. Vazquez, M. a Sanz-Bobi, R. Palacios, A. Arenas, State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles, 7th Eur. Work. Thermoelectr. (2002).[15] D. Maestre-Cambronel, J. Guzmán Barros, A. Gonzalez-Quiroga, A. Bula, J. Duarte-Forero, Thermoeconomic analysis of improved exhaust waste heat recovery system for natural gas engine based on Vortex Tube heat booster and supercritical CO2 Brayton cycle, Sustain. Energy Technol. Assessments. 47 (2021) 101355. https://doi.org/10.1016/j.seta.2021.101355.[16] G. Von Maltitz, W. Stafford, Assessing opportunities and constraints for biofuel development in subSaharan Africa, CIFOR, 2011.[17] B. Hernández-Comas, D. Maestre-Cambronel, C. Pardo-García, M.D.S. Fonseca-Vigoya, J. Pabón-León, Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines, Lubricants. 9 (2021) 25–57. https://doi.org/10.3390/lubricants9030025.[18] A. Domingues, H. Santos, M. Costa, Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle, Energy. 49 (2013) 71–85. https://doi.org/10.1016/j.energy.2012.11.001.[19] U. Larsen, T.-V. Nguyen, T. Knudsen, F. Haglind, System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines, Energy. 64 (2014) 484–494. https://doi.org/10.1016/j.energy.2013.10.069.[20] V. Chintala, S. Kumar, J.K. Pandey, A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle, Renew. Sustain. Energy Rev. 81 (2018) 493–509. https://doi.org/10.1016/j.rser.2017.08.016.[21] G. Valencia Ochoa, J. Piero Rojas, J. Duarte Forero, Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine, Energies. 13 (2020) 267. https://doi.org/10.3390/en13010267.[22] G. Valencia Ochoa, J. Cárdenas Gutierrez, J. Duarte Forero, Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine, Resources. 9 (2020) 2. https://doi.org/10.3390/resources9010002.[23] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/10.1016/J.TSEP.2018.04.017.[24] S.. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Appl. Therm. Eng. 23 (2003) 913–935. https://doi.org/10.1016/S1359-4311(03)00012-7.[25] R. Ramírez, A. Sagastume, J.J. Cabello, K. Valencia, B. Hernández, J. Duarte, Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, J. Clean. Prod. 241 (2019) 118412– 118419. https://doi.org/10.1016/j.jclepro.2019.118412.[26] R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, M. Hasanuzzaman, Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev. 16 (2012) 5649–5659. https://doi.org/10.1016/j.rser.2012.05.018.[27] T.Y. Kim, A.A. Negash, G. Cho, Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine, Energy. 128 (2017) 531–539. https://doi.org/10.1016/j.energy.2017.04.060.[28] A. Massaguer, E. Massaguer, M. Comamala, T. Pujol, L. Montoro, M.D. Cardenas, D. Carbonell, A.J. Bueno, Transient behavior under a normalized driving cycle of an automotive thermoelectric generator, Appl. Energy. 206 (2017) 1282–1296. https://doi.org/10.1016/j.apenergy.2017.10.015.[29] B. Li, K. Huang, Y. Yan, Y. Li, S. Twaha, J. Zhu, Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles, Appl. Energy. 205 (2017) 868–879. https://doi.org/10.1016/j.apenergy.2017.08.092.[30] M. Comamala, I.R. Cózar, A. Massaguer, E. Massaguer, T. Pujol, Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator, Energies. 11 (2018) 3274. https://doi.org/10.3390/en11123274.[31] D. Luo, R. Wang, W. Yu, Z. Sun, X. Meng, Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery, Appl. Therm. Eng. 153 (2019) 837–847. https://doi.org/10.1016/j.applthermaleng.2019.03.060.[32] C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, C.Q. Su, Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator, Appl. Therm. Eng. 108 (2016) 916–926. https://doi.org/10.1016/j.applthermaleng.2016.07.175.[33] A. Marvão, P.J. Coelho, H.C. Rodrigues, Optimization of a thermoelectric generator for heavy-duty vehicles, Energy Convers. Manag. 179 (2019) 178–191. https://doi.org/10.1016/j.enconman.2018.10.045.[34] C. Lu, S. Wang, C. Chen, Y. Li, Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator, Appl. Therm. Eng. 89 (2015) 270–279. https://doi.org/10.1016/j.applthermaleng.2015.05.086.[35] A. Rezania, L.A. Rosendahl, S.J. Andreasen, Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink, Int. Commun. Heat Mass Transf. 39 (2012) 1054–1058. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.010.[36] M.A. Karri, E.F. Thacher, B.T. Helenbrook, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manag. 52 (2011) 1596–1611. https://doi.org/10.1016/j.enconman.2010.10.013.[37] D. Li, Y. Xuan, Q. Li, H. Hong, Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems, Energy. 126 (2017) 343–351. https://doi.org/10.1016/j.energy.2017.03.042.[38] A. Makki, S. Omer, Y. Su, H. Sabir, Numerical investigation of heat pipe-based photovoltaic-- thermoelectric generator (HP-PV/TEG) hybrid system, Energy Convers. Manag. 112 (2016) 274–287.[39] H. Yang, G. Shu, H. Tian, X. Ma, T. Chen, P. Liu, Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine’s exhaust waste heat, Appl. Therm. Eng. 144 (2018) 628–638. https://doi.org/10.1016/j.applthermaleng.2018.07.091.[40] G. Shu, X. Ma, H. Tian, H. Yang, T. Chen, X. Li, Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery, Energy. 160 (2018) 612–624. https://doi.org/10.1016/j.energy.2018.06.175.[41] F. Frobenius, G. Gaiser, U. Rusche, B. Weller, Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles, J. Electron. Mater. 45 (2016) 1433–1440. https://doi.org/10.1007/s11664-015-4059-z.[42] S. Lan, Z. Yang, R. Chen, R. Stobart, A dynamic model for thermoelectric generator applied to vehicle waste heat recovery, Appl. Energy. 210 (2018) 327–338. https://doi.org/10.1016/j.apenergy.2017.11.004.[43] F. Zhou, J. Fu, D. Li, J. Liu, C.F. Lee, Y. Yin, Experimental study on combustion, emissions and thermal balance of high compression ratio engine fueled with liquefied methane gas, Appl. Therm. Eng. 161 (2019) 114125. https://doi.org/10.1016/j.applthermaleng.2019.114125.[44] T.Y. Kim, J. Kwak, B. Kim, Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions, Energy Convers. Manag. 201 (2019) 112150. https://doi.org/10.1016/j.enconman.2019.112150.[45] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, C. Su, Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger, Appl. Energy. 218 (2018) 391–401. https://doi.org/10.1016/j.apenergy.2018.02.176.[46] A. Montecucco, J. Siviter, A.R. Knox, The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel, Appl. Energy. 123 (2014) 47–54. https://doi.org/10.1016/J.APENERGY.2014.02.030.[47] M.A. Rosen, Clarifying thermodynamic efficiencies and losses via exergy, Exergy, An Int. J. 2 (2002) 3–5.[48] M. Ghazikhani, M. Hatami, D.D. Ganji, M. Gorji-Bandpy, A. Behravan, G. Shahi, Exergy recovery from the exhaust cooling in a DI diesel engine for BSFC reduction purposes, Energy. 65 (2014) 44–51. https://doi.org/10.1016/j.energy.2013.12.004.[49] S. Sarıkoç, İ. Örs, S. Ünalan, An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, Fuel. 268 (2020) 117321. https://doi.org/10.1016/j.fuel.2020.117321.[50] G. Min, D.M. Rowe, Conversion Efficiency of Thermoelectric Combustion Systems, IEEE Trans. Energy Convers. 22 (2007) 528–534. https://doi.org/10.1109/TEC.2006.877375.[51] X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator, J. Power Sources. 188 (2009) 621–626. https://doi.org/10.1016/j.jpowsour.2008.12.067.[52] W.-H. Chen, P.-H. Wu, X.-D. Wang, Y.-L. Lin, Power output and efficiency of a thermoelectric generator under temperature control, Energy Convers. Manag. 127 (2016) 404–415. https://doi.org/10.1016/j.enconman.2016.09.039.[53] T.Y. Kim, A. Negash, G. Cho, Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator, Energy Convers. Manag. 140 (2017) 273–280. https://doi.org/10.1016/j.enconman.2017.03.014.[54] S. Nag, A. Dhar, A. Gupta, Exhaust Heat Recovery Using Thermoelectric Generators: A Review, in: Adv. Intern. Combust. Engine Res., Springer, 2018: pp. 193–206. https://doi.org/10.1007/978-981-10-7575- 9_10.[55] C. Liu, X. Pan, X. Zheng, Y. Yan, W. Li, An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust, J. Energy Inst. 89 (2016) 271–281. https://doi.org/10.1016/j.joei.2015.01.019.[56] GlobalPetrolPrices.com, Diesel prices, GlobalPetrolPrices.Com. (2021). https://es.globalpetrolprices.com/diesel_prices/ (accessed July 31, 2021).[57] D.R. Karana, R.R. Sahoo, Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator, Sustain. Energy Technol. Assessments. 40 (2020) 100742. https://doi.org/10.1016/j.seta.2020.100742.PublicationORIGINALExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdfExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdfapplication/pdf5521492https://repositorio.cuc.edu.co/bitstreams/e71e37cb-f69b-467a-a997-5468840d7ff1/downloade019501c87ffbe603dc8070c85233faaMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/1c42018e-8d26-42eb-b43e-c630fc137f00/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/27306520-25ce-403d-b41b-0329011cf87d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdf.jpgExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdf.jpgimage/jpeg64096https://repositorio.cuc.edu.co/bitstreams/de2018ea-a237-400d-9234-2c7135734f00/downloadd4491bc0f36ec88f0ce4a1e0d83da049MD54TEXTExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdf.txtExperimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines.pdf.txttext/plain52855https://repositorio.cuc.edu.co/bitstreams/22a897c4-b188-45fa-b61f-3e3548e38f38/download523aaaf176727a26bfae18b6745277ffMD5511323/9012oai:repositorio.cuc.edu.co:11323/90122024-09-17 10:51:57.833http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==