Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in...
- Autores:
-
Mejía Taboada, Mario Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7071
- Acceso en línea:
- https://hdl.handle.net/11323/7071
https://repositorio.cuc.edu.co/
- Palabra clave:
- Technical-economic
Transformers
Electrical networks
Hot climates
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_8bdc497e1171711b3acf312de6730068 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7071 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
title |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
spellingShingle |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Technical-economic Transformers Electrical networks Hot climates Técnico-económica Trasformadores Redes eléctricas Climas cálidos Técnico-económica Trasformadores Redes eléctricas Climas cálidos |
title_short |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
title_full |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
title_fullStr |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
title_full_unstemmed |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
title_sort |
Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. |
dc.creator.fl_str_mv |
Mejía Taboada, Mario Andrés |
dc.contributor.advisor.spa.fl_str_mv |
Silva Ortega, Jorge Iván Núñez Álvarez, José Ricardo |
dc.contributor.author.spa.fl_str_mv |
Mejía Taboada, Mario Andrés |
dc.subject.spa.fl_str_mv |
Technical-economic Transformers Electrical networks Hot climates Técnico-económica Trasformadores Redes eléctricas Climas cálidos Técnico-económica Trasformadores Redes eléctricas Climas cálidos |
topic |
Technical-economic Transformers Electrical networks Hot climates Técnico-económica Trasformadores Redes eléctricas Climas cálidos Técnico-económica Trasformadores Redes eléctricas Climas cálidos |
description |
New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in the electricity sector, are working on the implementation of new technologies and strategies to reduce their impact on the environment due to the large areas they cover. One of the main assets are local distribution transformers, these equipment use insulating and refrigerant medium mineral oil, these oils have a negative impact on the environment due to their chemical properties, for this reason one of the suggested solutions is to replace mineral oil by fluids based on natural esters, also known as vegetable oils, which provide better technical and environmental properties compared to mineral oils, making it a safe substitute for mineral oil. Natural esters are based on clean technologies in order to guarantee the proper behavior and operation of transformation equipment. The main goal of the present paper is to present a technical-economic analysis obtained from five years of applications of oil-immersed transformers using natural ester fluids in Colombia. The methodology considers forty-four oil-immersed distribution Transformers, a half use mineral oil and the other side use natural ester, operating under the same load regime. Results evidenced the feasibility of implementing this technology because the costs are very similar, and the reduction of risks and environmental impact is considerable. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-05T02:12:07Z |
dc.date.available.none.fl_str_mv |
2020-09-05T02:12:07Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7071 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7071 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Al-ammar, E. A., & Qureshi, M. I. (2009). Probing the Use of Green Insulating Oils in Transformers Based on Their Statistical Breakdown Data. Aluyor, E. O., Obahiagbon, K. O., & Ori-jesu, M. (2009). Biodegradation of vegetable oils : A review. Solutions, 4(6), 543–548. Arfaoui, A., Polidori, G., Taiar, R., & Popa, C. (2012). Infrared Thermography in Sports Activity. In Infrared Thermography (pp. 141–168). https://doi.org/10.5772/1353 Arief, Y. Z., Ahmad, M. H., Lau, K. Y., & Oil, A. T. (2014). A Comparative Study on the Effect of Electrical Ageing on Electrical Properties of Palm Fatty Acid Ester ( PFAE ) and FR3 as Dielectric Materials, 128–133. Asano, R., & Page, S. A. (2014). Reducing Environmental Impact and Improving Safety and Performance of Power Transformers With Natural Ester Dielectric Insulating Fluids, 50(1), 134–141. ASTM. D6871-03: Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, 10 ASTM § (2003). https://doi.org/10.1520/D6871-03R08.2 ASTM. (2010). D2864-10e1: Standard Terminology Relating to Electrical Insulating Liquids and Gases, (July), 1–9. ASTM. D2440-13: Standard Test Method for Oxidation Stability of Mineral Insulating Oil (2013). https://doi.org/10.1520/D2440-13.2 ASTM. D2112-16: Standard Test Method for Oxidation Stability of Inhibited Mineral Insulating Oil (2016). https://doi.org/10.1520/D2112-15.2 ASTM. D3487-16: Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus, 10 § (2016). https://doi.org/10.1520/D3487-09.2 Bashi, S. M., Abdullahi, U. U., Yunus, R., & Nordin, A. (2006). Use of Natural Vegetable Oils as Alternative Dielectric Transformer Coolants. The Institution of Engineers, Malaysia, 67(2), 4–9. Bertrand, Y., & Hoang, L. C. (2003a). Vegetal oils as substitute for mineral oils. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), 2, 491–494. https://doi.org/10.1109/ICPADM.2003.1218460 Bertrand, Y., & Hoang, L. C. (2003b). Vegetal Oils as Substitute for Mineral Oils. In Proceedings of the 7th Intemational Conference on Properties and Applications of Dielectric Materials June (pp. 491–494). Nagoya. Bertrand, Y, & Hoang, L. C. (2004). D1-202 VEGETABLE OILS AS SUBSTITUTE FOR MINERAL INSULATING OILS IN MEDIUM-VOLTAGE EQUIPMENTS, 1–6. Bertrand, Yves, & Lauzevis, P. (2013). Development of a Low Viscosity Insulating Liquid Based on natural Esters for Distributions Transformers. In 22nd International Conference on Electricity Distribution (pp. 10–13). Stockholm. Boss, P, Sa, A. B. B. S., Oommen, T. V, & T, A. B. B. P. (1999). NEW INSULATING FLUIDS FOR TRANSFORMERS BASED ON BIODEGRADABLE HIGH OLEIC VEGETABLE OIL A N D ESTER FLUID. Boss, Pierre, Sc, C., & The, I. (2000). Insulating fluids for power transformers, 1–8. brettis. (2017). Tutoriales Lubricación. Módulo 8: Transformadores. Madrid, España: BRETTIS. Retrieved from http://www.brettis.com/Tutorial/08Transformadores.pdf Caballero, P., Pizarro, K., Silva, J., & Mejía, M. (2017). Análisis Comparativo De Los Materiales Utilizados En Transformadores De Distribución Sumergidos En Aceite Vegetal. Universidad de la Costa. Cannon, G. S., & Kotowskl, J. A. (2002). US 6,340,658 B1. United States. Retrieved from http://www.google.com/patents/US6340658 Cargill. (2013). EnvirotempTM FR3TM Fluid. R2020 Reference Data. Chistyakov, A. V., Tsodikov, M. V., Zharova, P. A., Kriventsov, V. V., Corbetta, M., & Manenti, F. (2017). The direct hydrodeoxygenation of vegetable oil over Pt-Sn/Al2O3 catalysts. Chemical Engineering Transactions, 57, 871–876. https://doi.org/10.3303/CET1757146 CIGRE working group A2-35. (2010). Experiences in Service with New Insulating Liquids. United Kingdom: Zhongdong Wang (UK). Retrieved from http://static.mimaterials.com/midel/documents/sales/New_Experiences_in_Service_with_N ew_Insulating_Liquids.pdf Ciuriuc, A., Vihacencu, M. S., Dumitran, L. M., & Notingher, P. V. (2012). Comparative Study on Power Transformers Vegetable and Mineral Oil Ageing. IEEE Explore, 12, 1–6. https://doi.org/10.1109/ICATE.2012.6403401 Colombia, C. De. (2014). LEY 1715 Mayo de 2014. Presidencia de la Republica. Retrieved from http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdf Committee, T., Power, I., & Society, E. (2008). IEEE Std C57.147TM-2008, IEEE Guide for Acceptance and Maintenance of Natural Ester Fluids in Transformers. Cotton, I. (2007). Dissolved Gas Analysis of Alternative, 23(5), 5–14. Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz., A., & Carcedo, J. (2015). Thermal Analysis of Transformers Insulation Based on Vegetable Esters. In Electrical Insulation Conference (EIC), 2015 IEEE (pp. 7–10). https://doi.org/10.1109/ICACACT.2014.7223488 Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz, A., & Carcedo, J. (2015). Thermal analysis of transformers insulation based on vegetable esters. 33rd Electrical Insulation Conference, EIC 2015, (June), 606–609. https://doi.org/10.1109/ICACACT.2014.7223488 Discussion, P., Hopkinson, P., Fellow, I., Panel, O., Dix, P. L., Ieee, M., … Moore, H. R. (2009). Progress Report On Natural Esters For Distribution And Power Transformers, 3–5. Divakaran, D. (2012). INVESTIGATION OF LIGHTNING IMPULSE VOLTAGE CHARACTERISTICS AND OTHER THERMO-PHYSICAL CHARACTERISTICS OF VEGETABLE OILS FOR POWER APPARATUS APPLICATIONS, 28–31. Du, B., Li, J., Wang, B., Xiang, J., & Zhang, Z. (2013). Influence of Water Content on the Electrical Properties of Insulating Vegetable Oil-Based Nanofluids, (June), 49–51. Dumitran, L. M. (2013). Thermal Ageing Effects on the Dielectr ic Properties and Moisture Content of Vegetable and Mineral Oil Used In Power Transformers. Edf, R., France, D., Lauzevis, P., & France, E. (2013). 22 nd International Conference on Electricity Distribution Paper 0382 DEVELOPMENT OF A LOW VISCOSITY INSULATING LIQUID BASED ON NATURAL ESTERS FOR DISTRIBUTION TRANSFORMERS Chemistry of natural esters , triglycerides and 22 nd International Conference on , (0382), 10–13. EEAA., & EPAP. (2002). Inspection Manual Oil Oil, Soap and Detergents Industry, (June). EPA. (1998). OPPTS 835.3100. Aerobic Aquatic Biodegradation. Fate, Transport and Transformation Test Guidelines. (Thomas A. Edison Technical Center, Ed.). Franksville (USA): Cooper Power Systems. Fernando-Navas, D., Cadavid-Ramírez, H., & Echeverry-Ibarra, D. F. (2012). Aplicación del aceite dieléctrico de origen vegetal en transformadores eléctricos. REDALYC, Vol. 16, n, 201– 223. Fofana, I. (2013). 50 Years in the Development of Insulating Liquids, 29(5). Fong, I. A., & Ruiz, A. T. De. (n.d.). El petróleo y su proceso de refinación. Universidad Tecnológic de Panamá. Retrieved from http://biblioteca.unmsm.edu.pe/redlieds/proyecto/publicacioneselectro/monografias/El petróleo y su proceso de refinación.pdf Gasser, H. P., Krause, C., Lashbrook, M., & Martin, R. (2011). Aging of Pressboard in Different Insulating Liquids. Ghani, S. A., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Bakar, N. A., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. https://doi.org/https://doi.org/10.1016/j.epsr.2017.10.008 GlobalTox International Consultants. (1999). Final Report: Acute Trout Toxicity Testing for Two Envirotemp FR3 Formulations. Guelph, ON, Canada. Guo, P., Liao, R., Hao, J., Ma, Z., & Yang, L. (2012). Research on the Temperature Dielectric Spectrum of Vegetable Oil , Mineral Oil and Their Relevant Oil- impregnated Papers, 1–4. Han, J., Qiu, W., Wang, W., Cao, H., Yao, D., & Preparation, A. (2012). Application of Insulating Camellia Oil in High Fire Resistance Transformer, 1–4. Hemmer, M., Badent, R., & Leibfried, T. (2003). Electrical properties of vegetable oilimpregnated paper insulation. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 60–63. https://doi.org/10.1109/CEIDP.2003.1254794 Hernandez-Herrera, H., Silva-Ortega, J. I., Mejia-Taboada, M., Diaz Jacome, A., & TorregrozaRosas, M. (2019). Natural ester fluids applications in transformers as a sustainable dielectric and coolant. AIP Conference Proceedings, 2123(1), 20049. https://doi.org/10.1063/1.5116976 Herrera, J. C., Chamorro, C. R., & Martín, M. C. (2015). Experimental analysis of performance, greenhouse gas emissions and economic parameters for two cooling systems in a public administration building. Energy and Buildings, 108, 145–155. https://doi.org/10.1016/j.enbuild.2015.09.007 Hosier, I. L., Vaughan, A. S., & Montjen, F. A. (2006). Ageing of biodegradable oils for high voltage insulation systems, 481–484. Hosierl, I. L., Vaughan, A. ., Sutton, S. ., & Davis, F. . (2005). Chemical and Physical Properties of Aged Dodecylbenzene Insulating Oil, 225–228. Hrkac, M., Papageorgiou, P., Kosmoglou, I., & Miatto, G. (2010). BIOTEMP ® Transformer Technology for Innovative Compact Substation, (November), 1–6. IEC. IEC 61039-08: General classification of insulating liquids, Pub. L. No. CEI/IEC/TS 60076- 14:2004, 1 (2009). IEC. IEC 60076-2: Power transformers – Part 2: Temperature rise for liquid-immersed transformers (2011). Ilyas, M., & Sample, A. (2008). Effects of temperature on Dielectric properties of Rhicinnus Oils as insulating liquid, 0–3. Jeong, J., An, J., & Huh, C. (2012). Accelerated Aging Effects of Mineral and Vegetable Transformer Oils on Medium Voltage Power Transformers, 156–161. Kanno, M., Oota, N., Suzuki, T., & Ishii, T. (2001). Changes in ECT and Dielectric Dissipation Factor of Insulating Oils Due to Aging in Oxygen, 8(6), 1048–1053. Kano, T., Suzuki, T., Oba, R., & Kanetani, A. (2012). Study on the Oxidative Stability of Palm Fatty Acid Ester ( PFAE ) as an Insulating Oil for Transformers, 22–25. Kanoh, T., Iwabuchi, H., Hoshida, Y., Yamada, J., Hikosaka, T., Yamazaki, A., … Corporation, L. (2008). Analyses of Electro-Chemical Characteristics of Palm Fatty Acid Esters as Insulating Oil, (1), 2–5. Khayam, V., Susilo, A., Muslim, J., & Hikita, M. (2014). Partial Discharge Characteristics and Dissolved Gas Analysis of Vegetable Oil, 330–333. Kojima, H., & Hayakawa, N. (2012). Charge Behavior in Palm Fatty Acid Ester Oil ( PFAE ) / Pressboard Composite Insulation System under Voltage Application, (1), 419–423. Lewand, L. R. (2005). Laboratory Testing of Natural Ester Dielectric Liquids. Li, J., Zhang, Z., Grzybowski, S., & Liu, Y. (2012). Characteristics of Moisture Diffusion in Vegetable Oil-paper Insulation, 1650–1656. Liao, Rui-jin, Xiang, B., Yang, L., & Tang, C. (2008). Study on the Thermal Aging Characteristics and Bond, 291–296. Liao, Ruijin, Hao, J., Chen, G., Ma, Z., & Yang, L. (2011). A comparative study of physicochemical, dielectric and thermal properties of pressboard insulation impregnated with natural ester and mineral oil. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1626–1637. https://doi.org/10.1109/TDEI.2011.6032833 Margalló Gasco, I. (2012). Diagnóstico del consumo de vida de un transformador a través del análisis de compuestos furánicos. Universidad Carlos III de Madrid., 1–70. Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006a). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By. Euro TechCon, 4–23. Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006b). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By, 4–23. Martin, D., & Wang, Z. D. (2006). A Comparative Study of the Impact of Moisture on the Dielectric Capability of Esters for Large Power Transformers, 409–412. Marulanda, a. R., Artigas, M. a., Gavidia, a., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer. 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA, 1–6. https://doi.org/10.1109/TDC-LA.2008.4641781 Marulanda, A. R., Artigas, M. A., Gavidia, A., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer, 1–6. Mcshane, C. P. (1976a). Natural and Synthetic Ester Dielectric Fluids : Their Relative Environmental , Fire Safety , and Electrical Performance. Mcshane, C. P. (1976b). New Dielectric Coolant Concepts for Distribution and Power Transformers, 55–62. Mcshane, C. P. (2001). Relative Properties of the New Combustion-Resistant Vegetable-Oil- Based Dielectric Coolants for Distribution and Power Transformers, 37(4), 1132–1139. McShane, C. P. (2002). Vegetable-oil-based dielectric coolants. IEEE Industry Applications Magazine, 8(3), 34–41. https://doi.org/10.1109/2943.999611 Mcshane, C. P., Corkran, J., Ieee, M., Rapp, K., Luksich, J., Since, A., & Power, C. (n.d.). Natural Ester Dielectric Fluid Development, 1–5. Mcshane, C. P., & Luksich, J. (1999). Fire Resistant Natural Ester Dielectric Fluid and Novel Insulation System for Its Use, 890–894. McShane, C. P., Rapp, K. J., Corkran, J. L., Gauger, G. a, & Luksich, J. (2002). Aging of Kraft Paper in Natural Ester Dielectric Fluid ester oil Aging Time ( hours ) Degree of Polymerization. Proceedings of 14th International Conference on Dielectric Liquids, (Icdl), 173–177. Mogozine, A. (2000). New safety dielectric coolants for distribution and power transformers. IEEE Industry Applications Magazine, 24–32. https://doi.org/10.1109/2943.838037 Mohammed, L. S., Bakrutheen, M., Willjuice, M., & Karthik, M. (2015). STUDIES ON CRITICAL PROPERTIES OF VEGETABLE OIL BASED INSULATING FLUIDS, 1–4. Muhamad, N A, Phung, B. T., Blackburn, T. R., & Lai, K. X. (2008). Dissolved Gas Analysis of Faults in Bio- degradable Oil Transformer Insulating Systems. Muhamad, Nor Asiah, Phung, B. T., & Blackburn, T. R. (2008). Dissolved Gas Analysis ( DGA ) of Ar c ing Faults in Biodegradable Oil Insulation Systems. Murdiya, F. (2015). RESEARCH ON CREEPING DISCHARGE PHENOMENA IN INSULATING OILS : VEGETABLE-BASED OILS AS SUBSTITUTE OF. Murphy, J. R., Member, S., & Graham, J. (2009). Distribution Utility Experience with Natural Ester Dielectric Coolants, 9–11. OECD Guidelines, O., & Development Economic Cooperation and. Fish, Acute Toxicity Test, OECD 203, Effects on Biotic Systems.pdf (1992). Oommen, T. V., Claiborne, C. C., Walsh, E. J., & Baker, J. P. (2000). A New Vegetable Oil Based Transformer Fluid: Development and Verification. In Conference on Electrical Insulation and Dielectric Phenomena (pp. 308–312). Oommen, T V. (1995). Vegetable Oils for Liquid-Filled Transformers. Electrical Insulation Magazine, 18(1), 6–11. Oommen, T V, Claiborne, C. C., Walsh, E. J., & Nc, R. (1998). Introduction of a New Fully Biodegradable Dielectric Fluid, 1–4. Oommen, Thottath V, & Clair borne, C. C. (1999). 5,949,017. United States. Retrieved from http://www.google.com/patents/US5949017 Patrick McShane, C., Corkran, J., Rapp, K., & Luksich, J. (2006). Natural ester dielectric fluid development. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 18–22. https://doi.org/10.1109/TDC.2006.1668445 Power, C. (2003). Aging of paper insulation retrofdled with natural ester dielectric fluid. Rafiq, M., Lv, Y. Z., Zhou, Y., Ma, K. B., Wang, W., Li, C. R., & Wang, Q. (2015). Use of vegetable oils as transformer oils – a review. Renewable and Sustainable Energy Reviews, 52, 308–324. https://doi.org/10.1016/j.rser.2015.07.032 Rapp, K. J. (1999). Behavior of Ester Dielectric Fluids Near the Pour Point, 5–8. Rebolledo Lozano, G. A. (2014). Evaluación De La Viabilidad Técnica Y Económica De La Utilización Del Aceite Dieléctrico Vegetal Como Sustituyente Del Aceite Dieléctrico Mineral En Transformadores De Distribución Nuevos Y Usados En Las Empresas Municipales De Cali. Universidad Autónoma de Occidente. Related, S., The, T. O., Of, T., Of, D., & Chemicals, O. (2003). INTRODUCTION TO THE OECD GUIDELINES FOR TESTING OF CHEMICALS SECTION 3, (July), 1–12. Riveros D., C. F. (2012). PRUEBAS DIELÉCTRICAS A TRANSFORMADORES DE DISTRIBUCION SUMERGIDOS EN ACEITE DE ORIGEN VEGETAL. SANTIAGO DE CALI. Rycroft, M. (2014). Vegetable oil as insulating fluid for transformers. Energize, (April), 37–40. Retrieved from http://www.ee.co.za/wp-content/uploads/2014/04/energize-april-14-p-37- 40.pdf Sagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., & Vandecasteele, C. (2018). Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198(0959–6526), 1443–1458. https://doi.org/10.1016/j.jclepro.2018.07.105 Silva-Ortega, J. I., Candelo-Becerra, J. E., Umaña-Ibañez, S. F., Mejia-Taboada, M. A., & PalacioBonill, A. R. (2016). Power Distribution Transformers using Natural Ester Fluids as Dielectric and Coolant. INGE CUC, 12(2), 79–85. https://doi.org/http://dx.doi.org/10.17981/ingecuc.12.2.2016.08 Silva, W. J. N. da, Lopes, L. W., Macedo, A. E. R. de, Costa, D. B. da, & Almeida, A. A. F. de. (2016). Reduction of Risk Factors in Patients with Behavioral Dysphonia After Vocal Group Therapy. Journal of Voice : Official Journal of the Voice Foundation. https://doi.org/10.1016/j.jvoice.2016.01.007 Stockton, D. P., Bland, J. R., Mcclanahan, T., Wilson, J., Harris, D. L., & Mcshane, P. (2007). NATURAL ESTER TRANSFORMER FLUIDS : SAFETY , RELIABILITY & ENVIRONMENTAL PERFORMANCE, 1–7. Support, R. (2016). What is viscosity. Retrieved from http://www.rm-support.nl/index.php/expertadvice/item/httprm-supportcomexpert-advicehtml.html The Coconut Diet. (2016). How is Coconut Oil Produced ? Retrieved from http://www.coconutdiet.com/what_is_virgin_coconut_oil.htm Unidad de Planeación Minero-Energética. (2019). PROYECCIÓN REGIONAL ENERGÍA ELÉCTRICA Y Revisión Abril 2019, 87. Retrieved from http://www1.upme.gov.co/DemandaEnergetica/Proyeccion_Demanda_Regional_Energia_A br_2019.pdf UPME. Res. 0536 - 2012, Pub. L. No. 0536–2012 (2012). Colombia. Vihacencu, M. Ş., Ciuriuc, A., & Dumitran, L. M. (2013). Experimental study of electrical properties of mineral and vegetable transformer oils. UPB Scientific Bulletin, Series C: Electrical Engineering, 75(3), 171–182. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84894199395&partnerID=tZOtx3y1 Villardi, H. G. D., Leal, M. F., De Andrade, P. H. A., Pessoa, F. L. P., & Salgado, A. M. (2017). Study of the production of ethyl esters of soybean industry using waste acid with and without catalyst. Chemical Engineering Transactions, 57, 163–168. https://doi.org/10.3303/CET1757028 Vukovi, D., Jovalekic, M., & Tenbohlen, S. (2012). Comparative Experimental Study of Dielectric Strength of Oil-cellulose Insulation for Mineral and Vegetable-based Oils, 424–428. Wflo, & Manual, S. Rancidity and Antioxidants (2008). Wilson, A. C. . (1980). Insulating liquids: their uses, manufacture and properties. ELECTRONICS & POWER, (June), 1980. Yang, L., Liao, R., Sun, C., Yin, J., & Zhu, M. (2010). Influence of Vegetable Oil on the Thermal Aging Rate of Kraft Paper and its Mechanism, 381–384. В.С. Ким. (2008). Учебное пособие по профессиональному английскому языку (физика диэлектриков). Tomsk Polytechnic University. Retrieved from http://portal.tpu.ru:7777/departments/otdel/publish/izdaniya_razrabotanye_v_ramkah_IOP/ Tab1/uch_posobie_po_prof_english_zac_0.pdf Гредина, И. В., Научно-технической, П. В., Ббк, Ш., & Гредина, И. В. (2010). Перевод в научно-технической деятельности (Traducción: Translations into scientific and technical activities). Tomsk Polytechnic University. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Maestría en Eficiencia Energética y Energías Renovables |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a6b48e3f-d557-40dd-91bc-78240333732c/download https://repositorio.cuc.edu.co/bitstreams/21a39217-b5a3-4c7b-a8d2-a0335afcea6a/download https://repositorio.cuc.edu.co/bitstreams/a5bb3bb2-7a89-4585-a36a-568d5a3ee4f5/download https://repositorio.cuc.edu.co/bitstreams/cae5fa66-ff37-47e1-879c-d9766e5a39e8/download https://repositorio.cuc.edu.co/bitstreams/7bff8699-62ed-4eee-80db-5e15a3c60349/download https://repositorio.cuc.edu.co/bitstreams/ebe8ca4e-0296-40fb-9257-e98a91f844c0/download |
bitstream.checksum.fl_str_mv |
f04cb829f246f8c69dd8df9e18183e70 934f4ca17e109e0a05eaeaba504d7ce4 e30e9215131d99561d40d6b0abbe9bad 8d130ee6e46fdee2b5d55be2cccf6add 8d130ee6e46fdee2b5d55be2cccf6add e94b02c713a53feb35a00793e058958a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760832486309888 |
spelling |
Silva Ortega, Jorge IvánNúñez Álvarez, José RicardoMejía Taboada, Mario Andrés2020-09-05T02:12:07Z2020-09-05T02:12:07Z2020Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071https://hdl.handle.net/11323/7071Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in the electricity sector, are working on the implementation of new technologies and strategies to reduce their impact on the environment due to the large areas they cover. One of the main assets are local distribution transformers, these equipment use insulating and refrigerant medium mineral oil, these oils have a negative impact on the environment due to their chemical properties, for this reason one of the suggested solutions is to replace mineral oil by fluids based on natural esters, also known as vegetable oils, which provide better technical and environmental properties compared to mineral oils, making it a safe substitute for mineral oil. Natural esters are based on clean technologies in order to guarantee the proper behavior and operation of transformation equipment. The main goal of the present paper is to present a technical-economic analysis obtained from five years of applications of oil-immersed transformers using natural ester fluids in Colombia. The methodology considers forty-four oil-immersed distribution Transformers, a half use mineral oil and the other side use natural ester, operating under the same load regime. Results evidenced the feasibility of implementing this technology because the costs are very similar, and the reduction of risks and environmental impact is considerable.Los nuevos requisitos para una mejor política energética sostenible en todo el mundo son fáciles de observar, principalmente porque se desarrollan muchos proyectos de energía sostenible en los que la academia trabaja en conjunto con las autoridades y las empresas comerciales tales como las de servicios públicos. Las empresas del sector energético, especialmente las del sector eléctrico, buscan mediante la implementación de nuevas tecnologías y estrategias reducir el impacto que estas generan sobre el medio ambiente debido a las grandes superficies que abarcan. Uno de los principales activos son los transformadores de distribución local. Estos equipos, en su mayoría, utilizan aceite mineral medio aislante y refrigerante generando un impacto negativo sobre el entorno debido a sus propiedades químicas. Por esta razón, una de las soluciones sugeridas es reemplazar el aceite mineral por fluidos a base de ésteres naturales, conocidos también como aceites vegetales, pues proporcionan mejores propiedades técnicas y medioambientales, en comparación con los aceites minerales, convirtiéndolo en un sustituto confiable. Los ésteres naturales se basan en tecnologías limpias con el propósito de garantizar el adecuado comportamiento y funcionamiento de los equipos de transformación. El objetivo principal de esta investigación es presentar un análisis técnico-económico obtenido de cinco años de aplicaciones sobre transformadores sumergidos en aceite que usan fluidos de éster natural en Colombia. La metodología examina cuarenta y cuatro transformadores de distribución sumergidos en aceite; la mitad usa aceite mineral, y la otra mitad usa éster natural, operando bajo el mismo régimen de carga. Los resultados evidenciaron la factibilidad de implementar esta tecnología porque los costos son muy similares y la reducción de riesgos e impacto ambiental es considerable.Mejía Taboada, Mario AndrésspaCorporación Universidad de la CostaMaestría en Eficiencia Energética y Energías RenovablesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Technical-economicTransformersElectrical networksHot climatesTécnico-económicaTrasformadoresRedes eléctricasClimas cálidosTécnico-económicaTrasformadoresRedes eléctricasClimas cálidosEstudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.Trabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAl-ammar, E. A., & Qureshi, M. I. (2009). Probing the Use of Green Insulating Oils in Transformers Based on Their Statistical Breakdown Data.Aluyor, E. O., Obahiagbon, K. O., & Ori-jesu, M. (2009). Biodegradation of vegetable oils : A review. Solutions, 4(6), 543–548.Arfaoui, A., Polidori, G., Taiar, R., & Popa, C. (2012). Infrared Thermography in Sports Activity. In Infrared Thermography (pp. 141–168). https://doi.org/10.5772/1353Arief, Y. Z., Ahmad, M. H., Lau, K. Y., & Oil, A. T. (2014). A Comparative Study on the Effect of Electrical Ageing on Electrical Properties of Palm Fatty Acid Ester ( PFAE ) and FR3 as Dielectric Materials, 128–133.Asano, R., & Page, S. A. (2014). Reducing Environmental Impact and Improving Safety and Performance of Power Transformers With Natural Ester Dielectric Insulating Fluids, 50(1), 134–141.ASTM. D6871-03: Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, 10 ASTM § (2003). https://doi.org/10.1520/D6871-03R08.2ASTM. (2010). D2864-10e1: Standard Terminology Relating to Electrical Insulating Liquids and Gases, (July), 1–9.ASTM. D2440-13: Standard Test Method for Oxidation Stability of Mineral Insulating Oil (2013). https://doi.org/10.1520/D2440-13.2ASTM. D2112-16: Standard Test Method for Oxidation Stability of Inhibited Mineral Insulating Oil (2016). https://doi.org/10.1520/D2112-15.2ASTM. D3487-16: Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus, 10 § (2016). https://doi.org/10.1520/D3487-09.2Bashi, S. M., Abdullahi, U. U., Yunus, R., & Nordin, A. (2006). Use of Natural Vegetable Oils as Alternative Dielectric Transformer Coolants. The Institution of Engineers, Malaysia, 67(2), 4–9.Bertrand, Y., & Hoang, L. C. (2003a). Vegetal oils as substitute for mineral oils. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), 2, 491–494. https://doi.org/10.1109/ICPADM.2003.1218460Bertrand, Y., & Hoang, L. C. (2003b). Vegetal Oils as Substitute for Mineral Oils. In Proceedings of the 7th Intemational Conference on Properties and Applications of Dielectric Materials June (pp. 491–494). Nagoya.Bertrand, Y, & Hoang, L. C. (2004). D1-202 VEGETABLE OILS AS SUBSTITUTE FOR MINERAL INSULATING OILS IN MEDIUM-VOLTAGE EQUIPMENTS, 1–6.Bertrand, Yves, & Lauzevis, P. (2013). Development of a Low Viscosity Insulating Liquid Based on natural Esters for Distributions Transformers. In 22nd International Conference on Electricity Distribution (pp. 10–13). Stockholm.Boss, P, Sa, A. B. B. S., Oommen, T. V, & T, A. B. B. P. (1999). NEW INSULATING FLUIDS FOR TRANSFORMERS BASED ON BIODEGRADABLE HIGH OLEIC VEGETABLE OIL A N D ESTER FLUID.Boss, Pierre, Sc, C., & The, I. (2000). Insulating fluids for power transformers, 1–8.brettis. (2017). Tutoriales Lubricación. Módulo 8: Transformadores. Madrid, España: BRETTIS. Retrieved from http://www.brettis.com/Tutorial/08Transformadores.pdfCaballero, P., Pizarro, K., Silva, J., & Mejía, M. (2017). Análisis Comparativo De Los Materiales Utilizados En Transformadores De Distribución Sumergidos En Aceite Vegetal. Universidad de la Costa.Cannon, G. S., & Kotowskl, J. A. (2002). US 6,340,658 B1. United States. Retrieved from http://www.google.com/patents/US6340658Cargill. (2013). EnvirotempTM FR3TM Fluid. R2020 Reference Data.Chistyakov, A. V., Tsodikov, M. V., Zharova, P. A., Kriventsov, V. V., Corbetta, M., & Manenti, F. (2017). The direct hydrodeoxygenation of vegetable oil over Pt-Sn/Al2O3 catalysts. Chemical Engineering Transactions, 57, 871–876. https://doi.org/10.3303/CET1757146CIGRE working group A2-35. (2010). Experiences in Service with New Insulating Liquids. United Kingdom: Zhongdong Wang (UK). Retrieved from http://static.mimaterials.com/midel/documents/sales/New_Experiences_in_Service_with_N ew_Insulating_Liquids.pdfCiuriuc, A., Vihacencu, M. S., Dumitran, L. M., & Notingher, P. V. (2012). Comparative Study on Power Transformers Vegetable and Mineral Oil Ageing. IEEE Explore, 12, 1–6. https://doi.org/10.1109/ICATE.2012.6403401Colombia, C. De. (2014). LEY 1715 Mayo de 2014. Presidencia de la Republica. Retrieved from http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdfCommittee, T., Power, I., & Society, E. (2008). IEEE Std C57.147TM-2008, IEEE Guide for Acceptance and Maintenance of Natural Ester Fluids in Transformers.Cotton, I. (2007). Dissolved Gas Analysis of Alternative, 23(5), 5–14.Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz., A., & Carcedo, J. (2015). Thermal Analysis of Transformers Insulation Based on Vegetable Esters. In Electrical Insulation Conference (EIC), 2015 IEEE (pp. 7–10). https://doi.org/10.1109/ICACACT.2014.7223488Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz, A., & Carcedo, J. (2015). Thermal analysis of transformers insulation based on vegetable esters. 33rd Electrical Insulation Conference, EIC 2015, (June), 606–609. https://doi.org/10.1109/ICACACT.2014.7223488Discussion, P., Hopkinson, P., Fellow, I., Panel, O., Dix, P. L., Ieee, M., … Moore, H. R. (2009). Progress Report On Natural Esters For Distribution And Power Transformers, 3–5.Divakaran, D. (2012). INVESTIGATION OF LIGHTNING IMPULSE VOLTAGE CHARACTERISTICS AND OTHER THERMO-PHYSICAL CHARACTERISTICS OF VEGETABLE OILS FOR POWER APPARATUS APPLICATIONS, 28–31.Du, B., Li, J., Wang, B., Xiang, J., & Zhang, Z. (2013). Influence of Water Content on the Electrical Properties of Insulating Vegetable Oil-Based Nanofluids, (June), 49–51.Dumitran, L. M. (2013). Thermal Ageing Effects on the Dielectr ic Properties and Moisture Content of Vegetable and Mineral Oil Used In Power Transformers.Edf, R., France, D., Lauzevis, P., & France, E. (2013). 22 nd International Conference on Electricity Distribution Paper 0382 DEVELOPMENT OF A LOW VISCOSITY INSULATING LIQUID BASED ON NATURAL ESTERS FOR DISTRIBUTION TRANSFORMERS Chemistry of natural esters , triglycerides and 22 nd International Conference on , (0382), 10–13.EEAA., & EPAP. (2002). Inspection Manual Oil Oil, Soap and Detergents Industry, (June).EPA. (1998). OPPTS 835.3100. Aerobic Aquatic Biodegradation. Fate, Transport and Transformation Test Guidelines. (Thomas A. Edison Technical Center, Ed.). Franksville (USA): Cooper Power Systems.Fernando-Navas, D., Cadavid-Ramírez, H., & Echeverry-Ibarra, D. F. (2012). Aplicación del aceite dieléctrico de origen vegetal en transformadores eléctricos. REDALYC, Vol. 16, n, 201– 223.Fofana, I. (2013). 50 Years in the Development of Insulating Liquids, 29(5).Fong, I. A., & Ruiz, A. T. De. (n.d.). El petróleo y su proceso de refinación. Universidad Tecnológic de Panamá. Retrieved from http://biblioteca.unmsm.edu.pe/redlieds/proyecto/publicacioneselectro/monografias/El petróleo y su proceso de refinación.pdfGasser, H. P., Krause, C., Lashbrook, M., & Martin, R. (2011). Aging of Pressboard in Different Insulating Liquids.Ghani, S. A., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Bakar, N. A., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. https://doi.org/https://doi.org/10.1016/j.epsr.2017.10.008GlobalTox International Consultants. (1999). Final Report: Acute Trout Toxicity Testing for Two Envirotemp FR3 Formulations. Guelph, ON, Canada.Guo, P., Liao, R., Hao, J., Ma, Z., & Yang, L. (2012). Research on the Temperature Dielectric Spectrum of Vegetable Oil , Mineral Oil and Their Relevant Oil- impregnated Papers, 1–4.Han, J., Qiu, W., Wang, W., Cao, H., Yao, D., & Preparation, A. (2012). Application of Insulating Camellia Oil in High Fire Resistance Transformer, 1–4.Hemmer, M., Badent, R., & Leibfried, T. (2003). Electrical properties of vegetable oilimpregnated paper insulation. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 60–63. https://doi.org/10.1109/CEIDP.2003.1254794Hernandez-Herrera, H., Silva-Ortega, J. I., Mejia-Taboada, M., Diaz Jacome, A., & TorregrozaRosas, M. (2019). Natural ester fluids applications in transformers as a sustainable dielectric and coolant. AIP Conference Proceedings, 2123(1), 20049. https://doi.org/10.1063/1.5116976Herrera, J. C., Chamorro, C. R., & Martín, M. C. (2015). Experimental analysis of performance, greenhouse gas emissions and economic parameters for two cooling systems in a public administration building. Energy and Buildings, 108, 145–155. https://doi.org/10.1016/j.enbuild.2015.09.007Hosier, I. L., Vaughan, A. S., & Montjen, F. A. (2006). Ageing of biodegradable oils for high voltage insulation systems, 481–484.Hosierl, I. L., Vaughan, A. ., Sutton, S. ., & Davis, F. . (2005). Chemical and Physical Properties of Aged Dodecylbenzene Insulating Oil, 225–228.Hrkac, M., Papageorgiou, P., Kosmoglou, I., & Miatto, G. (2010). BIOTEMP ® Transformer Technology for Innovative Compact Substation, (November), 1–6.IEC. IEC 61039-08: General classification of insulating liquids, Pub. L. No. CEI/IEC/TS 60076- 14:2004, 1 (2009).IEC. IEC 60076-2: Power transformers – Part 2: Temperature rise for liquid-immersed transformers (2011).Ilyas, M., & Sample, A. (2008). Effects of temperature on Dielectric properties of Rhicinnus Oils as insulating liquid, 0–3.Jeong, J., An, J., & Huh, C. (2012). Accelerated Aging Effects of Mineral and Vegetable Transformer Oils on Medium Voltage Power Transformers, 156–161.Kanno, M., Oota, N., Suzuki, T., & Ishii, T. (2001). Changes in ECT and Dielectric Dissipation Factor of Insulating Oils Due to Aging in Oxygen, 8(6), 1048–1053.Kano, T., Suzuki, T., Oba, R., & Kanetani, A. (2012). Study on the Oxidative Stability of Palm Fatty Acid Ester ( PFAE ) as an Insulating Oil for Transformers, 22–25.Kanoh, T., Iwabuchi, H., Hoshida, Y., Yamada, J., Hikosaka, T., Yamazaki, A., … Corporation, L. (2008). Analyses of Electro-Chemical Characteristics of Palm Fatty Acid Esters as Insulating Oil, (1), 2–5.Khayam, V., Susilo, A., Muslim, J., & Hikita, M. (2014). Partial Discharge Characteristics and Dissolved Gas Analysis of Vegetable Oil, 330–333.Kojima, H., & Hayakawa, N. (2012). Charge Behavior in Palm Fatty Acid Ester Oil ( PFAE ) / Pressboard Composite Insulation System under Voltage Application, (1), 419–423.Lewand, L. R. (2005). Laboratory Testing of Natural Ester Dielectric Liquids.Li, J., Zhang, Z., Grzybowski, S., & Liu, Y. (2012). Characteristics of Moisture Diffusion in Vegetable Oil-paper Insulation, 1650–1656.Liao, Rui-jin, Xiang, B., Yang, L., & Tang, C. (2008). Study on the Thermal Aging Characteristics and Bond, 291–296.Liao, Ruijin, Hao, J., Chen, G., Ma, Z., & Yang, L. (2011). A comparative study of physicochemical, dielectric and thermal properties of pressboard insulation impregnated with natural ester and mineral oil. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1626–1637. https://doi.org/10.1109/TDEI.2011.6032833Margalló Gasco, I. (2012). Diagnóstico del consumo de vida de un transformador a través del análisis de compuestos furánicos. Universidad Carlos III de Madrid., 1–70.Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006a). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By. Euro TechCon, 4–23.Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006b). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By, 4–23.Martin, D., & Wang, Z. D. (2006). A Comparative Study of the Impact of Moisture on the Dielectric Capability of Esters for Large Power Transformers, 409–412.Marulanda, a. R., Artigas, M. a., Gavidia, a., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer. 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA, 1–6. https://doi.org/10.1109/TDC-LA.2008.4641781Marulanda, A. R., Artigas, M. A., Gavidia, A., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer, 1–6.Mcshane, C. P. (1976a). Natural and Synthetic Ester Dielectric Fluids : Their Relative Environmental , Fire Safety , and Electrical Performance.Mcshane, C. P. (1976b). New Dielectric Coolant Concepts for Distribution and Power Transformers, 55–62.Mcshane, C. P. (2001). Relative Properties of the New Combustion-Resistant Vegetable-Oil- Based Dielectric Coolants for Distribution and Power Transformers, 37(4), 1132–1139.McShane, C. P. (2002). Vegetable-oil-based dielectric coolants. IEEE Industry Applications Magazine, 8(3), 34–41. https://doi.org/10.1109/2943.999611Mcshane, C. P., Corkran, J., Ieee, M., Rapp, K., Luksich, J., Since, A., & Power, C. (n.d.). Natural Ester Dielectric Fluid Development, 1–5.Mcshane, C. P., & Luksich, J. (1999). Fire Resistant Natural Ester Dielectric Fluid and Novel Insulation System for Its Use, 890–894.McShane, C. P., Rapp, K. J., Corkran, J. L., Gauger, G. a, & Luksich, J. (2002). Aging of Kraft Paper in Natural Ester Dielectric Fluid ester oil Aging Time ( hours ) Degree of Polymerization. Proceedings of 14th International Conference on Dielectric Liquids, (Icdl), 173–177.Mogozine, A. (2000). New safety dielectric coolants for distribution and power transformers. IEEE Industry Applications Magazine, 24–32. https://doi.org/10.1109/2943.838037Mohammed, L. S., Bakrutheen, M., Willjuice, M., & Karthik, M. (2015). STUDIES ON CRITICAL PROPERTIES OF VEGETABLE OIL BASED INSULATING FLUIDS, 1–4.Muhamad, N A, Phung, B. T., Blackburn, T. R., & Lai, K. X. (2008). Dissolved Gas Analysis of Faults in Bio- degradable Oil Transformer Insulating Systems.Muhamad, Nor Asiah, Phung, B. T., & Blackburn, T. R. (2008). Dissolved Gas Analysis ( DGA ) of Ar c ing Faults in Biodegradable Oil Insulation Systems.Murdiya, F. (2015). RESEARCH ON CREEPING DISCHARGE PHENOMENA IN INSULATING OILS : VEGETABLE-BASED OILS AS SUBSTITUTE OF.Murphy, J. R., Member, S., & Graham, J. (2009). Distribution Utility Experience with Natural Ester Dielectric Coolants, 9–11.OECD Guidelines, O., & Development Economic Cooperation and. Fish, Acute Toxicity Test, OECD 203, Effects on Biotic Systems.pdf (1992).Oommen, T. V., Claiborne, C. C., Walsh, E. J., & Baker, J. P. (2000). A New Vegetable Oil Based Transformer Fluid: Development and Verification. In Conference on Electrical Insulation and Dielectric Phenomena (pp. 308–312).Oommen, T V. (1995). Vegetable Oils for Liquid-Filled Transformers. Electrical Insulation Magazine, 18(1), 6–11.Oommen, T V, Claiborne, C. C., Walsh, E. J., & Nc, R. (1998). Introduction of a New Fully Biodegradable Dielectric Fluid, 1–4.Oommen, Thottath V, & Clair borne, C. C. (1999). 5,949,017. United States. Retrieved from http://www.google.com/patents/US5949017Patrick McShane, C., Corkran, J., Rapp, K., & Luksich, J. (2006). Natural ester dielectric fluid development. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 18–22. https://doi.org/10.1109/TDC.2006.1668445Power, C. (2003). Aging of paper insulation retrofdled with natural ester dielectric fluid.Rafiq, M., Lv, Y. Z., Zhou, Y., Ma, K. B., Wang, W., Li, C. R., & Wang, Q. (2015). Use of vegetable oils as transformer oils – a review. Renewable and Sustainable Energy Reviews, 52, 308–324. https://doi.org/10.1016/j.rser.2015.07.032Rapp, K. J. (1999). Behavior of Ester Dielectric Fluids Near the Pour Point, 5–8.Rebolledo Lozano, G. A. (2014). Evaluación De La Viabilidad Técnica Y Económica De La Utilización Del Aceite Dieléctrico Vegetal Como Sustituyente Del Aceite Dieléctrico Mineral En Transformadores De Distribución Nuevos Y Usados En Las Empresas Municipales De Cali. Universidad Autónoma de Occidente.Related, S., The, T. O., Of, T., Of, D., & Chemicals, O. (2003). INTRODUCTION TO THE OECD GUIDELINES FOR TESTING OF CHEMICALS SECTION 3, (July), 1–12.Riveros D., C. F. (2012). PRUEBAS DIELÉCTRICAS A TRANSFORMADORES DE DISTRIBUCION SUMERGIDOS EN ACEITE DE ORIGEN VEGETAL. SANTIAGO DE CALI.Rycroft, M. (2014). Vegetable oil as insulating fluid for transformers. Energize, (April), 37–40. Retrieved from http://www.ee.co.za/wp-content/uploads/2014/04/energize-april-14-p-37- 40.pdfSagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., & Vandecasteele, C. (2018). Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198(0959–6526), 1443–1458. https://doi.org/10.1016/j.jclepro.2018.07.105Silva-Ortega, J. I., Candelo-Becerra, J. E., Umaña-Ibañez, S. F., Mejia-Taboada, M. A., & PalacioBonill, A. R. (2016). Power Distribution Transformers using Natural Ester Fluids as Dielectric and Coolant. INGE CUC, 12(2), 79–85. https://doi.org/http://dx.doi.org/10.17981/ingecuc.12.2.2016.08Silva, W. J. N. da, Lopes, L. W., Macedo, A. E. R. de, Costa, D. B. da, & Almeida, A. A. F. de. (2016). Reduction of Risk Factors in Patients with Behavioral Dysphonia After Vocal Group Therapy. Journal of Voice : Official Journal of the Voice Foundation. https://doi.org/10.1016/j.jvoice.2016.01.007Stockton, D. P., Bland, J. R., Mcclanahan, T., Wilson, J., Harris, D. L., & Mcshane, P. (2007). NATURAL ESTER TRANSFORMER FLUIDS : SAFETY , RELIABILITY & ENVIRONMENTAL PERFORMANCE, 1–7.Support, R. (2016). What is viscosity. Retrieved from http://www.rm-support.nl/index.php/expertadvice/item/httprm-supportcomexpert-advicehtml.htmlThe Coconut Diet. (2016). How is Coconut Oil Produced ? Retrieved from http://www.coconutdiet.com/what_is_virgin_coconut_oil.htmUnidad de Planeación Minero-Energética. (2019). PROYECCIÓN REGIONAL ENERGÍA ELÉCTRICA Y Revisión Abril 2019, 87. Retrieved from http://www1.upme.gov.co/DemandaEnergetica/Proyeccion_Demanda_Regional_Energia_A br_2019.pdfUPME. Res. 0536 - 2012, Pub. L. No. 0536–2012 (2012). Colombia.Vihacencu, M. Ş., Ciuriuc, A., & Dumitran, L. M. (2013). Experimental study of electrical properties of mineral and vegetable transformer oils. UPB Scientific Bulletin, Series C: Electrical Engineering, 75(3), 171–182. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84894199395&partnerID=tZOtx3y1Villardi, H. G. D., Leal, M. F., De Andrade, P. H. A., Pessoa, F. L. P., & Salgado, A. M. (2017). Study of the production of ethyl esters of soybean industry using waste acid with and without catalyst. Chemical Engineering Transactions, 57, 163–168. https://doi.org/10.3303/CET1757028Vukovi, D., Jovalekic, M., & Tenbohlen, S. (2012). Comparative Experimental Study of Dielectric Strength of Oil-cellulose Insulation for Mineral and Vegetable-based Oils, 424–428.Wflo, & Manual, S. Rancidity and Antioxidants (2008).Wilson, A. C. . (1980). Insulating liquids: their uses, manufacture and properties. ELECTRONICS & POWER, (June), 1980.Yang, L., Liao, R., Sun, C., Yin, J., & Zhu, M. (2010). Influence of Vegetable Oil on the Thermal Aging Rate of Kraft Paper and its Mechanism, 381–384.В.С. Ким. (2008). Учебное пособие по профессиональному английскому языку (физика диэлектриков). Tomsk Polytechnic University. Retrieved from http://portal.tpu.ru:7777/departments/otdel/publish/izdaniya_razrabotanye_v_ramkah_IOP/ Tab1/uch_posobie_po_prof_english_zac_0.pdfГредина, И. В., Научно-технической, П. В., Ббк, Ш., & Гредина, И. В. (2010). Перевод в научно-технической деятельности (Traducción: Translations into scientific and technical activities). Tomsk Polytechnic University.PublicationORIGINALESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdfESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdfapplication/pdf952738https://repositorio.cuc.edu.co/bitstreams/a6b48e3f-d557-40dd-91bc-78240333732c/downloadf04cb829f246f8c69dd8df9e18183e70MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/21a39217-b5a3-4c7b-a8d2-a0335afcea6a/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a5bb3bb2-7a89-4585-a36a-568d5a3ee4f5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgimage/jpeg27753https://repositorio.cuc.edu.co/bitstreams/cae5fa66-ff37-47e1-879c-d9766e5a39e8/download8d130ee6e46fdee2b5d55be2cccf6addMD54THUMBNAILESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgimage/jpeg27753https://repositorio.cuc.edu.co/bitstreams/7bff8699-62ed-4eee-80db-5e15a3c60349/download8d130ee6e46fdee2b5d55be2cccf6addMD54TEXTESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.txtESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.txttext/plain136144https://repositorio.cuc.edu.co/bitstreams/ebe8ca4e-0296-40fb-9257-e98a91f844c0/downloade94b02c713a53feb35a00793e058958aMD5511323/7071oai:repositorio.cuc.edu.co:11323/70712024-09-17 14:07:20.215http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |