Source identification and global implications of black carbon
Black carbon (BC) is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change. It is emitted by the incomplete combustion of fossil fuels, biofuels, and biomass. Urban environments are quite complex and thus, the use of mobile jointl...
- Autores:
-
Blanco Donado, Erika Patricia
Schneider, Ismael
Artaxo, Paulo
Lozano-Osorio, Jesus
Portz, Luana
Silva Oliveira, Marcos Leandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8209
- Acceso en línea:
- https://hdl.handle.net/11323/8209
https://doi.org/10.1016/j.gsf.2021.101149
https://repositorio.cuc.edu.co/
- Palabra clave:
- Air pollution
Black carbon
Spatial distribution
Source apportionment
Absorption Ångström exponent
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_8bffba5b76570a85f502093b28a19ec7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8209 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Source identification and global implications of black carbon |
title |
Source identification and global implications of black carbon |
spellingShingle |
Source identification and global implications of black carbon Air pollution Black carbon Spatial distribution Source apportionment Absorption Ångström exponent |
title_short |
Source identification and global implications of black carbon |
title_full |
Source identification and global implications of black carbon |
title_fullStr |
Source identification and global implications of black carbon |
title_full_unstemmed |
Source identification and global implications of black carbon |
title_sort |
Source identification and global implications of black carbon |
dc.creator.fl_str_mv |
Blanco Donado, Erika Patricia Schneider, Ismael Artaxo, Paulo Lozano-Osorio, Jesus Portz, Luana Silva Oliveira, Marcos Leandro |
dc.contributor.author.spa.fl_str_mv |
Blanco Donado, Erika Patricia Schneider, Ismael Artaxo, Paulo Lozano-Osorio, Jesus Portz, Luana Silva Oliveira, Marcos Leandro |
dc.subject.spa.fl_str_mv |
Air pollution Black carbon Spatial distribution Source apportionment Absorption Ångström exponent |
topic |
Air pollution Black carbon Spatial distribution Source apportionment Absorption Ångström exponent |
description |
Black carbon (BC) is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change. It is emitted by the incomplete combustion of fossil fuels, biofuels, and biomass. Urban environments are quite complex and thus, the use of mobile jointly with fixed monitoring provides a better understanding of the dynamics of BC distribution in such areas. The present study addresses the measurement of BC concentration using real-time mobile and ambient monitoring in Barranquilla, an industrialized urban area of the Colombian Caribbean. A microaethalometer (MA200) and an aethalometer (AE33) were used for measuring the BC concentration. The absorption Ångström exponent (AAE) values were determined for the study area, for identifying the BC emission sources. The results of the ambient sampling show that vehicle traffic emissions prevail; however, the influence of biomass burning was also observed. The mean ambient BC concentration was found to be 1.04 ± 1.03 μg/m3 and varied between 0.5 and 4.0 μg/m3. From the mobile measurements obtained in real traffic conditions on the road, a much higher average value of 16.1 ± 16.5 μg/m3 was measured. Many parts of the city showed BC concentrations higher than 20 μg/m3. The spatial distribution of BC concentration shows that vehicle emissions and traffic jams, a consequence of road and transport infrastructure, are the factors that most affect the BC concentration. A comparison of results obtained from two aethalometers indicates that the concentrations measured by MA200 are 9% lower than those measured by AE33. The AAE obtained was found to vary between 1.1 and 1.6, indicating vehicular emissions as the most crucial source. In addition, it was observed that the BC concentration on working days was 2.5 times higher than on the weekends in the case of mobile monitoring and 1.5 times higher in the case of ambient monitoring. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-27T20:57:18Z |
dc.date.available.none.fl_str_mv |
2021-04-27T20:57:18Z |
dc.date.issued.none.fl_str_mv |
2021-01-23 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1674-9871 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8209 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.gsf.2021.101149 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1674-9871 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8209 https://doi.org/10.1016/j.gsf.2021.101149 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
US EPA – United States Environmental Protection Agency, 2012. Report to Congress on Black Carbon, EPA-450/R-12-001. Environmental Protection Agency, Office of Air and Radiation, Washington (48 pp). de Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., Nieuwenhuijsen, M., 2012. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 59, 151–159. Dons, E., Panis, L.I., Van Poppel, M., Theunis, J., Wets, G., 2012. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 55, 392–398. Favez, O., Cachier, H., Sciare, J., Sarda-Estève, R., Martinon, L., 2009. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ. 43 (22–23), 3640–3644. Schneider, I.L., Teixeira, E.C., Agudelo-Castañeda, D.M., Silva e Silva, G., Balzaretti, N., Braga, M.F., Oliveira, L.F.S., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160. Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543 (A), 161–170. Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. Ajtai, T., Filep, Á., Utry, N., Schnaiter, M., Linke, C., Bozóki, Z., Szabó, G., Leisner, T., 2011. Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions. J. Aerosol Sci. 42 (12), 859–866. Artaxo, P., Rizzo, L.V., Brito, J.F., Barbosa, H.M.J., Arana, A., Sena, E.T., Cirino, G.G., Bastos, W., Martin, S.T., Andreae, M.O., 2013. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discuss. 165, 203–235. Aruna, K., Kumar, T.V.L., Rao, D.N., Murthy, B.V.K., Babu, S.S., Moorthy, K.K., 2013. Black carbon aerosols in a tropical semi-urban coastal environment: effects of boundary layer dynamics and long range transport. J. Atmos. Sol.-Terr. Phy. 104, 116–125. Becerril-Valle, M., Coz, E., Prévôt, A.S.H., Močnik, G., Pandis, S.N., Sánchez de la Campa, A.M., Alastuey, A., Díaz, E., Pérez, R.M., Artíñano, B., 2017. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 169, 36–53. Bergstrom, R.W., Russell, P.B., Hignett, P., 2002. Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J. Atmos. Sci. 59, 567–577. Bhaskar, B.V., Rajeshkumar, R.M., Muthuchelian, K., Ramachandran, S., 2018. Spatial, temporal and source study of black carbon in the atmospheric aerosols over different altitude regions in Southern India. J. Atmos. Sol.-Terr. Phy. 179, 416–424. Bond, T.C., Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40 (1), 27–67. Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Waren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118 (11), 5380–5552. Boniardi, L., Dons, E., Campo, L., Van Poppel, M., Panis, L.I., Fustinoni, S., 2019. Annual, seasonal, and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan, Italy. Environ. Res. 176, 108520. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.-Y., 2013. Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY, USA. pp. 571–658. Brito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.C., Caumo, S.E.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13 (24), 12199–12213. Coen, M.C., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3 (2), 457–474. Rizzo, L.V., Correia, A.L., Artaxo, P., Procópio, A.S., Andreae, M.O., 2011. Physics spectral dependence of aerosol light absorption over the Amazon Basin. Atmos. Chem. Phys. 11 (17), 8899–8912. Drinovec, L., Močnik, G., Zotter, P., Prévôt, A.S.H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., Hansen, A.D.A., 2015. The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8 (5), 1965–1979. Duarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geosci. Front. 10 (3), 927–939. Dumka, U.C., Manchanda, R.K., Sinha, P.R., Sreenivasan, S., Moorthy, K.K., Babu, S.S., 2013. Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad. J. Atmos. Sol.-Terr. Phy. 105–106, 81–90. Ehrenbring, H.Z., de Medeiros Quinino, U.C., Oliveira, L.F.S., Tutikian, B.F., 2019. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 20 (3), 1064–1075. Evans, M., Kholod, N., Kuklinski, T., Denysenko, A., Smith, S.J., Staniszewski, A., Hao, W.M., Liu, L., Bond, T.M., 2017. Black carbon emissions in Russia: a critical review. Atmos. Environ. 163, 9–21. Franco, J.F., Segura, J.F., Mura, I., 2016. Air pollution alongside bike-paths in BogotáColombia. Front. Environ. Sci. 4, 77. Fuller, G.W., Tremper, A.H., Baker, T.D., Yttri, K.E., Butterfield, D., 2014. Contribution of wood burning to PM10 in London. Atmos. Environ. 87, 87–94. Godoy, M.L.D.P., Godoy, J.M., Roldão, L.A., Soluri, D.S., Donagemma, R.A., 2009. Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos. Environ. 43 (14), 2366–2374. Goel, A., Kumar, P., 2014. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos. Environ. 97, 316–331. Gong, T., Sun, Z., Zhang, X., Zhang, Y., Wang, S., Han, L., Zhao, D., Ding, D., Zheng, C., 2019. Associations of black carbon and PM2.5 with daily cardiovascular mortality in Beijing, China. Atmos. Environ. 214, 116876. Ham, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 167, 335–345. Hankey, S., Marshall, J.D., 2015. On-bicycle exposure to particulate air pollution: particle number, black carbon, PM2.5 and particle size. Atmos. Environ. 122, 65–73. Harrison, R.M., Beddows, D.C.S., Jones, A.M., Calvo, A., Alves, C., Pio, C., 2013. An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmos. Environ. 80, 540–548. Jarjour, S., Jerrett, M., Westerdahl, D., de Nazelle, A., Hanning, C., Daly, L., Lipsitt, J., Balmes, J., 2013. Cyclist route choice , traffic-related air pollution , and lung function : a scripted exposure study. Environ. Health 12, 14. Ježek, I., Katrašnik, T., Westerdahl, D., Močnik, G., 2015. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method. Atmos. Chem. Phys. 15 (19), 11011–11026. Jing, A., Zhu, B., Wang, H., Yu, X., An, J., Kang, H., 2019. Source apportionment of black carbon in different seasons in the northern suburb of Nanjing, China. Atmos. Environ. 201, 190–200. Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21), D21208. Krecl, P., Johansson, C., Ström, J., Lövenheim, B., Gallet, J., 2014. A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform. Tellus B 66 (1), 23533. Kumar, R.R., Soni, V.K., Jain, M.K., 2020. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci. Total Environ. 723, 138060. Laing, J.R., Jaffe, D.A., Sedlacek, A.J., 2020. Comparison of filter-based absorption measurements of biomass burning aerosol and background aerosol at the Mt. Bachelor Observatory. Aerosol Air Qual. Res. 20 (4), 663–678. Lei, X., Bian, J., Xiu, G., Hu, X., Gu, X., Bian, Q., 2017. The mobile monitoring of black carbon and its association with roadside data in the Chinese megacity of Shanghai. Environ. Sci. Pollut. Res. 24, 7482–7489. Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 525, 237–245. Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018a. The Absorption Ångström Exponent of black carbon: from numerical aspects. Atmos. Chem. Phys. 18 (9), 6259–6273. Liu, B., Minle, M., Wu, C., Li, J., Li, Y., Ting, N., Zhen, J., Lau, A.K.H., Fung, J.C.H., In, K., Meng, K., Chan, C.K., Jie, Y., 2019a. Potential exposure to fine particulate matter (PM2.5) and black carbon on jogging trails in Macau. Atmos. Environ. 198, 23–33. Liu, M., Peng, X., Meng, Z., Zhou, T., Long, L., She, Q., 2019b. Spatial characteristics and determinants of in-traffic black carbon in Shanghai, China : combination of mobile monitoring and land use regression model. Sci. Total Environ. 658, 51–61. Liu, Y., Yan, C., Zheng, M., 2018b. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 618, 531–541. Madueño, L., Kecorius, S., Löndahl, J., Müller, T., Pfeifer, S., Haudek, A., Mardoñez, V., Wiedensohler, A., 2019. A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon. Environ. Pollut. 248, 295–303. Madureira, J., Slezakova, K., Silva, A.I., Lage, B., Mendes, A., Aguiar, L., Pereira, M.C., Teixeira, J.P., Costa, C., 2020. Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci. Total Environ. 717, 137293. Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, R.M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470–471. Martins, J.V., Artaxo, P., Liousse, C., Reid, J.S., Hobbs, P.V., Kaufman, Y.J., 1998. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. Atmos. 103, 32041–32050. Martinsson, J., Azeem, H.A., Sporre, M.K., Bergström, R., Ahlberg, E., Öström, E., 2017. Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 17, 4265–4281. Martinsson, J., Eriksson, A.C., Nielsen, I.E., Malmborg, V.B., Ahlberg, E., Andersen, C., Lindgren, R., Nyström, R., Nordin, E.Z., Brune, W.H., Svenningsson, L., Swietlicki, E., Boman, C., Pagels, J.H., 2015. Impacts of combustion conditions and photochemical processing on the light absorption of biomass bombustion aerosol. Environ. Sci. Technol. 49 (24), 14663–14671. Massabò, D., Caponi, L., Bernardoni, V., Bove, M.C., Brotto, P., Calzolai, G., Cassola, F., Chiari, M., Fedi, M.E., Fermo, P., Giannoni, M., Lucarelli, F., Nava, S., Piazzalunga, A., Valli, G., Vecchi, R., Prati, P., 2015. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols. Atmos. Environ. 108, 1–12. Merritt, A.-S., Georgellis, A., Andersson, N., Bedada, G.B., Bellander, T., Johansson, C., 2019. Personal exposure to black carbon in Stockholm, using different intra- urban transport modes. Sci. Total Environ. 674, 279–287. Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J.P., Sarmiento, O.L., Gallo-Murcia, S.M., Contreras, Y., 2017. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 157, 135–145. Mousavi, A., Sowlat, M.H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A.A., Sioutas, C., 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 203, 252–261. Okokon, E.O., Yli-Tuomi, T., Turunen, A.W., Taimisto, P., Pennanen, A., Vouitsis, I., Samaras, Z., Voogt, M., Keuken, M., Lanki, T., 2017. Particulates and noise exposure during bicycle, bus and car commuting: a study in three European cities. Environ. Res. 154, 181–189. de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., Hillamo, R., Teinilä, K., Batistuzzo de Medeiros, S.R., de Castro Vasconcellos, P., 2015. Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos. Environ. 120, 277–285. de Oliveira Alves, N., Matos Loureiro, A.L., dos Santos, F.C., Nascimento, K.H., Dallacort, R., de Castro Vasconcellos, P., de Souza Hacon, S., Artaxo, P., de Medeiros, S.R.B., 2011. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol. Environ. Saf. 74 (5), 1427–1433. de Oliveira Alves, N., Vessoni, A.T., Quinet, A., Fortunato, R.S., Kajitani, G.S., Peixoto, M.S., de Souza Hacon, S., Artaxo, P., Saldiva, P., Menck, C.F.M., Batistuzzo de Medeiros, S.R., 2017. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci. Rep. 7, 10937. de Oliveira Alves, N., Ignotti, E., Artaxo, P., Saldiva, P.H.N., Junger, W.L., Hacon, S., 2012. Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environ. Health 11, 64. Oliveira, M.L.S., Ward, C.R., French, D., Hower, J.C., Querol, X., Silva, L.F.O., 2012. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 94, 314–325. Oliveira, M.L.S., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F.O., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci. Total Environ. 468–469, 1128–1137. Oliveira, M.L.S., Navarro, O.G., Crissien, T.J., Tutikian, B.F., da Boit, K., Teixeira, E.C., Cabello, J.J., Agudelo-Castañeda, D.M., Silva, L.F.O., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455. Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., Theodosi, C., Kanakidou, M., Im, U., Unal, A., 2014. Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Sci. Total Environ. 473–474, 451–458. Petzold, A., Schloesser, H., Sheridan, P.J., Arnott, W.P., Ogren, J.A., Virkkula, A., 2005. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 39 (1), 40–51. Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., Deng, J., 2019. Aerosol light absorption in a coastal city in Southeast China: temporal variations and implications for brown carbon. J. Environ. Sci. 80, 257–266. Quispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503. Rajeevan, K., Sumesh, R.K., Resmi, E.A., Unnikrishnan, C.K., 2019. An observational study on the variation of black carbon aerosol and source identi fi cation over a tropical station in South India. Atmos. Pollut. Res. 10 (1), 30–44. Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446. Reddington, C.L., Butt, E.W., Ridley, D.A., Artaxo, P., Morgan, W.T., Coe, H., Spracklen, D.V., 2015. Air quality and human health improvements from reductions in deforestationrelated fire in Brazil. Nat. Geosci. 8 (10), 768–771. Ribeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408 (23), 6032–6041. Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452–453, 98–107. Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419. Saikia, B.K., Ward, C.R., Oliveira, M.L.S., Hower, J.C., Baruah, B.P., Braga, M., Silva, L.F., 2014. Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. Int. J. Coal Geol. 121, 26–34. Saikia, Binoy K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. Saleh, R., Hennigan, C.J., McMeeking, G.R., Chuang, W.K., Robinson, E.S., Coe, H., Donahue, N.M., Robinson, A.L., 2013. Absorptivity of brown carbon in fresh and photochemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15), 7683–7693. Sandradewi, J., Prévôt, A.S.H., Szidat, S., Perron, N., Alfarra, M.R., Lanz, V.A., Weingartner, E., Baltensperger, U., 2008. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 42 (9), 3316–3323. Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, F., de Angelis, I.H., Morán-Zuloaga, D., Pöhlker, M.L., Rizzo, L.V., Walter, D., Wang, Q., Artaxo, P., Prati, P., Andreae, M.O., 2017. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmos. Meas. Tech. 10 (8), 2837–2850. Saturno, J., Holanda, B.A., Pöhlker, C., Ditas, F., Wang, Q., Moran-Zuloaga, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, J., Hoffmann, T., de Angelis, I.H., Könemann, T., Lavrič, J.V., Ma, N., Ming, J., Paulsen, H., Pöhlker, M.L., Rizzo, L.V., Schlag, P., Su, H., Walter, D., Wolff, S., Zhang, Y., Artaxo, P., Pöschl, U., Andreae, M.O., 2018. Black and brown carbon over Central Amazonia: long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 18 (17), 12817–12843. Schneider, I.L., Teixeira, E.C., Silva Oliveira, L.F., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6 (5), 877–885. Scott, C.E., Monks, S.A., Spracklen, D.V., Arnold, S.R., Forster, P.M., Rap, A., Äijälä, M., Artaxo, P., Carslaw, K.S., Chipperfield, M.P., Ehn, M., Gilardoni, S., Heikkinen, L., Kulmala, M., Petäjä, T., Reddington, C.L.S., Rizzo, L.V., Swietlicki, E., Vignati, E., Wilson, C., 2018. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 9, 157. Sehn, J.L., de Leão, F.B., da Boit, K., Oliveira, M.L.S., Hidalgo, G.E., Sampaio, C.H., Silva, L.F.O., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–443. Shirmohammadi, F., Sowlat, M.H., Hasheminassab, S., Saffari, A., Ban-Weiss, G., Sioutas, C., 2017. Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. Atmos. Environ. 151, 82–93. Silva, L.F.O., Oliveira, M.L.S., Gonçalves, J.O., Dotto, G.L., 2020a. Identification of mercury and nanoparticles in roots with different oxidation states of an abandoned coal mine. Environ. Sci. Pollut. Res. 27 (19), 24380–24386. Silva, Luis F.O., Crissien, T.J., Schneider, I.L., Blanco, É.P., Sampaio, C.H., 2020b. Nanometric particles of high economic value in coal fire region: opportunities for social improvement. J. Clean. Prod. 256. Silva, Luis F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020c. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. Silva, Luis F.O., Pinto, D., Lima, B.D., 2020d. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814. Singh, V., Ravindra, K., Sahu, L., Sokhi, R., 2018. Trends of atmospheric black carbon concentration over the United Kingdom. Atmos. Environ. 178, 148–157. Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., Onasch, T.B., Jayne, J.T., Williams, L.R., Canagaratna, M.R., Worsnop, D.R., Chakrabarty, R.K., Moosmüller, H., Arnott, W.P., Schwarz, J.P., Gao, R.-S., Fahey, D.W., Kok, G.L., Petzold, A., 2007. An intercomparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Tech. 41 (3), 295–314. Stampfer, O., Austin, E., Ganuelas, T., Fiander, T., Seto, E., Karr, C.J., 2020. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation. Atmos. Environ. 224, 117292. Taheri, A., Aliasghari, P., Hosseini, V., 2019. Black carbon and PM2.5 monitoring campaign on the roadside and residential. Atmos. Environ. 116928. Targino, A.C., Gibson, M.D., Krecl, P., Rodrigues, M.V.C., dos Santos, M.M., de Paula Corrêa, M., 2016. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 218, 1–12. Targino, A.C., Krecl, P., Danziger Filho, J.E., Segura, J.F., Gibson, M.D., 2018. Spatial variability of on-bicycle black carbon concentrations in the megacity of São Paulo: a pilot study. Environ. Pollut. 242 (A), 539–543. Titos, G., del Águila, A., Cazorla, A., Lyamani, H., Casquero-Vera, J.A., Colombi, C., Cuccia, E., Gianelle, V., Močnik, G., Alastuey, A., Olmo, F.J., Alados-Arboledas, L., 2017. Spatial and temporal variability of carbonaceous aerosols: assessing the impact of biomass burning in the urban environment. Sci. Total Environ. 578, 613–625. Van Poppel, M., Peters, J., Bleux, N., 2013. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environ. Pollut. 183, 224–233. Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J.V., Moran-Zuloaga, D., Ditas, F., Pöhlker, C., Brito, J., Carbone, S., Artaxo, P., Andreae, M.O., 2016. Modeling investigation of lightabsorbing aerosols in the Amazon Basin during the wet season. Atmos. Chem. Phys. 16 (22), 14775–14794. Wang, Q., Wang, L., Li, X., Xin, J., Liu, Z., Sun, Y., Liu, J., Zhang, J., Du, W., Jin, X., Zhang, T., Liu, S., Liu, Q., Chen, J., Cheng, M., Wang, Y., 2020. Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Sci. Total Environ. 710, 136304. Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34 (10), 1445–1463. Williams, R.D., Knibbs, L.D., 2016. Daily personal exposure to black carbon: a pilot study. Atmos. Environ. 132, 296–299. Xiao, S., Yu, X., Zhu, B., Kumar, K.R., Li, M., Li, L., 2020. Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. J. Aerosol Sci. 139, 105461. Zhu, C.S., Cao, J.J., Hu, T.F., Shen, Z.X., Tie, X.X., Huang, H., Wang, Q.Y., Huang, R.J., Zhao, Z.Z., Močnik, G., Hansen, A.D.A., 2017. Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau. Sci. Total Environ. 590–591, 14–21. Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S.H., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 17 (6), 4229–4249. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Geoscience Frontiers |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S167498712100013X?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c0450a61-3b7e-4bf0-aa78-aba4c8afa6ec/download https://repositorio.cuc.edu.co/bitstreams/e5e9888b-8e4b-4b0a-86e5-2e42161986cf/download https://repositorio.cuc.edu.co/bitstreams/9b76a5ee-d92f-4228-a2a8-5041c39c370e/download https://repositorio.cuc.edu.co/bitstreams/8b0a8cb9-f430-4cb4-a46d-6465bf897b9c/download https://repositorio.cuc.edu.co/bitstreams/bfaa14a1-082b-4b2d-9146-5afec5c471a6/download |
bitstream.checksum.fl_str_mv |
cc7618bb47c59f0b273916d3cabfb748 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 5c28d60a6eb06610c2729f421c9b247d 6a99dc77d281f469bffc2fdc0d1c8448 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760790217162752 |
spelling |
Blanco Donado, Erika PatriciaSchneider, IsmaelArtaxo, PauloLozano-Osorio, JesusPortz, LuanaSilva Oliveira, Marcos Leandro2021-04-27T20:57:18Z2021-04-27T20:57:18Z2021-01-231674-9871https://hdl.handle.net/11323/8209https://doi.org/10.1016/j.gsf.2021.101149Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Black carbon (BC) is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change. It is emitted by the incomplete combustion of fossil fuels, biofuels, and biomass. Urban environments are quite complex and thus, the use of mobile jointly with fixed monitoring provides a better understanding of the dynamics of BC distribution in such areas. The present study addresses the measurement of BC concentration using real-time mobile and ambient monitoring in Barranquilla, an industrialized urban area of the Colombian Caribbean. A microaethalometer (MA200) and an aethalometer (AE33) were used for measuring the BC concentration. The absorption Ångström exponent (AAE) values were determined for the study area, for identifying the BC emission sources. The results of the ambient sampling show that vehicle traffic emissions prevail; however, the influence of biomass burning was also observed. The mean ambient BC concentration was found to be 1.04 ± 1.03 μg/m3 and varied between 0.5 and 4.0 μg/m3. From the mobile measurements obtained in real traffic conditions on the road, a much higher average value of 16.1 ± 16.5 μg/m3 was measured. Many parts of the city showed BC concentrations higher than 20 μg/m3. The spatial distribution of BC concentration shows that vehicle emissions and traffic jams, a consequence of road and transport infrastructure, are the factors that most affect the BC concentration. A comparison of results obtained from two aethalometers indicates that the concentrations measured by MA200 are 9% lower than those measured by AE33. The AAE obtained was found to vary between 1.1 and 1.6, indicating vehicular emissions as the most crucial source. In addition, it was observed that the BC concentration on working days was 2.5 times higher than on the weekends in the case of mobile monitoring and 1.5 times higher in the case of ambient monitoring.Blanco Donado, Erika Patricia-will be generated-orcid-0000-0002-7060-7508-600Schneider, Ismael-will be generated-orcid-0000-0002-6217-4183-600Artaxo, Paulo-will be generated-orcid-0000-0001-7754-3036-600Lozano-Osorio, JesusPortz, Luana-will be generated-orcid-0000-0001-9232-8086-600Silva Oliveira, Marcos Leandroapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S167498712100013X?via%3DihubAir pollutionBlack carbonSpatial distributionSource apportionmentAbsorption Ångström exponentSource identification and global implications of black carbonArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionUS EPA – United States Environmental Protection Agency, 2012. Report to Congress on Black Carbon, EPA-450/R-12-001. Environmental Protection Agency, Office of Air and Radiation, Washington (48 pp).de Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., Nieuwenhuijsen, M., 2012. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 59, 151–159.Dons, E., Panis, L.I., Van Poppel, M., Theunis, J., Wets, G., 2012. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 55, 392–398.Favez, O., Cachier, H., Sciare, J., Sarda-Estève, R., Martinon, L., 2009. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ. 43 (22–23), 3640–3644.Schneider, I.L., Teixeira, E.C., Agudelo-Castañeda, D.M., Silva e Silva, G., Balzaretti, N., Braga, M.F., Oliveira, L.F.S., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160.Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543 (A), 161–170.Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.Ajtai, T., Filep, Á., Utry, N., Schnaiter, M., Linke, C., Bozóki, Z., Szabó, G., Leisner, T., 2011. Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions. J. Aerosol Sci. 42 (12), 859–866.Artaxo, P., Rizzo, L.V., Brito, J.F., Barbosa, H.M.J., Arana, A., Sena, E.T., Cirino, G.G., Bastos, W., Martin, S.T., Andreae, M.O., 2013. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discuss. 165, 203–235.Aruna, K., Kumar, T.V.L., Rao, D.N., Murthy, B.V.K., Babu, S.S., Moorthy, K.K., 2013. Black carbon aerosols in a tropical semi-urban coastal environment: effects of boundary layer dynamics and long range transport. J. Atmos. Sol.-Terr. Phy. 104, 116–125.Becerril-Valle, M., Coz, E., Prévôt, A.S.H., Močnik, G., Pandis, S.N., Sánchez de la Campa, A.M., Alastuey, A., Díaz, E., Pérez, R.M., Artíñano, B., 2017. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 169, 36–53.Bergstrom, R.W., Russell, P.B., Hignett, P., 2002. Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J. Atmos. Sci. 59, 567–577.Bhaskar, B.V., Rajeshkumar, R.M., Muthuchelian, K., Ramachandran, S., 2018. Spatial, temporal and source study of black carbon in the atmospheric aerosols over different altitude regions in Southern India. J. Atmos. Sol.-Terr. Phy. 179, 416–424.Bond, T.C., Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40 (1), 27–67.Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Waren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118 (11), 5380–5552.Boniardi, L., Dons, E., Campo, L., Van Poppel, M., Panis, L.I., Fustinoni, S., 2019. Annual, seasonal, and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan, Italy. Environ. Res. 176, 108520.Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.-Y., 2013. Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY, USA. pp. 571–658.Brito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.C., Caumo, S.E.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13 (24), 12199–12213.Coen, M.C., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3 (2), 457–474.Rizzo, L.V., Correia, A.L., Artaxo, P., Procópio, A.S., Andreae, M.O., 2011. Physics spectral dependence of aerosol light absorption over the Amazon Basin. Atmos. Chem. Phys. 11 (17), 8899–8912.Drinovec, L., Močnik, G., Zotter, P., Prévôt, A.S.H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., Hansen, A.D.A., 2015. The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8 (5), 1965–1979.Duarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geosci. Front. 10 (3), 927–939.Dumka, U.C., Manchanda, R.K., Sinha, P.R., Sreenivasan, S., Moorthy, K.K., Babu, S.S., 2013. Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad. J. Atmos. Sol.-Terr. Phy. 105–106, 81–90.Ehrenbring, H.Z., de Medeiros Quinino, U.C., Oliveira, L.F.S., Tutikian, B.F., 2019. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes. Struct. Concr. 20 (3), 1064–1075.Evans, M., Kholod, N., Kuklinski, T., Denysenko, A., Smith, S.J., Staniszewski, A., Hao, W.M., Liu, L., Bond, T.M., 2017. Black carbon emissions in Russia: a critical review. Atmos. Environ. 163, 9–21.Franco, J.F., Segura, J.F., Mura, I., 2016. Air pollution alongside bike-paths in BogotáColombia. Front. Environ. Sci. 4, 77.Fuller, G.W., Tremper, A.H., Baker, T.D., Yttri, K.E., Butterfield, D., 2014. Contribution of wood burning to PM10 in London. Atmos. Environ. 87, 87–94.Godoy, M.L.D.P., Godoy, J.M., Roldão, L.A., Soluri, D.S., Donagemma, R.A., 2009. Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos. Environ. 43 (14), 2366–2374.Goel, A., Kumar, P., 2014. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos. Environ. 97, 316–331.Gong, T., Sun, Z., Zhang, X., Zhang, Y., Wang, S., Han, L., Zhao, D., Ding, D., Zheng, C., 2019. Associations of black carbon and PM2.5 with daily cardiovascular mortality in Beijing, China. Atmos. Environ. 214, 116876.Ham, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 167, 335–345.Hankey, S., Marshall, J.D., 2015. On-bicycle exposure to particulate air pollution: particle number, black carbon, PM2.5 and particle size. Atmos. Environ. 122, 65–73.Harrison, R.M., Beddows, D.C.S., Jones, A.M., Calvo, A., Alves, C., Pio, C., 2013. An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmos. Environ. 80, 540–548.Jarjour, S., Jerrett, M., Westerdahl, D., de Nazelle, A., Hanning, C., Daly, L., Lipsitt, J., Balmes, J., 2013. Cyclist route choice , traffic-related air pollution , and lung function : a scripted exposure study. Environ. Health 12, 14.Ježek, I., Katrašnik, T., Westerdahl, D., Močnik, G., 2015. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method. Atmos. Chem. Phys. 15 (19), 11011–11026.Jing, A., Zhu, B., Wang, H., Yu, X., An, J., Kang, H., 2019. Source apportionment of black carbon in different seasons in the northern suburb of Nanjing, China. Atmos. Environ. 201, 190–200.Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21), D21208.Krecl, P., Johansson, C., Ström, J., Lövenheim, B., Gallet, J., 2014. A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform. Tellus B 66 (1), 23533.Kumar, R.R., Soni, V.K., Jain, M.K., 2020. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci. Total Environ. 723, 138060.Laing, J.R., Jaffe, D.A., Sedlacek, A.J., 2020. Comparison of filter-based absorption measurements of biomass burning aerosol and background aerosol at the Mt. Bachelor Observatory. Aerosol Air Qual. Res. 20 (4), 663–678.Lei, X., Bian, J., Xiu, G., Hu, X., Gu, X., Bian, Q., 2017. The mobile monitoring of black carbon and its association with roadside data in the Chinese megacity of Shanghai. Environ. Sci. Pollut. Res. 24, 7482–7489.Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 525, 237–245.Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018a. The Absorption Ångström Exponent of black carbon: from numerical aspects. Atmos. Chem. Phys. 18 (9), 6259–6273.Liu, B., Minle, M., Wu, C., Li, J., Li, Y., Ting, N., Zhen, J., Lau, A.K.H., Fung, J.C.H., In, K., Meng, K., Chan, C.K., Jie, Y., 2019a. Potential exposure to fine particulate matter (PM2.5) and black carbon on jogging trails in Macau. Atmos. Environ. 198, 23–33.Liu, M., Peng, X., Meng, Z., Zhou, T., Long, L., She, Q., 2019b. Spatial characteristics and determinants of in-traffic black carbon in Shanghai, China : combination of mobile monitoring and land use regression model. Sci. Total Environ. 658, 51–61.Liu, Y., Yan, C., Zheng, M., 2018b. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 618, 531–541.Madueño, L., Kecorius, S., Löndahl, J., Müller, T., Pfeifer, S., Haudek, A., Mardoñez, V., Wiedensohler, A., 2019. A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon. Environ. Pollut. 248, 295–303.Madureira, J., Slezakova, K., Silva, A.I., Lage, B., Mendes, A., Aguiar, L., Pereira, M.C., Teixeira, J.P., Costa, C., 2020. Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci. Total Environ. 717, 137293.Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, R.M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470–471.Martins, J.V., Artaxo, P., Liousse, C., Reid, J.S., Hobbs, P.V., Kaufman, Y.J., 1998. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. Atmos. 103, 32041–32050.Martinsson, J., Azeem, H.A., Sporre, M.K., Bergström, R., Ahlberg, E., Öström, E., 2017. Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 17, 4265–4281.Martinsson, J., Eriksson, A.C., Nielsen, I.E., Malmborg, V.B., Ahlberg, E., Andersen, C., Lindgren, R., Nyström, R., Nordin, E.Z., Brune, W.H., Svenningsson, L., Swietlicki, E., Boman, C., Pagels, J.H., 2015. Impacts of combustion conditions and photochemical processing on the light absorption of biomass bombustion aerosol. Environ. Sci. Technol. 49 (24), 14663–14671.Massabò, D., Caponi, L., Bernardoni, V., Bove, M.C., Brotto, P., Calzolai, G., Cassola, F., Chiari, M., Fedi, M.E., Fermo, P., Giannoni, M., Lucarelli, F., Nava, S., Piazzalunga, A., Valli, G., Vecchi, R., Prati, P., 2015. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols. Atmos. Environ. 108, 1–12.Merritt, A.-S., Georgellis, A., Andersson, N., Bedada, G.B., Bellander, T., Johansson, C., 2019. Personal exposure to black carbon in Stockholm, using different intra- urban transport modes. Sci. Total Environ. 674, 279–287.Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J.P., Sarmiento, O.L., Gallo-Murcia, S.M., Contreras, Y., 2017. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 157, 135–145.Mousavi, A., Sowlat, M.H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A.A., Sioutas, C., 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 203, 252–261.Okokon, E.O., Yli-Tuomi, T., Turunen, A.W., Taimisto, P., Pennanen, A., Vouitsis, I., Samaras, Z., Voogt, M., Keuken, M., Lanki, T., 2017. Particulates and noise exposure during bicycle, bus and car commuting: a study in three European cities. Environ. Res. 154, 181–189.de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., Hillamo, R., Teinilä, K., Batistuzzo de Medeiros, S.R., de Castro Vasconcellos, P., 2015. Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos. Environ. 120, 277–285.de Oliveira Alves, N., Matos Loureiro, A.L., dos Santos, F.C., Nascimento, K.H., Dallacort, R., de Castro Vasconcellos, P., de Souza Hacon, S., Artaxo, P., de Medeiros, S.R.B., 2011. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol. Environ. Saf. 74 (5), 1427–1433.de Oliveira Alves, N., Vessoni, A.T., Quinet, A., Fortunato, R.S., Kajitani, G.S., Peixoto, M.S., de Souza Hacon, S., Artaxo, P., Saldiva, P., Menck, C.F.M., Batistuzzo de Medeiros, S.R., 2017. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci. Rep. 7, 10937. de Oliveira Alves, N., Ignotti, E., Artaxo, P., Saldiva, P.H.N., Junger, W.L., Hacon, S., 2012. Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environ. Health 11, 64.Oliveira, M.L.S., Ward, C.R., French, D., Hower, J.C., Querol, X., Silva, L.F.O., 2012. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 94, 314–325.Oliveira, M.L.S., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F.O., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci. Total Environ. 468–469, 1128–1137.Oliveira, M.L.S., Navarro, O.G., Crissien, T.J., Tutikian, B.F., da Boit, K., Teixeira, E.C., Cabello, J.J., Agudelo-Castañeda, D.M., Silva, L.F.O., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455.Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., Theodosi, C., Kanakidou, M., Im, U., Unal, A., 2014. Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Sci. Total Environ. 473–474, 451–458.Petzold, A., Schloesser, H., Sheridan, P.J., Arnott, W.P., Ogren, J.A., Virkkula, A., 2005. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 39 (1), 40–51.Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., Deng, J., 2019. Aerosol light absorption in a coastal city in Southeast China: temporal variations and implications for brown carbon. J. Environ. Sci. 80, 257–266.Quispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.Rajeevan, K., Sumesh, R.K., Resmi, E.A., Unnikrishnan, C.K., 2019. An observational study on the variation of black carbon aerosol and source identi fi cation over a tropical station in South India. Atmos. Pollut. Res. 10 (1), 30–44.Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.Reddington, C.L., Butt, E.W., Ridley, D.A., Artaxo, P., Morgan, W.T., Coe, H., Spracklen, D.V., 2015. Air quality and human health improvements from reductions in deforestationrelated fire in Brazil. Nat. Geosci. 8 (10), 768–771.Ribeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408 (23), 6032–6041.Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452–453, 98–107.Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419.Saikia, B.K., Ward, C.R., Oliveira, M.L.S., Hower, J.C., Baruah, B.P., Braga, M., Silva, L.F., 2014. Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. Int. J. Coal Geol. 121, 26–34.Saikia, Binoy K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875.Saleh, R., Hennigan, C.J., McMeeking, G.R., Chuang, W.K., Robinson, E.S., Coe, H., Donahue, N.M., Robinson, A.L., 2013. Absorptivity of brown carbon in fresh and photochemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15), 7683–7693.Sandradewi, J., Prévôt, A.S.H., Szidat, S., Perron, N., Alfarra, M.R., Lanz, V.A., Weingartner, E., Baltensperger, U., 2008. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 42 (9), 3316–3323.Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, F., de Angelis, I.H., Morán-Zuloaga, D., Pöhlker, M.L., Rizzo, L.V., Walter, D., Wang, Q., Artaxo, P., Prati, P., Andreae, M.O., 2017. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmos. Meas. Tech. 10 (8), 2837–2850.Saturno, J., Holanda, B.A., Pöhlker, C., Ditas, F., Wang, Q., Moran-Zuloaga, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, J., Hoffmann, T., de Angelis, I.H., Könemann, T., Lavrič, J.V., Ma, N., Ming, J., Paulsen, H., Pöhlker, M.L., Rizzo, L.V., Schlag, P., Su, H., Walter, D., Wolff, S., Zhang, Y., Artaxo, P., Pöschl, U., Andreae, M.O., 2018. Black and brown carbon over Central Amazonia: long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 18 (17), 12817–12843.Schneider, I.L., Teixeira, E.C., Silva Oliveira, L.F., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6 (5), 877–885.Scott, C.E., Monks, S.A., Spracklen, D.V., Arnold, S.R., Forster, P.M., Rap, A., Äijälä, M., Artaxo, P., Carslaw, K.S., Chipperfield, M.P., Ehn, M., Gilardoni, S., Heikkinen, L., Kulmala, M., Petäjä, T., Reddington, C.L.S., Rizzo, L.V., Swietlicki, E., Vignati, E., Wilson, C., 2018. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 9, 157.Sehn, J.L., de Leão, F.B., da Boit, K., Oliveira, M.L.S., Hidalgo, G.E., Sampaio, C.H., Silva, L.F.O., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–443.Shirmohammadi, F., Sowlat, M.H., Hasheminassab, S., Saffari, A., Ban-Weiss, G., Sioutas, C., 2017. Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. Atmos. Environ. 151, 82–93.Silva, L.F.O., Oliveira, M.L.S., Gonçalves, J.O., Dotto, G.L., 2020a. Identification of mercury and nanoparticles in roots with different oxidation states of an abandoned coal mine. Environ. Sci. Pollut. Res. 27 (19), 24380–24386.Silva, Luis F.O., Crissien, T.J., Schneider, I.L., Blanco, É.P., Sampaio, C.H., 2020b. Nanometric particles of high economic value in coal fire region: opportunities for social improvement. J. Clean. Prod. 256.Silva, Luis F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020c. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.Silva, Luis F.O., Pinto, D., Lima, B.D., 2020d. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814.Singh, V., Ravindra, K., Sahu, L., Sokhi, R., 2018. Trends of atmospheric black carbon concentration over the United Kingdom. Atmos. Environ. 178, 148–157.Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., Onasch, T.B., Jayne, J.T., Williams, L.R., Canagaratna, M.R., Worsnop, D.R., Chakrabarty, R.K., Moosmüller, H., Arnott, W.P., Schwarz, J.P., Gao, R.-S., Fahey, D.W., Kok, G.L., Petzold, A., 2007. An intercomparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Tech. 41 (3), 295–314.Stampfer, O., Austin, E., Ganuelas, T., Fiander, T., Seto, E., Karr, C.J., 2020. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation. Atmos. Environ. 224, 117292.Taheri, A., Aliasghari, P., Hosseini, V., 2019. Black carbon and PM2.5 monitoring campaign on the roadside and residential. Atmos. Environ. 116928.Targino, A.C., Gibson, M.D., Krecl, P., Rodrigues, M.V.C., dos Santos, M.M., de Paula Corrêa, M., 2016. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 218, 1–12.Targino, A.C., Krecl, P., Danziger Filho, J.E., Segura, J.F., Gibson, M.D., 2018. Spatial variability of on-bicycle black carbon concentrations in the megacity of São Paulo: a pilot study. Environ. Pollut. 242 (A), 539–543.Titos, G., del Águila, A., Cazorla, A., Lyamani, H., Casquero-Vera, J.A., Colombi, C., Cuccia, E., Gianelle, V., Močnik, G., Alastuey, A., Olmo, F.J., Alados-Arboledas, L., 2017. Spatial and temporal variability of carbonaceous aerosols: assessing the impact of biomass burning in the urban environment. Sci. Total Environ. 578, 613–625.Van Poppel, M., Peters, J., Bleux, N., 2013. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environ. Pollut. 183, 224–233.Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J.V., Moran-Zuloaga, D., Ditas, F., Pöhlker, C., Brito, J., Carbone, S., Artaxo, P., Andreae, M.O., 2016. Modeling investigation of lightabsorbing aerosols in the Amazon Basin during the wet season. Atmos. Chem. Phys. 16 (22), 14775–14794.Wang, Q., Wang, L., Li, X., Xin, J., Liu, Z., Sun, Y., Liu, J., Zhang, J., Du, W., Jin, X., Zhang, T., Liu, S., Liu, Q., Chen, J., Cheng, M., Wang, Y., 2020. Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Sci. Total Environ. 710, 136304.Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34 (10), 1445–1463.Williams, R.D., Knibbs, L.D., 2016. Daily personal exposure to black carbon: a pilot study. Atmos. Environ. 132, 296–299.Xiao, S., Yu, X., Zhu, B., Kumar, K.R., Li, M., Li, L., 2020. Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. J. Aerosol Sci. 139, 105461.Zhu, C.S., Cao, J.J., Hu, T.F., Shen, Z.X., Tie, X.X., Huang, H., Wang, Q.Y., Huang, R.J., Zhao, Z.Z., Močnik, G., Hansen, A.D.A., 2017. Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau. Sci. Total Environ. 590–591, 14–21.Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S.H., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 17 (6), 4229–4249.PublicationORIGINALSource identification and global implications of black carbon.pdfSource identification and global implications of black carbon.pdfapplication/pdf4094558https://repositorio.cuc.edu.co/bitstreams/c0450a61-3b7e-4bf0-aa78-aba4c8afa6ec/downloadcc7618bb47c59f0b273916d3cabfb748MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e5e9888b-8e4b-4b0a-86e5-2e42161986cf/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9b76a5ee-d92f-4228-a2a8-5041c39c370e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSource identification and global implications of black carbon.pdf.jpgSource identification and global implications of black carbon.pdf.jpgimage/jpeg73370https://repositorio.cuc.edu.co/bitstreams/8b0a8cb9-f430-4cb4-a46d-6465bf897b9c/download5c28d60a6eb06610c2729f421c9b247dMD54TEXTSource identification and global implications of black carbon.pdf.txtSource identification and global implications of black carbon.pdf.txttext/plain73449https://repositorio.cuc.edu.co/bitstreams/bfaa14a1-082b-4b2d-9146-5afec5c471a6/download6a99dc77d281f469bffc2fdc0d1c8448MD5511323/8209oai:repositorio.cuc.edu.co:11323/82092024-09-17 11:10:04.179http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |