Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation
The adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar were scrutinized from conventional and statistical physics approaches. Firstly, the pinus-based biochar was prepared from Pinus elliottii and extensively characterized. Then, the conventional adsorption...
- Autores:
-
lotfi, sellaoui
Dotto, Guilherme Luiz
Pereira, Hércules A.
Vieira, Yasmin
dos Reis, Glaydson S.
Silva Oliveira, Marcos Leandro
Silva Oliveira, Luis Felipe
Rizwan Khan, Mohammad
Manoharadas, Salim
Godinho, Marcelo
Fantinel, Lucas A.
Aguzzoli, Cesar
Santos, Ronald K.S.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13320
- Acceso en línea:
- https://hdl.handle.net/11323/13320
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hill model
Isotherm
Pinus elliottii
River water
Rich-carbon material
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_8bf8b74d84123cde93674d4279044187 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13320 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
title |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
spellingShingle |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation Hill model Isotherm Pinus elliottii River water Rich-carbon material |
title_short |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
title_full |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
title_fullStr |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
title_full_unstemmed |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
title_sort |
Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation |
dc.creator.fl_str_mv |
lotfi, sellaoui Dotto, Guilherme Luiz Pereira, Hércules A. Vieira, Yasmin dos Reis, Glaydson S. Silva Oliveira, Marcos Leandro Silva Oliveira, Luis Felipe Rizwan Khan, Mohammad Manoharadas, Salim Godinho, Marcelo Fantinel, Lucas A. Aguzzoli, Cesar Santos, Ronald K.S. |
dc.contributor.author.none.fl_str_mv |
lotfi, sellaoui Dotto, Guilherme Luiz Pereira, Hércules A. Vieira, Yasmin dos Reis, Glaydson S. Silva Oliveira, Marcos Leandro Silva Oliveira, Luis Felipe Rizwan Khan, Mohammad Manoharadas, Salim Godinho, Marcelo Fantinel, Lucas A. Aguzzoli, Cesar Santos, Ronald K.S. |
dc.subject.proposal.eng.fl_str_mv |
Hill model Isotherm Pinus elliottii River water Rich-carbon material |
topic |
Hill model Isotherm Pinus elliottii River water Rich-carbon material |
description |
The adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar were scrutinized from conventional and statistical physics approaches. Firstly, the pinus-based biochar was prepared from Pinus elliottii and extensively characterized. Then, the conventional adsorption studies were made using kinetic equilibrium and thermodynamics. Subsequently, the statistical physics model of Hill was used to interpret the data. Finally, the pinus-biochar was used to uptake the pesticides from a real river water sample. The results revealed that the pinus-biochar is a rich-carbon material (carbon content higher than 99%) with high thermal stability, interesting textural features, and proper characteristics to effectively uptake small and polar organic molecules. At a pH of 7.0 and using 1.0 g/L, the biochar reduced the concentration of pesticide solutions from 50 μg/L to less than 4.0 μg/L in 2 h of operation. The conventional evaluation revealed that the General order model properly represented the kinetic profile of the pesticides adsorption, while the Langmuir model better represented the isotherms. The maximum uptakes of 2,4-D, mecoprop, and dicamba at 298 K were 100.9 μg g−1, 122.5 μg g−1, and 95.9 μg g−1. The statistical physics model of Hill could explain the adsorption of all pesticides, and new insights were proposed for the adsorption mechanism. The pinus-based biochar was also efficient in decontaminating river waters containing the pesticides, using 5.0 g/L. Finally, it can be concluded that pinus-based biochar is a rich-carbon material able to efficiently uptake the pesticides 2,4-D, mecoprop, and dicamba from synthetic and natural waters. The efficiency, even in a concentration range of μg/L, was attributed to the intrinsic features of the new material. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-10-15 |
dc.date.accessioned.none.fl_str_mv |
2024-09-12T19:44:23Z |
dc.date.available.none.fl_str_mv |
2024-09-12T19:44:23Z 2025-10-15 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Lotfi Sellaoui, Guilherme L. Dotto, Hércules A. Pereira, Yasmin Vieira, Glaydson S. dos Reis, Marcos L.S. Oliveira, Luis F.O. Silva, Mohammad Rizwan Khan, Salim Manoharadas, Marcelo Godinho, Lucas A. Fantinel, Cesar Aguzzoli, Ronald K.S. Santos, Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: Conventional and statistical physics evaluation, Chemical Engineering Journal, Volume 474, 2023, 145564, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2023.145564. |
dc.identifier.issn.spa.fl_str_mv |
1385-8947 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13320 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.cej.2023.145564 |
dc.identifier.eissn.spa.fl_str_mv |
1873-3212 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Lotfi Sellaoui, Guilherme L. Dotto, Hércules A. Pereira, Yasmin Vieira, Glaydson S. dos Reis, Marcos L.S. Oliveira, Luis F.O. Silva, Mohammad Rizwan Khan, Salim Manoharadas, Marcelo Godinho, Lucas A. Fantinel, Cesar Aguzzoli, Ronald K.S. Santos, Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: Conventional and statistical physics evaluation, Chemical Engineering Journal, Volume 474, 2023, 145564, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2023.145564. 1385-8947 10.1016/j.cej.2023.145564 1873-3212 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13320 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Chemical Engineering Journal |
dc.relation.references.spa.fl_str_mv |
[1] A. Mohan, M. Girdhar, Glyphosate toxicity for animals, Springer 16 (2018) 401–426. [2] M. Al-Salih, S. Samsudin, S.S. Arshad, Synthesis and characterizations iron oxide carbon nanotubes nanocomposite by laser ablation for anti-microbial applications, J. Genet. Eng. Biotechnol. 19 (1) (2021). [3] H.A. Pereira, P.R.T. Hernandes, M.S. Netto, G.D. Reske, V. Vieceli, L.F.S. Oliveira, G.L. Dotto, Adsorbents for glyphosate removal in contaminated waters: a review, Environ. Chem Lett (2020). [4] V.H. Vargas, R.R. Paveglio, P.d.S. Pauletto, N.P.G. Salau, L.G. Dotto, Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions, Chem. Eng. Commun. 207 (4) (2020) 523–536. [5] P.F. Coldebella, M.R. Fagundes-Klen, L. Nishi, K.C. Valverde, E.B. Cavalcanti, O. A. Andreo dos Santos, R. Bergamasco, Potential effect of chemical and thermal treatment on the kinetics, equilibrium, and thermodynamic studies for atrazine biosorption by the Moringa oleifera pods, Can. J. Chem. Eng. 95 (5) (2017) 961–973. [6] A.O. Ifebajo, A.A. Oladipo, M. Gazi, Efficient removal of tetracycline by CoO/CuFe 2 O 4 derived from layered double hydroxides, Environ. Chem. Lett. 17 (1) (2019) 487–494. [7] H. Zhan, Y. Feng, X. Fan, S. Chen, Recent advances in glyphosate biodegradation, Appl. Microbiol. Biotechnol. 102 (12) (2018) 5033–5043. [8] M. Ponnuchamy, A. Kapoor, P. Senthil Kumar, D.-V. Vo, A. Balakrishnan, M. Mariam Jacob, P. Sivaraman, Sustainable adsorbents for the removal of pesticides from water: a review, Environ. Chem. Lett. 19 (3) (2021) 2425–2463. [9] X. Jiang, Z. Ouyang, Z. Zhang, C. Yang, X. Li, Z. Dang, P. Wu, Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions, Colloids Surfaces A Physicochem. Eng. Asp. 547 (2018) 64–72. [10] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval, H.A. Pereira, I. dos, S. Nunes, C.W. Basso, M. do, C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: characterization and application in glyphosate adsorption, Chemosphere 283 (2021), 131193. [11] J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. Thiago, E. L. Foletto, G.L. Dotto, Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix, J. Environ. Chem. Eng. 9 (2021), 105178. [12] M.M. Vukˇcevi´c, A.M. Kalijadis, T.M. Vasiljevi´c, B.M. Babi´c, Z.V. Lauˇsevi´c, M. D. Lauˇsevi´c, Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption, Microporous Mesoporous Mater. 214 (2015) 156–165. [13] A.T. Marins, E.S. Severo, C. Cerezer, J.W. Leitemperger, T.E. Müller, L. Floriano, O. D. Prestes, R. Zanella, V.L. Loro, Environmentally relevant pesticides induce biochemical changes in Nile tilapia (Oreochromis niloticus), Ecotoxicol. 304 (30) (2021 2021,) 585–598. [14] H.A. Pereira, K. da Boit Martinello, Y. Vieira, J.C. Diel, M.S. Netto, G.D. Reske, E. Lorenzett, L.F.O. Silva, T.A.L. Burgo, G.L. Dotto, Adsorptive behavior of multiwalled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices, Chemosphere 325 (2023), 138384. [15] M. De Carvalho Eufr´ asio, R.G.L. Pinto, R.M.M.D. Gonçalves, E.A. Santos, G. F. Araújo, R.D. Perotti, M.A. Santos Macedo, V.R.L. Bizeto, F.G. Constantino, J. T. Pinto, Mesoporous carbon derived from a biopolymer and a clay: preparation, characterization and application for organochlorine pesticide adsorption, Microporous Mesoporous Mater. 225 (2016) 342–354. [16] T. Paszko, P. Muszynski, ´ M. Materska, M. Bojanowska, M. Kostecka, I. Jackowska, Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: a review, Environ. Toxicol. Chem. 35 (2) (2016) 271–286. [17] D. Franco, L.F.O. Silva, K. da Boit Martinello, J.C. Diel, J. Georgin, M.S. Netto, H. A. Pereira, E.C. Lima, G.L. Dotto, Transforming agricultural waste into adsorbent: application of Fagopyrum esculentum wheat husks treated with H2SO4 to adsorption of the 2,4-D herbicide, J. Environ. Chem. Eng. 9 (2021), 106872. [18] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes onto chitosan: optimization process and kinetic, Carbohydr. Polym. 84 (1) (2011) 231–238. [19] N. Hosseini, M.R. Toosi, from water by polysulfone membranes mixed by graphene oxide / TiO 2 nanocomposite : study of filtration and batch adsorption, (2019). [20] Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang, Comparative study of glyphosate removal on goethite and magnetite: adsorption and photo-degradation, Chem. Eng. J. 352 (2018) 581–589. [21] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020), 103988. [22] M.S. Netto, J. Georgin, D.S.P. Franco, E.S. Mallmann, E.L. Foletto, M. Godinho, D. Pinto, G.L. Dotto, Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark, Environ. Sci. Pollut. Res. 29 (3) (2022) 3672–3685. [23] J. Sun, X.-L. Ma, W. Wang, J. Zhang, H. Zhang, Y.-J. Wang, J. Feng, The adsorption behavior of atrazine in common soils in Northeast China, Bull. Environ. Contam. Toxicol. 103 (2) (2019) 316–322. [24] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Adsorption of atrazine and 2,4-D pesticides on alternative biochars from cedar bark sawdust (Cedrella fissilis), Environ. Sci. Pollut. Res. 29 (15) (2022) 22566–22575. [25] S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y. Sik, A. Usman, A. Abduljabbar, M. Vithanage, Chemosphere Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, (2015) 1–6. [26] H.N. Tran, F. Tomul, N. Thi Hoang Ha, D.T. Nguyen, E.C. Lima, G.T. Le, C. T. Chang, V. Masindi, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism, J. Hazard. Mater. 394 (2020), 122255. [27] A. Naima, F. Ammar, O. Abdelkader, C. Rachid, H. Lynda, A. Syafiuddin, R. Boopathy, Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal, Bioresour. Technol. 347 (2022), 126685. [28] X. Cao, L. Ma, B. Gao, W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Tech. 43 (9) (2009) 3285–3291. [29] P.Q. Thang, K. Jitae, B.L. Giang, N.M. Viet, P.T. Huong, Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters, J. Environ. Manage. 251 (2019), 109556. [30] C. Du, Y. Song, S. Shi, B. Jiang, J. Yang, S. Xiao, Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption, Sci. Total Environ. 711 (2020), 134662. [31] L. Lonappan, T. Rouissi, R.K. Das, S.K. Brar, A.A. Ramirez, M. Verma, R. Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles derived from different waste materials, Waste Manag. 49 (2016) 537–544. [32] R.T. Kapoor, M. Rafatullah, M.R. Siddiqui, M.A. Khan, M. Sillanpa¨¨ a, Removal of reactive black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato, Sustain. 14 (2022) 4074176. [33] A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G. L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere 262 (2021), 128322. [34] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J, Clean, Prod. 171 (2018) 57–65. [35] J.M.N. dos Santos, E. ´ Lima, G.L. Dotto, in: Pesticides Remediation Technologies From Water and WasteWater, Elsevier, 2022, pp. 159–188. [36] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), 117990. [37] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434. [38] F. Dhaouadi, L. Sellaoui, B. Chavez-Gonz ´ ´ alez, H.E. Reynel-Avila, ´ L.L. Diaz-Munoz, ˜ D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A. B. Lamine, Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+, and Cu2+ ions on flamboyant pods functionalized with citric acid, Chem. Eng. J. 417 (2021), 127975. [39] F. Dhaouadi, L. Sellaoui, L.E. Hernandez-Hernandez, A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Avila, ´ H.A. Gonzalez-Ponce, ´ S. Taamalli, F. Louis, A.B. Lamine, Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: Properties and advanced statistical physics modeling, Chem. Eng. J. 419 (2021), 129472. [40] B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Tech. 42 (14) (2008) 5137–5143. [41] R.K.S. Santos, C. Schnorr, L.F.O. Silva, B.F. Nascimento, J.V.F.L. Cavalcanti, Y. Vieira, G.L. Dotto, M.A.M. Sobrinho, Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays, Environ. Sci. Pollut. Res. 30 (2023) 52485–52497. [42] J. Leichtweis, S. Silvestri, N. Welter, Y. Vieira, P.I. Zaragoza-Sanchez, ´ A.C. Ch´ avezMejía, E. Carissimi, Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4 / biochar photocatalyst, Process Saf. Environ. Prot. 150 (2021) 497–509. [43] Y. Vieira, J.M.N. dos Santos, J. Georgin, M.L.S. Oliveira, D. Pinto, G.L. Dotto, An overview of forest residues as promising low-cost adsorbents, Gondw. Res. 110 (2022) 393–420. [44] Y. Wang, X. Xiao, Y. Xu, B. Chen, Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms: a critical review, Environ. Sci. Tech. 53 (23) (2019) 13570–13582. [45] L. Chen, R. Nakamoto, S. Kudo, S. Asano, J. ichiro Hayashi, Biochar-assisted water electrolysis, Energy Fuel 33 (2019) 11246–11252. [46] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022), 119639. [47] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019), 123966. [48] Y. Vieira, J.P. Silveira, G.L. Dotto, S. Knani, J. Vieillard, J. Georgin, D.S.P. Franco, E.C. Lima, Mechanistic insights and steric interpretations through statistical physics modelling and density functional theory calculations for the adsorption of the pesticides atrazine and diuron by Hovenia dulcis biochar, J. Mol. Liq. 367 (2022), 120418. [49] A. Rubio-Clemente, J. Guti´errez, H. Henao, A.M. Melo, J.F. P´erez, E. Chica, Adsorption capacity of the biochar obtained from Pinus patula wood microgasification for the treatment of polluted water containing malachite green dye, J. King Saud Univ. - Eng, Sci, 2021. [50] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117/ html. [51] C. Jeon, K.L. Solis, H.R. An, Y. Hong, A.D. Igalavithana, Y.S. Ok, Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar, J. Hazard. Mater. 388 (2020), 122048. [52] K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour. Technol. 118 (2012) 158–162. [53] P. Baltrenas, E. Baltrenaite, E. Spudulis, Biochar from pine and birch morphology and pore structure change by treatment in biofilter, Water Air Soil Pollut. 226 (2015) 1–14. [54] C. Wan, H. Li, L. Zhao, Z. Li, C. Zhang, X. Tan, X. Liu, Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge, J. Environ. Manage. 299 (2021), 113602. [55] H.A. Pereira, K.B. Martinello, Y. Vieira, J.C. Diel, M.S. Netto, G.D. Reske, E. Lorenzett, L.F.O. Silva, T.A.L. Burgo, G.L. Dotto, Adsorptive behavior of multiwalled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices, Chemosphere 325 (2023), 138384. [56] M.D.C.E. Pinto, R.G.L. Gonçalves, R.M.M. Santos, E.A. Araujo, G.F. Perotti, R. S. Macedo, M.A. Bizeto, V.R.L. Constantino, F.G. Pinto, J. Tronto, Mesoporous carbon derived from a biopolymer and a clay: Preparation, characterization and application for an organochlorine pesticide adsorption, Micro. Meso. Mater. 225 (2016) 342–354. [57] R. Kamaraj, D.J. Davidson, G. Sozhan, S. Vasudevan, Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes, J. Taiwan Inst. Chem. Eng. 45 (6) (2014) 2943–2949. [58] R. Kamaraj, A. Pandiarajan, S. Vasudevan, S. Vasudevan, Facile one-pot electrosynthesis of zinc hydroxide for the adsorption of hazardous 2-(2-methyl-4- chlorophenoxy) propionic acid (MCPP) from water and its modelling studies, J. Environ. Chem. Eng. 6 (2) (2018) 2017–2026. |
dc.relation.citationendpage.spa.fl_str_mv |
12 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
474 |
dc.rights.eng.fl_str_mv |
© 2023 Elsevier B.V. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S138589472304295X?pes=vor |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/29202715-b12f-4256-a4f3-6a22b9594f3c/download https://repositorio.cuc.edu.co/bitstreams/54d61dd1-17e3-4076-bad8-51d69f013e55/download https://repositorio.cuc.edu.co/bitstreams/833ae01e-7bf4-4b1a-8e39-f521923549e9/download https://repositorio.cuc.edu.co/bitstreams/c677a4d4-37f0-4103-9af6-d54cc7f1aa99/download |
bitstream.checksum.fl_str_mv |
0bc6c92f7e1c9ab52bcf4c997830bb3d 2f9959eaf5b71fae44bbf9ec84150c7a 9b925b365a21c08a8d607b60f9850071 c1e477e54db2bedfcd6664a3dd61e868 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166909158227968 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cflotfi, sellaouiDotto, Guilherme LuizPereira, Hércules A.Vieira, Yasmindos Reis, Glaydson S.Silva Oliveira, Marcos LeandroSilva Oliveira, Luis FelipeRizwan Khan, MohammadManoharadas, SalimGodinho, MarceloFantinel, Lucas A.Aguzzoli, CesarSantos, Ronald K.S.2024-09-12T19:44:23Z2025-10-152024-09-12T19:44:23Z2023-10-15Lotfi Sellaoui, Guilherme L. Dotto, Hércules A. Pereira, Yasmin Vieira, Glaydson S. dos Reis, Marcos L.S. Oliveira, Luis F.O. Silva, Mohammad Rizwan Khan, Salim Manoharadas, Marcelo Godinho, Lucas A. Fantinel, Cesar Aguzzoli, Ronald K.S. Santos, Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: Conventional and statistical physics evaluation, Chemical Engineering Journal, Volume 474, 2023, 145564, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2023.145564.1385-8947https://hdl.handle.net/11323/1332010.1016/j.cej.2023.1455641873-3212Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar were scrutinized from conventional and statistical physics approaches. Firstly, the pinus-based biochar was prepared from Pinus elliottii and extensively characterized. Then, the conventional adsorption studies were made using kinetic equilibrium and thermodynamics. Subsequently, the statistical physics model of Hill was used to interpret the data. Finally, the pinus-biochar was used to uptake the pesticides from a real river water sample. The results revealed that the pinus-biochar is a rich-carbon material (carbon content higher than 99%) with high thermal stability, interesting textural features, and proper characteristics to effectively uptake small and polar organic molecules. At a pH of 7.0 and using 1.0 g/L, the biochar reduced the concentration of pesticide solutions from 50 μg/L to less than 4.0 μg/L in 2 h of operation. The conventional evaluation revealed that the General order model properly represented the kinetic profile of the pesticides adsorption, while the Langmuir model better represented the isotherms. The maximum uptakes of 2,4-D, mecoprop, and dicamba at 298 K were 100.9 μg g−1, 122.5 μg g−1, and 95.9 μg g−1. The statistical physics model of Hill could explain the adsorption of all pesticides, and new insights were proposed for the adsorption mechanism. The pinus-based biochar was also efficient in decontaminating river waters containing the pesticides, using 5.0 g/L. Finally, it can be concluded that pinus-based biochar is a rich-carbon material able to efficiently uptake the pesticides 2,4-D, mecoprop, and dicamba from synthetic and natural waters. The efficiency, even in a concentration range of μg/L, was attributed to the intrinsic features of the new material.12 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S138589472304295X?pes=vorAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Chemical Engineering Journal[1] A. Mohan, M. Girdhar, Glyphosate toxicity for animals, Springer 16 (2018) 401–426.[2] M. Al-Salih, S. Samsudin, S.S. Arshad, Synthesis and characterizations iron oxide carbon nanotubes nanocomposite by laser ablation for anti-microbial applications, J. Genet. Eng. Biotechnol. 19 (1) (2021).[3] H.A. Pereira, P.R.T. Hernandes, M.S. Netto, G.D. Reske, V. Vieceli, L.F.S. Oliveira, G.L. Dotto, Adsorbents for glyphosate removal in contaminated waters: a review, Environ. Chem Lett (2020).[4] V.H. Vargas, R.R. Paveglio, P.d.S. Pauletto, N.P.G. Salau, L.G. Dotto, Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions, Chem. Eng. Commun. 207 (4) (2020) 523–536.[5] P.F. Coldebella, M.R. Fagundes-Klen, L. Nishi, K.C. Valverde, E.B. Cavalcanti, O. A. Andreo dos Santos, R. Bergamasco, Potential effect of chemical and thermal treatment on the kinetics, equilibrium, and thermodynamic studies for atrazine biosorption by the Moringa oleifera pods, Can. J. Chem. Eng. 95 (5) (2017) 961–973.[6] A.O. Ifebajo, A.A. Oladipo, M. Gazi, Efficient removal of tetracycline by CoO/CuFe 2 O 4 derived from layered double hydroxides, Environ. Chem. Lett. 17 (1) (2019) 487–494.[7] H. Zhan, Y. Feng, X. Fan, S. Chen, Recent advances in glyphosate biodegradation, Appl. Microbiol. Biotechnol. 102 (12) (2018) 5033–5043.[8] M. Ponnuchamy, A. Kapoor, P. Senthil Kumar, D.-V. Vo, A. Balakrishnan, M. Mariam Jacob, P. Sivaraman, Sustainable adsorbents for the removal of pesticides from water: a review, Environ. Chem. Lett. 19 (3) (2021) 2425–2463.[9] X. Jiang, Z. Ouyang, Z. Zhang, C. Yang, X. Li, Z. Dang, P. Wu, Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions, Colloids Surfaces A Physicochem. Eng. Asp. 547 (2018) 64–72.[10] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval, H.A. Pereira, I. dos, S. Nunes, C.W. Basso, M. do, C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: characterization and application in glyphosate adsorption, Chemosphere 283 (2021), 131193.[11] J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. Thiago, E. L. Foletto, G.L. Dotto, Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix, J. Environ. Chem. Eng. 9 (2021), 105178.[12] M.M. Vukˇcevi´c, A.M. Kalijadis, T.M. Vasiljevi´c, B.M. Babi´c, Z.V. Lauˇsevi´c, M. D. Lauˇsevi´c, Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption, Microporous Mesoporous Mater. 214 (2015) 156–165.[13] A.T. Marins, E.S. Severo, C. Cerezer, J.W. Leitemperger, T.E. Müller, L. Floriano, O. D. Prestes, R. Zanella, V.L. Loro, Environmentally relevant pesticides induce biochemical changes in Nile tilapia (Oreochromis niloticus), Ecotoxicol. 304 (30) (2021 2021,) 585–598.[14] H.A. Pereira, K. da Boit Martinello, Y. Vieira, J.C. Diel, M.S. Netto, G.D. Reske, E. Lorenzett, L.F.O. Silva, T.A.L. Burgo, G.L. Dotto, Adsorptive behavior of multiwalled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices, Chemosphere 325 (2023), 138384.[15] M. De Carvalho Eufr´ asio, R.G.L. Pinto, R.M.M.D. Gonçalves, E.A. Santos, G. F. Araújo, R.D. Perotti, M.A. Santos Macedo, V.R.L. Bizeto, F.G. Constantino, J. T. Pinto, Mesoporous carbon derived from a biopolymer and a clay: preparation, characterization and application for organochlorine pesticide adsorption, Microporous Mesoporous Mater. 225 (2016) 342–354.[16] T. Paszko, P. Muszynski, ´ M. Materska, M. Bojanowska, M. Kostecka, I. Jackowska, Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: a review, Environ. Toxicol. Chem. 35 (2) (2016) 271–286.[17] D. Franco, L.F.O. Silva, K. da Boit Martinello, J.C. Diel, J. Georgin, M.S. Netto, H. A. Pereira, E.C. Lima, G.L. Dotto, Transforming agricultural waste into adsorbent: application of Fagopyrum esculentum wheat husks treated with H2SO4 to adsorption of the 2,4-D herbicide, J. Environ. Chem. Eng. 9 (2021), 106872.[18] G.L. Dotto, L.A.A. Pinto, Adsorption of food dyes onto chitosan: optimization process and kinetic, Carbohydr. Polym. 84 (1) (2011) 231–238.[19] N. Hosseini, M.R. Toosi, from water by polysulfone membranes mixed by graphene oxide / TiO 2 nanocomposite : study of filtration and batch adsorption, (2019).[20] Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang, Comparative study of glyphosate removal on goethite and magnetite: adsorption and photo-degradation, Chem. Eng. J. 352 (2018) 581–589.[21] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020), 103988.[22] M.S. Netto, J. Georgin, D.S.P. Franco, E.S. Mallmann, E.L. Foletto, M. Godinho, D. Pinto, G.L. Dotto, Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark, Environ. Sci. Pollut. Res. 29 (3) (2022) 3672–3685.[23] J. Sun, X.-L. Ma, W. Wang, J. Zhang, H. Zhang, Y.-J. Wang, J. Feng, The adsorption behavior of atrazine in common soils in Northeast China, Bull. Environ. Contam. Toxicol. 103 (2) (2019) 316–322.[24] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Adsorption of atrazine and 2,4-D pesticides on alternative biochars from cedar bark sawdust (Cedrella fissilis), Environ. Sci. Pollut. Res. 29 (15) (2022) 22566–22575.[25] S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y. Sik, A. Usman, A. Abduljabbar, M. Vithanage, Chemosphere Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, (2015) 1–6.[26] H.N. Tran, F. Tomul, N. Thi Hoang Ha, D.T. Nguyen, E.C. Lima, G.T. Le, C. T. Chang, V. Masindi, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism, J. Hazard. Mater. 394 (2020), 122255.[27] A. Naima, F. Ammar, O. Abdelkader, C. Rachid, H. Lynda, A. Syafiuddin, R. Boopathy, Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal, Bioresour. Technol. 347 (2022), 126685.[28] X. Cao, L. Ma, B. Gao, W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Tech. 43 (9) (2009) 3285–3291.[29] P.Q. Thang, K. Jitae, B.L. Giang, N.M. Viet, P.T. Huong, Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters, J. Environ. Manage. 251 (2019), 109556.[30] C. Du, Y. Song, S. Shi, B. Jiang, J. Yang, S. Xiao, Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption, Sci. Total Environ. 711 (2020), 134662.[31] L. Lonappan, T. Rouissi, R.K. Das, S.K. Brar, A.A. Ramirez, M. Verma, R. Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles derived from different waste materials, Waste Manag. 49 (2016) 537–544.[32] R.T. Kapoor, M. Rafatullah, M.R. Siddiqui, M.A. Khan, M. Sillanpa¨¨ a, Removal of reactive black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato, Sustain. 14 (2022) 4074176.[33] A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G. L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere 262 (2021), 128322.[34] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J, Clean, Prod. 171 (2018) 57–65.[35] J.M.N. dos Santos, E. ´ Lima, G.L. Dotto, in: Pesticides Remediation Technologies From Water and WasteWater, Elsevier, 2022, pp. 159–188.[36] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), 117990.[37] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434.[38] F. Dhaouadi, L. Sellaoui, B. Chavez-Gonz ´ ´ alez, H.E. Reynel-Avila, ´ L.L. Diaz-Munoz, ˜ D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A. B. Lamine, Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+, and Cu2+ ions on flamboyant pods functionalized with citric acid, Chem. Eng. J. 417 (2021), 127975.[39] F. Dhaouadi, L. Sellaoui, L.E. Hernandez-Hernandez, A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Avila, ´ H.A. Gonzalez-Ponce, ´ S. Taamalli, F. Louis, A.B. Lamine, Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: Properties and advanced statistical physics modeling, Chem. Eng. J. 419 (2021), 129472.[40] B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Tech. 42 (14) (2008) 5137–5143.[41] R.K.S. Santos, C. Schnorr, L.F.O. Silva, B.F. Nascimento, J.V.F.L. Cavalcanti, Y. Vieira, G.L. Dotto, M.A.M. Sobrinho, Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays, Environ. Sci. Pollut. Res. 30 (2023) 52485–52497.[42] J. Leichtweis, S. Silvestri, N. Welter, Y. Vieira, P.I. Zaragoza-Sanchez, ´ A.C. Ch´ avezMejía, E. Carissimi, Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4 / biochar photocatalyst, Process Saf. Environ. Prot. 150 (2021) 497–509.[43] Y. Vieira, J.M.N. dos Santos, J. Georgin, M.L.S. Oliveira, D. Pinto, G.L. Dotto, An overview of forest residues as promising low-cost adsorbents, Gondw. Res. 110 (2022) 393–420.[44] Y. Wang, X. Xiao, Y. Xu, B. Chen, Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms: a critical review, Environ. Sci. Tech. 53 (23) (2019) 13570–13582.[45] L. Chen, R. Nakamoto, S. Kudo, S. Asano, J. ichiro Hayashi, Biochar-assisted water electrolysis, Energy Fuel 33 (2019) 11246–11252.[46] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022), 119639.[47] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019), 123966.[48] Y. Vieira, J.P. Silveira, G.L. Dotto, S. Knani, J. Vieillard, J. Georgin, D.S.P. Franco, E.C. Lima, Mechanistic insights and steric interpretations through statistical physics modelling and density functional theory calculations for the adsorption of the pesticides atrazine and diuron by Hovenia dulcis biochar, J. Mol. Liq. 367 (2022), 120418.[49] A. Rubio-Clemente, J. Guti´errez, H. Henao, A.M. Melo, J.F. P´erez, E. Chica, Adsorption capacity of the biochar obtained from Pinus patula wood microgasification for the treatment of polluted water containing malachite green dye, J. King Saud Univ. - Eng, Sci, 2021.[50] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117/ html.[51] C. Jeon, K.L. Solis, H.R. An, Y. Hong, A.D. Igalavithana, Y.S. Ok, Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar, J. Hazard. Mater. 388 (2020), 122048.[52] K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour. Technol. 118 (2012) 158–162.[53] P. Baltrenas, E. Baltrenaite, E. Spudulis, Biochar from pine and birch morphology and pore structure change by treatment in biofilter, Water Air Soil Pollut. 226 (2015) 1–14.[54] C. Wan, H. Li, L. Zhao, Z. Li, C. Zhang, X. Tan, X. Liu, Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge, J. Environ. Manage. 299 (2021), 113602.[55] H.A. Pereira, K.B. Martinello, Y. Vieira, J.C. Diel, M.S. Netto, G.D. Reske, E. Lorenzett, L.F.O. Silva, T.A.L. Burgo, G.L. Dotto, Adsorptive behavior of multiwalled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices, Chemosphere 325 (2023), 138384.[56] M.D.C.E. Pinto, R.G.L. Gonçalves, R.M.M. Santos, E.A. Araujo, G.F. Perotti, R. S. Macedo, M.A. Bizeto, V.R.L. Constantino, F.G. Pinto, J. Tronto, Mesoporous carbon derived from a biopolymer and a clay: Preparation, characterization and application for an organochlorine pesticide adsorption, Micro. Meso. Mater. 225 (2016) 342–354.[57] R. Kamaraj, D.J. Davidson, G. Sozhan, S. Vasudevan, Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes, J. Taiwan Inst. Chem. Eng. 45 (6) (2014) 2943–2949.[58] R. Kamaraj, A. Pandiarajan, S. Vasudevan, S. Vasudevan, Facile one-pot electrosynthesis of zinc hydroxide for the adsorption of hazardous 2-(2-methyl-4- chlorophenoxy) propionic acid (MCPP) from water and its modelling studies, J. Environ. Chem. Eng. 6 (2) (2018) 2017–2026.121474Hill modelIsothermPinus elliottiiRiver waterRich-carbon materialPublicationORIGINALAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdfAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdfArtículoapplication/pdf6528393https://repositorio.cuc.edu.co/bitstreams/29202715-b12f-4256-a4f3-6a22b9594f3c/download0bc6c92f7e1c9ab52bcf4c997830bb3dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/54d61dd1-17e3-4076-bad8-51d69f013e55/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdf.txtAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdf.txtExtracted texttext/plain53311https://repositorio.cuc.edu.co/bitstreams/833ae01e-7bf4-4b1a-8e39-f521923549e9/download9b925b365a21c08a8d607b60f9850071MD53THUMBNAILAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdf.jpgAdsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar.pdf.jpgGenerated Thumbnailimage/jpeg14253https://repositorio.cuc.edu.co/bitstreams/c677a4d4-37f0-4103-9af6-d54cc7f1aa99/downloadc1e477e54db2bedfcd6664a3dd61e868MD5411323/13320oai:repositorio.cuc.edu.co:11323/133202024-09-17 14:24:51.223https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |