Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.

New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in...

Full description

Autores:
Mejía Taboada, Mario Andrés
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7071
Acceso en línea:
https://hdl.handle.net/11323/7071
https://repositorio.cuc.edu.co/
Palabra clave:
Technical-economic
Transformers
Electrical networks
Hot climates
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_8bdc497e1171711b3acf312de6730068
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7071
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
title Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
spellingShingle Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
Technical-economic
Transformers
Electrical networks
Hot climates
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
title_short Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
title_full Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
title_fullStr Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
title_full_unstemmed Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
title_sort Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.
dc.creator.fl_str_mv Mejía Taboada, Mario Andrés
dc.contributor.advisor.spa.fl_str_mv Silva Ortega, Jorge Iván
Núñez Álvarez, José Ricardo
dc.contributor.author.spa.fl_str_mv Mejía Taboada, Mario Andrés
dc.subject.spa.fl_str_mv Technical-economic
Transformers
Electrical networks
Hot climates
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
topic Technical-economic
Transformers
Electrical networks
Hot climates
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
Técnico-económica
Trasformadores
Redes eléctricas
Climas cálidos
description New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in the electricity sector, are working on the implementation of new technologies and strategies to reduce their impact on the environment due to the large areas they cover. One of the main assets are local distribution transformers, these equipment use insulating and refrigerant medium mineral oil, these oils have a negative impact on the environment due to their chemical properties, for this reason one of the suggested solutions is to replace mineral oil by fluids based on natural esters, also known as vegetable oils, which provide better technical and environmental properties compared to mineral oils, making it a safe substitute for mineral oil. Natural esters are based on clean technologies in order to guarantee the proper behavior and operation of transformation equipment. The main goal of the present paper is to present a technical-economic analysis obtained from five years of applications of oil-immersed transformers using natural ester fluids in Colombia. The methodology considers forty-four oil-immersed distribution Transformers, a half use mineral oil and the other side use natural ester, operating under the same load regime. Results evidenced the feasibility of implementing this technology because the costs are very similar, and the reduction of risks and environmental impact is considerable.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-05T02:12:07Z
dc.date.available.none.fl_str_mv 2020-09-05T02:12:07Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7071
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7071
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Al-ammar, E. A., & Qureshi, M. I. (2009). Probing the Use of Green Insulating Oils in Transformers Based on Their Statistical Breakdown Data.
Aluyor, E. O., Obahiagbon, K. O., & Ori-jesu, M. (2009). Biodegradation of vegetable oils : A review. Solutions, 4(6), 543–548.
Arfaoui, A., Polidori, G., Taiar, R., & Popa, C. (2012). Infrared Thermography in Sports Activity. In Infrared Thermography (pp. 141–168). https://doi.org/10.5772/1353
Arief, Y. Z., Ahmad, M. H., Lau, K. Y., & Oil, A. T. (2014). A Comparative Study on the Effect of Electrical Ageing on Electrical Properties of Palm Fatty Acid Ester ( PFAE ) and FR3 as Dielectric Materials, 128–133.
Asano, R., & Page, S. A. (2014). Reducing Environmental Impact and Improving Safety and Performance of Power Transformers With Natural Ester Dielectric Insulating Fluids, 50(1), 134–141.
ASTM. D6871-03: Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, 10 ASTM § (2003). https://doi.org/10.1520/D6871-03R08.2
ASTM. (2010). D2864-10e1: Standard Terminology Relating to Electrical Insulating Liquids and Gases, (July), 1–9.
ASTM. D2440-13: Standard Test Method for Oxidation Stability of Mineral Insulating Oil (2013). https://doi.org/10.1520/D2440-13.2
ASTM. D2112-16: Standard Test Method for Oxidation Stability of Inhibited Mineral Insulating Oil (2016). https://doi.org/10.1520/D2112-15.2
ASTM. D3487-16: Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus, 10 § (2016). https://doi.org/10.1520/D3487-09.2
Bashi, S. M., Abdullahi, U. U., Yunus, R., & Nordin, A. (2006). Use of Natural Vegetable Oils as Alternative Dielectric Transformer Coolants. The Institution of Engineers, Malaysia, 67(2), 4–9.
Bertrand, Y., & Hoang, L. C. (2003a). Vegetal oils as substitute for mineral oils. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), 2, 491–494. https://doi.org/10.1109/ICPADM.2003.1218460
Bertrand, Y., & Hoang, L. C. (2003b). Vegetal Oils as Substitute for Mineral Oils. In Proceedings of the 7th Intemational Conference on Properties and Applications of Dielectric Materials June (pp. 491–494). Nagoya.
Bertrand, Y, & Hoang, L. C. (2004). D1-202 VEGETABLE OILS AS SUBSTITUTE FOR MINERAL INSULATING OILS IN MEDIUM-VOLTAGE EQUIPMENTS, 1–6.
Bertrand, Yves, & Lauzevis, P. (2013). Development of a Low Viscosity Insulating Liquid Based on natural Esters for Distributions Transformers. In 22nd International Conference on Electricity Distribution (pp. 10–13). Stockholm.
Boss, P, Sa, A. B. B. S., Oommen, T. V, & T, A. B. B. P. (1999). NEW INSULATING FLUIDS FOR TRANSFORMERS BASED ON BIODEGRADABLE HIGH OLEIC VEGETABLE OIL A N D ESTER FLUID.
Boss, Pierre, Sc, C., & The, I. (2000). Insulating fluids for power transformers, 1–8.
brettis. (2017). Tutoriales Lubricación. Módulo 8: Transformadores. Madrid, España: BRETTIS. Retrieved from http://www.brettis.com/Tutorial/08Transformadores.pdf
Caballero, P., Pizarro, K., Silva, J., & Mejía, M. (2017). Análisis Comparativo De Los Materiales Utilizados En Transformadores De Distribución Sumergidos En Aceite Vegetal. Universidad de la Costa.
Cannon, G. S., & Kotowskl, J. A. (2002). US 6,340,658 B1. United States. Retrieved from http://www.google.com/patents/US6340658
Cargill. (2013). EnvirotempTM FR3TM Fluid. R2020 Reference Data.
Chistyakov, A. V., Tsodikov, M. V., Zharova, P. A., Kriventsov, V. V., Corbetta, M., & Manenti, F. (2017). The direct hydrodeoxygenation of vegetable oil over Pt-Sn/Al2O3 catalysts. Chemical Engineering Transactions, 57, 871–876. https://doi.org/10.3303/CET1757146
CIGRE working group A2-35. (2010). Experiences in Service with New Insulating Liquids. United Kingdom: Zhongdong Wang (UK). Retrieved from http://static.mimaterials.com/midel/documents/sales/New_Experiences_in_Service_with_N ew_Insulating_Liquids.pdf
Ciuriuc, A., Vihacencu, M. S., Dumitran, L. M., & Notingher, P. V. (2012). Comparative Study on Power Transformers Vegetable and Mineral Oil Ageing. IEEE Explore, 12, 1–6. https://doi.org/10.1109/ICATE.2012.6403401
Colombia, C. De. (2014). LEY 1715 Mayo de 2014. Presidencia de la Republica. Retrieved from http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdf
Committee, T., Power, I., & Society, E. (2008). IEEE Std C57.147TM-2008, IEEE Guide for Acceptance and Maintenance of Natural Ester Fluids in Transformers.
Cotton, I. (2007). Dissolved Gas Analysis of Alternative, 23(5), 5–14.
Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz., A., & Carcedo, J. (2015). Thermal Analysis of Transformers Insulation Based on Vegetable Esters. In Electrical Insulation Conference (EIC), 2015 IEEE (pp. 7–10). https://doi.org/10.1109/ICACACT.2014.7223488
Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz, A., & Carcedo, J. (2015). Thermal analysis of transformers insulation based on vegetable esters. 33rd Electrical Insulation Conference, EIC 2015, (June), 606–609. https://doi.org/10.1109/ICACACT.2014.7223488
Discussion, P., Hopkinson, P., Fellow, I., Panel, O., Dix, P. L., Ieee, M., … Moore, H. R. (2009). Progress Report On Natural Esters For Distribution And Power Transformers, 3–5.
Divakaran, D. (2012). INVESTIGATION OF LIGHTNING IMPULSE VOLTAGE CHARACTERISTICS AND OTHER THERMO-PHYSICAL CHARACTERISTICS OF VEGETABLE OILS FOR POWER APPARATUS APPLICATIONS, 28–31.
Du, B., Li, J., Wang, B., Xiang, J., & Zhang, Z. (2013). Influence of Water Content on the Electrical Properties of Insulating Vegetable Oil-Based Nanofluids, (June), 49–51.
Dumitran, L. M. (2013). Thermal Ageing Effects on the Dielectr ic Properties and Moisture Content of Vegetable and Mineral Oil Used In Power Transformers.
Edf, R., France, D., Lauzevis, P., & France, E. (2013). 22 nd International Conference on Electricity Distribution Paper 0382 DEVELOPMENT OF A LOW VISCOSITY INSULATING LIQUID BASED ON NATURAL ESTERS FOR DISTRIBUTION TRANSFORMERS Chemistry of natural esters , triglycerides and 22 nd International Conference on , (0382), 10–13.
EEAA., & EPAP. (2002). Inspection Manual Oil Oil, Soap and Detergents Industry, (June).
EPA. (1998). OPPTS 835.3100. Aerobic Aquatic Biodegradation. Fate, Transport and Transformation Test Guidelines. (Thomas A. Edison Technical Center, Ed.). Franksville (USA): Cooper Power Systems.
Fernando-Navas, D., Cadavid-Ramírez, H., & Echeverry-Ibarra, D. F. (2012). Aplicación del aceite dieléctrico de origen vegetal en transformadores eléctricos. REDALYC, Vol. 16, n, 201– 223.
Fofana, I. (2013). 50 Years in the Development of Insulating Liquids, 29(5).
Fong, I. A., & Ruiz, A. T. De. (n.d.). El petróleo y su proceso de refinación. Universidad Tecnológic de Panamá. Retrieved from http://biblioteca.unmsm.edu.pe/redlieds/proyecto/publicacioneselectro/monografias/El petróleo y su proceso de refinación.pdf
Gasser, H. P., Krause, C., Lashbrook, M., & Martin, R. (2011). Aging of Pressboard in Different Insulating Liquids.
Ghani, S. A., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Bakar, N. A., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. https://doi.org/https://doi.org/10.1016/j.epsr.2017.10.008
GlobalTox International Consultants. (1999). Final Report: Acute Trout Toxicity Testing for Two Envirotemp FR3 Formulations. Guelph, ON, Canada.
Guo, P., Liao, R., Hao, J., Ma, Z., & Yang, L. (2012). Research on the Temperature Dielectric Spectrum of Vegetable Oil , Mineral Oil and Their Relevant Oil- impregnated Papers, 1–4.
Han, J., Qiu, W., Wang, W., Cao, H., Yao, D., & Preparation, A. (2012). Application of Insulating Camellia Oil in High Fire Resistance Transformer, 1–4.
Hemmer, M., Badent, R., & Leibfried, T. (2003). Electrical properties of vegetable oilimpregnated paper insulation. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 60–63. https://doi.org/10.1109/CEIDP.2003.1254794
Hernandez-Herrera, H., Silva-Ortega, J. I., Mejia-Taboada, M., Diaz Jacome, A., & TorregrozaRosas, M. (2019). Natural ester fluids applications in transformers as a sustainable dielectric and coolant. AIP Conference Proceedings, 2123(1), 20049. https://doi.org/10.1063/1.5116976
Herrera, J. C., Chamorro, C. R., & Martín, M. C. (2015). Experimental analysis of performance, greenhouse gas emissions and economic parameters for two cooling systems in a public administration building. Energy and Buildings, 108, 145–155. https://doi.org/10.1016/j.enbuild.2015.09.007
Hosier, I. L., Vaughan, A. S., & Montjen, F. A. (2006). Ageing of biodegradable oils for high voltage insulation systems, 481–484.
Hosierl, I. L., Vaughan, A. ., Sutton, S. ., & Davis, F. . (2005). Chemical and Physical Properties of Aged Dodecylbenzene Insulating Oil, 225–228.
Hrkac, M., Papageorgiou, P., Kosmoglou, I., & Miatto, G. (2010). BIOTEMP ® Transformer Technology for Innovative Compact Substation, (November), 1–6.
IEC. IEC 61039-08: General classification of insulating liquids, Pub. L. No. CEI/IEC/TS 60076- 14:2004, 1 (2009).
IEC. IEC 60076-2: Power transformers – Part 2: Temperature rise for liquid-immersed transformers (2011).
Ilyas, M., & Sample, A. (2008). Effects of temperature on Dielectric properties of Rhicinnus Oils as insulating liquid, 0–3.
Jeong, J., An, J., & Huh, C. (2012). Accelerated Aging Effects of Mineral and Vegetable Transformer Oils on Medium Voltage Power Transformers, 156–161.
Kanno, M., Oota, N., Suzuki, T., & Ishii, T. (2001). Changes in ECT and Dielectric Dissipation Factor of Insulating Oils Due to Aging in Oxygen, 8(6), 1048–1053.
Kano, T., Suzuki, T., Oba, R., & Kanetani, A. (2012). Study on the Oxidative Stability of Palm Fatty Acid Ester ( PFAE ) as an Insulating Oil for Transformers, 22–25.
Kanoh, T., Iwabuchi, H., Hoshida, Y., Yamada, J., Hikosaka, T., Yamazaki, A., … Corporation, L. (2008). Analyses of Electro-Chemical Characteristics of Palm Fatty Acid Esters as Insulating Oil, (1), 2–5.
Khayam, V., Susilo, A., Muslim, J., & Hikita, M. (2014). Partial Discharge Characteristics and Dissolved Gas Analysis of Vegetable Oil, 330–333.
Kojima, H., & Hayakawa, N. (2012). Charge Behavior in Palm Fatty Acid Ester Oil ( PFAE ) / Pressboard Composite Insulation System under Voltage Application, (1), 419–423.
Lewand, L. R. (2005). Laboratory Testing of Natural Ester Dielectric Liquids.
Li, J., Zhang, Z., Grzybowski, S., & Liu, Y. (2012). Characteristics of Moisture Diffusion in Vegetable Oil-paper Insulation, 1650–1656.
Liao, Rui-jin, Xiang, B., Yang, L., & Tang, C. (2008). Study on the Thermal Aging Characteristics and Bond, 291–296.
Liao, Ruijin, Hao, J., Chen, G., Ma, Z., & Yang, L. (2011). A comparative study of physicochemical, dielectric and thermal properties of pressboard insulation impregnated with natural ester and mineral oil. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1626–1637. https://doi.org/10.1109/TDEI.2011.6032833
Margalló Gasco, I. (2012). Diagnóstico del consumo de vida de un transformador a través del análisis de compuestos furánicos. Universidad Carlos III de Madrid., 1–70.
Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006a). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By. Euro TechCon, 4–23.
Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006b). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By, 4–23.
Martin, D., & Wang, Z. D. (2006). A Comparative Study of the Impact of Moisture on the Dielectric Capability of Esters for Large Power Transformers, 409–412.
Marulanda, a. R., Artigas, M. a., Gavidia, a., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer. 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA, 1–6. https://doi.org/10.1109/TDC-LA.2008.4641781
Marulanda, A. R., Artigas, M. A., Gavidia, A., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer, 1–6.
Mcshane, C. P. (1976a). Natural and Synthetic Ester Dielectric Fluids : Their Relative Environmental , Fire Safety , and Electrical Performance.
Mcshane, C. P. (1976b). New Dielectric Coolant Concepts for Distribution and Power Transformers, 55–62.
Mcshane, C. P. (2001). Relative Properties of the New Combustion-Resistant Vegetable-Oil- Based Dielectric Coolants for Distribution and Power Transformers, 37(4), 1132–1139.
McShane, C. P. (2002). Vegetable-oil-based dielectric coolants. IEEE Industry Applications Magazine, 8(3), 34–41. https://doi.org/10.1109/2943.999611
Mcshane, C. P., Corkran, J., Ieee, M., Rapp, K., Luksich, J., Since, A., & Power, C. (n.d.). Natural Ester Dielectric Fluid Development, 1–5.
Mcshane, C. P., & Luksich, J. (1999). Fire Resistant Natural Ester Dielectric Fluid and Novel Insulation System for Its Use, 890–894.
McShane, C. P., Rapp, K. J., Corkran, J. L., Gauger, G. a, & Luksich, J. (2002). Aging of Kraft Paper in Natural Ester Dielectric Fluid ester oil Aging Time ( hours ) Degree of Polymerization. Proceedings of 14th International Conference on Dielectric Liquids, (Icdl), 173–177.
Mogozine, A. (2000). New safety dielectric coolants for distribution and power transformers. IEEE Industry Applications Magazine, 24–32. https://doi.org/10.1109/2943.838037
Mohammed, L. S., Bakrutheen, M., Willjuice, M., & Karthik, M. (2015). STUDIES ON CRITICAL PROPERTIES OF VEGETABLE OIL BASED INSULATING FLUIDS, 1–4.
Muhamad, N A, Phung, B. T., Blackburn, T. R., & Lai, K. X. (2008). Dissolved Gas Analysis of Faults in Bio- degradable Oil Transformer Insulating Systems.
Muhamad, Nor Asiah, Phung, B. T., & Blackburn, T. R. (2008). Dissolved Gas Analysis ( DGA ) of Ar c ing Faults in Biodegradable Oil Insulation Systems.
Murdiya, F. (2015). RESEARCH ON CREEPING DISCHARGE PHENOMENA IN INSULATING OILS : VEGETABLE-BASED OILS AS SUBSTITUTE OF.
Murphy, J. R., Member, S., & Graham, J. (2009). Distribution Utility Experience with Natural Ester Dielectric Coolants, 9–11.
OECD Guidelines, O., & Development Economic Cooperation and. Fish, Acute Toxicity Test, OECD 203, Effects on Biotic Systems.pdf (1992).
Oommen, T. V., Claiborne, C. C., Walsh, E. J., & Baker, J. P. (2000). A New Vegetable Oil Based Transformer Fluid: Development and Verification. In Conference on Electrical Insulation and Dielectric Phenomena (pp. 308–312).
Oommen, T V. (1995). Vegetable Oils for Liquid-Filled Transformers. Electrical Insulation Magazine, 18(1), 6–11.
Oommen, T V, Claiborne, C. C., Walsh, E. J., & Nc, R. (1998). Introduction of a New Fully Biodegradable Dielectric Fluid, 1–4.
Oommen, Thottath V, & Clair borne, C. C. (1999). 5,949,017. United States. Retrieved from http://www.google.com/patents/US5949017
Patrick McShane, C., Corkran, J., Rapp, K., & Luksich, J. (2006). Natural ester dielectric fluid development. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 18–22. https://doi.org/10.1109/TDC.2006.1668445
Power, C. (2003). Aging of paper insulation retrofdled with natural ester dielectric fluid.
Rafiq, M., Lv, Y. Z., Zhou, Y., Ma, K. B., Wang, W., Li, C. R., & Wang, Q. (2015). Use of vegetable oils as transformer oils – a review. Renewable and Sustainable Energy Reviews, 52, 308–324. https://doi.org/10.1016/j.rser.2015.07.032
Rapp, K. J. (1999). Behavior of Ester Dielectric Fluids Near the Pour Point, 5–8.
Rebolledo Lozano, G. A. (2014). Evaluación De La Viabilidad Técnica Y Económica De La Utilización Del Aceite Dieléctrico Vegetal Como Sustituyente Del Aceite Dieléctrico Mineral En Transformadores De Distribución Nuevos Y Usados En Las Empresas Municipales De Cali. Universidad Autónoma de Occidente.
Related, S., The, T. O., Of, T., Of, D., & Chemicals, O. (2003). INTRODUCTION TO THE OECD GUIDELINES FOR TESTING OF CHEMICALS SECTION 3, (July), 1–12.
Riveros D., C. F. (2012). PRUEBAS DIELÉCTRICAS A TRANSFORMADORES DE DISTRIBUCION SUMERGIDOS EN ACEITE DE ORIGEN VEGETAL. SANTIAGO DE CALI.
Rycroft, M. (2014). Vegetable oil as insulating fluid for transformers. Energize, (April), 37–40. Retrieved from http://www.ee.co.za/wp-content/uploads/2014/04/energize-april-14-p-37- 40.pdf
Sagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., & Vandecasteele, C. (2018). Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198(0959–6526), 1443–1458. https://doi.org/10.1016/j.jclepro.2018.07.105
Silva-Ortega, J. I., Candelo-Becerra, J. E., Umaña-Ibañez, S. F., Mejia-Taboada, M. A., & PalacioBonill, A. R. (2016). Power Distribution Transformers using Natural Ester Fluids as Dielectric and Coolant. INGE CUC, 12(2), 79–85. https://doi.org/http://dx.doi.org/10.17981/ingecuc.12.2.2016.08
Silva, W. J. N. da, Lopes, L. W., Macedo, A. E. R. de, Costa, D. B. da, & Almeida, A. A. F. de. (2016). Reduction of Risk Factors in Patients with Behavioral Dysphonia After Vocal Group Therapy. Journal of Voice : Official Journal of the Voice Foundation. https://doi.org/10.1016/j.jvoice.2016.01.007
Stockton, D. P., Bland, J. R., Mcclanahan, T., Wilson, J., Harris, D. L., & Mcshane, P. (2007). NATURAL ESTER TRANSFORMER FLUIDS : SAFETY , RELIABILITY & ENVIRONMENTAL PERFORMANCE, 1–7.
Support, R. (2016). What is viscosity. Retrieved from http://www.rm-support.nl/index.php/expertadvice/item/httprm-supportcomexpert-advicehtml.html
The Coconut Diet. (2016). How is Coconut Oil Produced ? Retrieved from http://www.coconutdiet.com/what_is_virgin_coconut_oil.htm
Unidad de Planeación Minero-Energética. (2019). PROYECCIÓN REGIONAL ENERGÍA ELÉCTRICA Y Revisión Abril 2019, 87. Retrieved from http://www1.upme.gov.co/DemandaEnergetica/Proyeccion_Demanda_Regional_Energia_A br_2019.pdf
UPME. Res. 0536 - 2012, Pub. L. No. 0536–2012 (2012). Colombia.
Vihacencu, M. Ş., Ciuriuc, A., & Dumitran, L. M. (2013). Experimental study of electrical properties of mineral and vegetable transformer oils. UPB Scientific Bulletin, Series C: Electrical Engineering, 75(3), 171–182. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84894199395&partnerID=tZOtx3y1
Villardi, H. G. D., Leal, M. F., De Andrade, P. H. A., Pessoa, F. L. P., & Salgado, A. M. (2017). Study of the production of ethyl esters of soybean industry using waste acid with and without catalyst. Chemical Engineering Transactions, 57, 163–168. https://doi.org/10.3303/CET1757028
Vukovi, D., Jovalekic, M., & Tenbohlen, S. (2012). Comparative Experimental Study of Dielectric Strength of Oil-cellulose Insulation for Mineral and Vegetable-based Oils, 424–428.
Wflo, & Manual, S. Rancidity and Antioxidants (2008).
Wilson, A. C. . (1980). Insulating liquids: their uses, manufacture and properties. ELECTRONICS & POWER, (June), 1980.
Yang, L., Liao, R., Sun, C., Yin, J., & Zhu, M. (2010). Influence of Vegetable Oil on the Thermal Aging Rate of Kraft Paper and its Mechanism, 381–384.
В.С. Ким. (2008). Учебное пособие по профессиональному английскому языку (физика диэлектриков). Tomsk Polytechnic University. Retrieved from http://portal.tpu.ru:7777/departments/otdel/publish/izdaniya_razrabotanye_v_ramkah_IOP/ Tab1/uch_posobie_po_prof_english_zac_0.pdf
Гредина, И. В., Научно-технической, П. В., Ббк, Ш., & Гредина, И. В. (2010). Перевод в научно-технической деятельности (Traducción: Translations into scientific and technical activities). Tomsk Polytechnic University.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Eficiencia Energética y Energías Renovables
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a6b48e3f-d557-40dd-91bc-78240333732c/download
https://repositorio.cuc.edu.co/bitstreams/21a39217-b5a3-4c7b-a8d2-a0335afcea6a/download
https://repositorio.cuc.edu.co/bitstreams/a5bb3bb2-7a89-4585-a36a-568d5a3ee4f5/download
https://repositorio.cuc.edu.co/bitstreams/cae5fa66-ff37-47e1-879c-d9766e5a39e8/download
https://repositorio.cuc.edu.co/bitstreams/7bff8699-62ed-4eee-80db-5e15a3c60349/download
https://repositorio.cuc.edu.co/bitstreams/ebe8ca4e-0296-40fb-9257-e98a91f844c0/download
bitstream.checksum.fl_str_mv f04cb829f246f8c69dd8df9e18183e70
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
8d130ee6e46fdee2b5d55be2cccf6add
8d130ee6e46fdee2b5d55be2cccf6add
e94b02c713a53feb35a00793e058958a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760832486309888
spelling Silva Ortega, Jorge IvánNúñez Álvarez, José RicardoMejía Taboada, Mario Andrés2020-09-05T02:12:07Z2020-09-05T02:12:07Z2020Mario, M. (2020). Estudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7071https://hdl.handle.net/11323/7071Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/New requirements for a better sustainable energy policy around the world are easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. Companies in the energy sector, mainly those in the electricity sector, are working on the implementation of new technologies and strategies to reduce their impact on the environment due to the large areas they cover. One of the main assets are local distribution transformers, these equipment use insulating and refrigerant medium mineral oil, these oils have a negative impact on the environment due to their chemical properties, for this reason one of the suggested solutions is to replace mineral oil by fluids based on natural esters, also known as vegetable oils, which provide better technical and environmental properties compared to mineral oils, making it a safe substitute for mineral oil. Natural esters are based on clean technologies in order to guarantee the proper behavior and operation of transformation equipment. The main goal of the present paper is to present a technical-economic analysis obtained from five years of applications of oil-immersed transformers using natural ester fluids in Colombia. The methodology considers forty-four oil-immersed distribution Transformers, a half use mineral oil and the other side use natural ester, operating under the same load regime. Results evidenced the feasibility of implementing this technology because the costs are very similar, and the reduction of risks and environmental impact is considerable.Los nuevos requisitos para una mejor política energética sostenible en todo el mundo son fáciles de observar, principalmente porque se desarrollan muchos proyectos de energía sostenible en los que la academia trabaja en conjunto con las autoridades y las empresas comerciales tales como las de servicios públicos. Las empresas del sector energético, especialmente las del sector eléctrico, buscan mediante la implementación de nuevas tecnologías y estrategias reducir el impacto que estas generan sobre el medio ambiente debido a las grandes superficies que abarcan. Uno de los principales activos son los transformadores de distribución local. Estos equipos, en su mayoría, utilizan aceite mineral medio aislante y refrigerante generando un impacto negativo sobre el entorno debido a sus propiedades químicas. Por esta razón, una de las soluciones sugeridas es reemplazar el aceite mineral por fluidos a base de ésteres naturales, conocidos también como aceites vegetales, pues proporcionan mejores propiedades técnicas y medioambientales, en comparación con los aceites minerales, convirtiéndolo en un sustituto confiable. Los ésteres naturales se basan en tecnologías limpias con el propósito de garantizar el adecuado comportamiento y funcionamiento de los equipos de transformación. El objetivo principal de esta investigación es presentar un análisis técnico-económico obtenido de cinco años de aplicaciones sobre transformadores sumergidos en aceite que usan fluidos de éster natural en Colombia. La metodología examina cuarenta y cuatro transformadores de distribución sumergidos en aceite; la mitad usa aceite mineral, y la otra mitad usa éster natural, operando bajo el mismo régimen de carga. Los resultados evidenciaron la factibilidad de implementar esta tecnología porque los costos son muy similares y la reducción de riesgos e impacto ambiental es considerable.Mejía Taboada, Mario AndrésspaCorporación Universidad de la CostaMaestría en Eficiencia Energética y Energías RenovablesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Technical-economicTransformersElectrical networksHot climatesTécnico-económicaTrasformadoresRedes eléctricasClimas cálidosTécnico-económicaTrasformadoresRedes eléctricasClimas cálidosEstudio de factibilidad técnico-económica para la implementación de transformadores de distribución con aceite vegetal en redes eléctricas situadas en climas cálidos.Trabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAl-ammar, E. A., & Qureshi, M. I. (2009). Probing the Use of Green Insulating Oils in Transformers Based on Their Statistical Breakdown Data.Aluyor, E. O., Obahiagbon, K. O., & Ori-jesu, M. (2009). Biodegradation of vegetable oils : A review. Solutions, 4(6), 543–548.Arfaoui, A., Polidori, G., Taiar, R., & Popa, C. (2012). Infrared Thermography in Sports Activity. In Infrared Thermography (pp. 141–168). https://doi.org/10.5772/1353Arief, Y. Z., Ahmad, M. H., Lau, K. Y., & Oil, A. T. (2014). A Comparative Study on the Effect of Electrical Ageing on Electrical Properties of Palm Fatty Acid Ester ( PFAE ) and FR3 as Dielectric Materials, 128–133.Asano, R., & Page, S. A. (2014). Reducing Environmental Impact and Improving Safety and Performance of Power Transformers With Natural Ester Dielectric Insulating Fluids, 50(1), 134–141.ASTM. D6871-03: Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, 10 ASTM § (2003). https://doi.org/10.1520/D6871-03R08.2ASTM. (2010). D2864-10e1: Standard Terminology Relating to Electrical Insulating Liquids and Gases, (July), 1–9.ASTM. D2440-13: Standard Test Method for Oxidation Stability of Mineral Insulating Oil (2013). https://doi.org/10.1520/D2440-13.2ASTM. D2112-16: Standard Test Method for Oxidation Stability of Inhibited Mineral Insulating Oil (2016). https://doi.org/10.1520/D2112-15.2ASTM. D3487-16: Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus, 10 § (2016). https://doi.org/10.1520/D3487-09.2Bashi, S. M., Abdullahi, U. U., Yunus, R., & Nordin, A. (2006). Use of Natural Vegetable Oils as Alternative Dielectric Transformer Coolants. The Institution of Engineers, Malaysia, 67(2), 4–9.Bertrand, Y., & Hoang, L. C. (2003a). Vegetal oils as substitute for mineral oils. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), 2, 491–494. https://doi.org/10.1109/ICPADM.2003.1218460Bertrand, Y., & Hoang, L. C. (2003b). Vegetal Oils as Substitute for Mineral Oils. In Proceedings of the 7th Intemational Conference on Properties and Applications of Dielectric Materials June (pp. 491–494). Nagoya.Bertrand, Y, & Hoang, L. C. (2004). D1-202 VEGETABLE OILS AS SUBSTITUTE FOR MINERAL INSULATING OILS IN MEDIUM-VOLTAGE EQUIPMENTS, 1–6.Bertrand, Yves, & Lauzevis, P. (2013). Development of a Low Viscosity Insulating Liquid Based on natural Esters for Distributions Transformers. In 22nd International Conference on Electricity Distribution (pp. 10–13). Stockholm.Boss, P, Sa, A. B. B. S., Oommen, T. V, & T, A. B. B. P. (1999). NEW INSULATING FLUIDS FOR TRANSFORMERS BASED ON BIODEGRADABLE HIGH OLEIC VEGETABLE OIL A N D ESTER FLUID.Boss, Pierre, Sc, C., & The, I. (2000). Insulating fluids for power transformers, 1–8.brettis. (2017). Tutoriales Lubricación. Módulo 8: Transformadores. Madrid, España: BRETTIS. Retrieved from http://www.brettis.com/Tutorial/08Transformadores.pdfCaballero, P., Pizarro, K., Silva, J., & Mejía, M. (2017). Análisis Comparativo De Los Materiales Utilizados En Transformadores De Distribución Sumergidos En Aceite Vegetal. Universidad de la Costa.Cannon, G. S., & Kotowskl, J. A. (2002). US 6,340,658 B1. United States. Retrieved from http://www.google.com/patents/US6340658Cargill. (2013). EnvirotempTM FR3TM Fluid. R2020 Reference Data.Chistyakov, A. V., Tsodikov, M. V., Zharova, P. A., Kriventsov, V. V., Corbetta, M., & Manenti, F. (2017). The direct hydrodeoxygenation of vegetable oil over Pt-Sn/Al2O3 catalysts. Chemical Engineering Transactions, 57, 871–876. https://doi.org/10.3303/CET1757146CIGRE working group A2-35. (2010). Experiences in Service with New Insulating Liquids. United Kingdom: Zhongdong Wang (UK). Retrieved from http://static.mimaterials.com/midel/documents/sales/New_Experiences_in_Service_with_N ew_Insulating_Liquids.pdfCiuriuc, A., Vihacencu, M. S., Dumitran, L. M., & Notingher, P. V. (2012). Comparative Study on Power Transformers Vegetable and Mineral Oil Ageing. IEEE Explore, 12, 1–6. https://doi.org/10.1109/ICATE.2012.6403401Colombia, C. De. (2014). LEY 1715 Mayo de 2014. Presidencia de la Republica. Retrieved from http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdfCommittee, T., Power, I., & Society, E. (2008). IEEE Std C57.147TM-2008, IEEE Guide for Acceptance and Maintenance of Natural Ester Fluids in Transformers.Cotton, I. (2007). Dissolved Gas Analysis of Alternative, 23(5), 5–14.Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz., A., & Carcedo, J. (2015). Thermal Analysis of Transformers Insulation Based on Vegetable Esters. In Electrical Insulation Conference (EIC), 2015 IEEE (pp. 7–10). https://doi.org/10.1109/ICACACT.2014.7223488Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz, A., & Carcedo, J. (2015). Thermal analysis of transformers insulation based on vegetable esters. 33rd Electrical Insulation Conference, EIC 2015, (June), 606–609. https://doi.org/10.1109/ICACACT.2014.7223488Discussion, P., Hopkinson, P., Fellow, I., Panel, O., Dix, P. L., Ieee, M., … Moore, H. R. (2009). Progress Report On Natural Esters For Distribution And Power Transformers, 3–5.Divakaran, D. (2012). INVESTIGATION OF LIGHTNING IMPULSE VOLTAGE CHARACTERISTICS AND OTHER THERMO-PHYSICAL CHARACTERISTICS OF VEGETABLE OILS FOR POWER APPARATUS APPLICATIONS, 28–31.Du, B., Li, J., Wang, B., Xiang, J., & Zhang, Z. (2013). Influence of Water Content on the Electrical Properties of Insulating Vegetable Oil-Based Nanofluids, (June), 49–51.Dumitran, L. M. (2013). Thermal Ageing Effects on the Dielectr ic Properties and Moisture Content of Vegetable and Mineral Oil Used In Power Transformers.Edf, R., France, D., Lauzevis, P., & France, E. (2013). 22 nd International Conference on Electricity Distribution Paper 0382 DEVELOPMENT OF A LOW VISCOSITY INSULATING LIQUID BASED ON NATURAL ESTERS FOR DISTRIBUTION TRANSFORMERS Chemistry of natural esters , triglycerides and 22 nd International Conference on , (0382), 10–13.EEAA., & EPAP. (2002). Inspection Manual Oil Oil, Soap and Detergents Industry, (June).EPA. (1998). OPPTS 835.3100. Aerobic Aquatic Biodegradation. Fate, Transport and Transformation Test Guidelines. (Thomas A. Edison Technical Center, Ed.). Franksville (USA): Cooper Power Systems.Fernando-Navas, D., Cadavid-Ramírez, H., & Echeverry-Ibarra, D. F. (2012). Aplicación del aceite dieléctrico de origen vegetal en transformadores eléctricos. REDALYC, Vol. 16, n, 201– 223.Fofana, I. (2013). 50 Years in the Development of Insulating Liquids, 29(5).Fong, I. A., & Ruiz, A. T. De. (n.d.). El petróleo y su proceso de refinación. Universidad Tecnológic de Panamá. Retrieved from http://biblioteca.unmsm.edu.pe/redlieds/proyecto/publicacioneselectro/monografias/El petróleo y su proceso de refinación.pdfGasser, H. P., Krause, C., Lashbrook, M., & Martin, R. (2011). Aging of Pressboard in Different Insulating Liquids.Ghani, S. A., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Bakar, N. A., & Talib, M. A. (2018). Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electric Power Systems Research, 163, 655–667. https://doi.org/https://doi.org/10.1016/j.epsr.2017.10.008GlobalTox International Consultants. (1999). Final Report: Acute Trout Toxicity Testing for Two Envirotemp FR3 Formulations. Guelph, ON, Canada.Guo, P., Liao, R., Hao, J., Ma, Z., & Yang, L. (2012). Research on the Temperature Dielectric Spectrum of Vegetable Oil , Mineral Oil and Their Relevant Oil- impregnated Papers, 1–4.Han, J., Qiu, W., Wang, W., Cao, H., Yao, D., & Preparation, A. (2012). Application of Insulating Camellia Oil in High Fire Resistance Transformer, 1–4.Hemmer, M., Badent, R., & Leibfried, T. (2003). Electrical properties of vegetable oilimpregnated paper insulation. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 60–63. https://doi.org/10.1109/CEIDP.2003.1254794Hernandez-Herrera, H., Silva-Ortega, J. I., Mejia-Taboada, M., Diaz Jacome, A., & TorregrozaRosas, M. (2019). Natural ester fluids applications in transformers as a sustainable dielectric and coolant. AIP Conference Proceedings, 2123(1), 20049. https://doi.org/10.1063/1.5116976Herrera, J. C., Chamorro, C. R., & Martín, M. C. (2015). Experimental analysis of performance, greenhouse gas emissions and economic parameters for two cooling systems in a public administration building. Energy and Buildings, 108, 145–155. https://doi.org/10.1016/j.enbuild.2015.09.007Hosier, I. L., Vaughan, A. S., & Montjen, F. A. (2006). Ageing of biodegradable oils for high voltage insulation systems, 481–484.Hosierl, I. L., Vaughan, A. ., Sutton, S. ., & Davis, F. . (2005). Chemical and Physical Properties of Aged Dodecylbenzene Insulating Oil, 225–228.Hrkac, M., Papageorgiou, P., Kosmoglou, I., & Miatto, G. (2010). BIOTEMP ® Transformer Technology for Innovative Compact Substation, (November), 1–6.IEC. IEC 61039-08: General classification of insulating liquids, Pub. L. No. CEI/IEC/TS 60076- 14:2004, 1 (2009).IEC. IEC 60076-2: Power transformers – Part 2: Temperature rise for liquid-immersed transformers (2011).Ilyas, M., & Sample, A. (2008). Effects of temperature on Dielectric properties of Rhicinnus Oils as insulating liquid, 0–3.Jeong, J., An, J., & Huh, C. (2012). Accelerated Aging Effects of Mineral and Vegetable Transformer Oils on Medium Voltage Power Transformers, 156–161.Kanno, M., Oota, N., Suzuki, T., & Ishii, T. (2001). Changes in ECT and Dielectric Dissipation Factor of Insulating Oils Due to Aging in Oxygen, 8(6), 1048–1053.Kano, T., Suzuki, T., Oba, R., & Kanetani, A. (2012). Study on the Oxidative Stability of Palm Fatty Acid Ester ( PFAE ) as an Insulating Oil for Transformers, 22–25.Kanoh, T., Iwabuchi, H., Hoshida, Y., Yamada, J., Hikosaka, T., Yamazaki, A., … Corporation, L. (2008). Analyses of Electro-Chemical Characteristics of Palm Fatty Acid Esters as Insulating Oil, (1), 2–5.Khayam, V., Susilo, A., Muslim, J., & Hikita, M. (2014). Partial Discharge Characteristics and Dissolved Gas Analysis of Vegetable Oil, 330–333.Kojima, H., & Hayakawa, N. (2012). Charge Behavior in Palm Fatty Acid Ester Oil ( PFAE ) / Pressboard Composite Insulation System under Voltage Application, (1), 419–423.Lewand, L. R. (2005). Laboratory Testing of Natural Ester Dielectric Liquids.Li, J., Zhang, Z., Grzybowski, S., & Liu, Y. (2012). Characteristics of Moisture Diffusion in Vegetable Oil-paper Insulation, 1650–1656.Liao, Rui-jin, Xiang, B., Yang, L., & Tang, C. (2008). Study on the Thermal Aging Characteristics and Bond, 291–296.Liao, Ruijin, Hao, J., Chen, G., Ma, Z., & Yang, L. (2011). A comparative study of physicochemical, dielectric and thermal properties of pressboard insulation impregnated with natural ester and mineral oil. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1626–1637. https://doi.org/10.1109/TDEI.2011.6032833Margalló Gasco, I. (2012). Diagnóstico del consumo de vida de un transformador a través del análisis de compuestos furánicos. Universidad Carlos III de Madrid., 1–70.Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006a). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By. Euro TechCon, 4–23.Martin, D., Khan, I., Dai, J., & Wang, Z. D. (2006b). An Overview of the Suitability of Vegetable Oil Dielectrics for Use in Large Power Transformers By, 4–23.Martin, D., & Wang, Z. D. (2006). A Comparative Study of the Impact of Moisture on the Dielectric Capability of Esters for Large Power Transformers, 409–412.Marulanda, a. R., Artigas, M. a., Gavidia, a., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer. 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA, 1–6. https://doi.org/10.1109/TDC-LA.2008.4641781Marulanda, A. R., Artigas, M. A., Gavidia, A., Labarca, F., & Paz, N. (2008). Study of the vegetal oil as a substitute for mineral oils in distribution transformer, 1–6.Mcshane, C. P. (1976a). Natural and Synthetic Ester Dielectric Fluids : Their Relative Environmental , Fire Safety , and Electrical Performance.Mcshane, C. P. (1976b). New Dielectric Coolant Concepts for Distribution and Power Transformers, 55–62.Mcshane, C. P. (2001). Relative Properties of the New Combustion-Resistant Vegetable-Oil- Based Dielectric Coolants for Distribution and Power Transformers, 37(4), 1132–1139.McShane, C. P. (2002). Vegetable-oil-based dielectric coolants. IEEE Industry Applications Magazine, 8(3), 34–41. https://doi.org/10.1109/2943.999611Mcshane, C. P., Corkran, J., Ieee, M., Rapp, K., Luksich, J., Since, A., & Power, C. (n.d.). Natural Ester Dielectric Fluid Development, 1–5.Mcshane, C. P., & Luksich, J. (1999). Fire Resistant Natural Ester Dielectric Fluid and Novel Insulation System for Its Use, 890–894.McShane, C. P., Rapp, K. J., Corkran, J. L., Gauger, G. a, & Luksich, J. (2002). Aging of Kraft Paper in Natural Ester Dielectric Fluid ester oil Aging Time ( hours ) Degree of Polymerization. Proceedings of 14th International Conference on Dielectric Liquids, (Icdl), 173–177.Mogozine, A. (2000). New safety dielectric coolants for distribution and power transformers. IEEE Industry Applications Magazine, 24–32. https://doi.org/10.1109/2943.838037Mohammed, L. S., Bakrutheen, M., Willjuice, M., & Karthik, M. (2015). STUDIES ON CRITICAL PROPERTIES OF VEGETABLE OIL BASED INSULATING FLUIDS, 1–4.Muhamad, N A, Phung, B. T., Blackburn, T. R., & Lai, K. X. (2008). Dissolved Gas Analysis of Faults in Bio- degradable Oil Transformer Insulating Systems.Muhamad, Nor Asiah, Phung, B. T., & Blackburn, T. R. (2008). Dissolved Gas Analysis ( DGA ) of Ar c ing Faults in Biodegradable Oil Insulation Systems.Murdiya, F. (2015). RESEARCH ON CREEPING DISCHARGE PHENOMENA IN INSULATING OILS : VEGETABLE-BASED OILS AS SUBSTITUTE OF.Murphy, J. R., Member, S., & Graham, J. (2009). Distribution Utility Experience with Natural Ester Dielectric Coolants, 9–11.OECD Guidelines, O., & Development Economic Cooperation and. Fish, Acute Toxicity Test, OECD 203, Effects on Biotic Systems.pdf (1992).Oommen, T. V., Claiborne, C. C., Walsh, E. J., & Baker, J. P. (2000). A New Vegetable Oil Based Transformer Fluid: Development and Verification. In Conference on Electrical Insulation and Dielectric Phenomena (pp. 308–312).Oommen, T V. (1995). Vegetable Oils for Liquid-Filled Transformers. Electrical Insulation Magazine, 18(1), 6–11.Oommen, T V, Claiborne, C. C., Walsh, E. J., & Nc, R. (1998). Introduction of a New Fully Biodegradable Dielectric Fluid, 1–4.Oommen, Thottath V, & Clair borne, C. C. (1999). 5,949,017. United States. Retrieved from http://www.google.com/patents/US5949017Patrick McShane, C., Corkran, J., Rapp, K., & Luksich, J. (2006). Natural ester dielectric fluid development. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 18–22. https://doi.org/10.1109/TDC.2006.1668445Power, C. (2003). Aging of paper insulation retrofdled with natural ester dielectric fluid.Rafiq, M., Lv, Y. Z., Zhou, Y., Ma, K. B., Wang, W., Li, C. R., & Wang, Q. (2015). Use of vegetable oils as transformer oils – a review. Renewable and Sustainable Energy Reviews, 52, 308–324. https://doi.org/10.1016/j.rser.2015.07.032Rapp, K. J. (1999). Behavior of Ester Dielectric Fluids Near the Pour Point, 5–8.Rebolledo Lozano, G. A. (2014). Evaluación De La Viabilidad Técnica Y Económica De La Utilización Del Aceite Dieléctrico Vegetal Como Sustituyente Del Aceite Dieléctrico Mineral En Transformadores De Distribución Nuevos Y Usados En Las Empresas Municipales De Cali. Universidad Autónoma de Occidente.Related, S., The, T. O., Of, T., Of, D., & Chemicals, O. (2003). INTRODUCTION TO THE OECD GUIDELINES FOR TESTING OF CHEMICALS SECTION 3, (July), 1–12.Riveros D., C. F. (2012). PRUEBAS DIELÉCTRICAS A TRANSFORMADORES DE DISTRIBUCION SUMERGIDOS EN ACEITE DE ORIGEN VEGETAL. SANTIAGO DE CALI.Rycroft, M. (2014). Vegetable oil as insulating fluid for transformers. Energize, (April), 37–40. Retrieved from http://www.ee.co.za/wp-content/uploads/2014/04/energize-april-14-p-37- 40.pdfSagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., & Vandecasteele, C. (2018). Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198(0959–6526), 1443–1458. https://doi.org/10.1016/j.jclepro.2018.07.105Silva-Ortega, J. I., Candelo-Becerra, J. E., Umaña-Ibañez, S. F., Mejia-Taboada, M. A., & PalacioBonill, A. R. (2016). Power Distribution Transformers using Natural Ester Fluids as Dielectric and Coolant. INGE CUC, 12(2), 79–85. https://doi.org/http://dx.doi.org/10.17981/ingecuc.12.2.2016.08Silva, W. J. N. da, Lopes, L. W., Macedo, A. E. R. de, Costa, D. B. da, & Almeida, A. A. F. de. (2016). Reduction of Risk Factors in Patients with Behavioral Dysphonia After Vocal Group Therapy. Journal of Voice : Official Journal of the Voice Foundation. https://doi.org/10.1016/j.jvoice.2016.01.007Stockton, D. P., Bland, J. R., Mcclanahan, T., Wilson, J., Harris, D. L., & Mcshane, P. (2007). NATURAL ESTER TRANSFORMER FLUIDS : SAFETY , RELIABILITY & ENVIRONMENTAL PERFORMANCE, 1–7.Support, R. (2016). What is viscosity. Retrieved from http://www.rm-support.nl/index.php/expertadvice/item/httprm-supportcomexpert-advicehtml.htmlThe Coconut Diet. (2016). How is Coconut Oil Produced ? Retrieved from http://www.coconutdiet.com/what_is_virgin_coconut_oil.htmUnidad de Planeación Minero-Energética. (2019). PROYECCIÓN REGIONAL ENERGÍA ELÉCTRICA Y Revisión Abril 2019, 87. Retrieved from http://www1.upme.gov.co/DemandaEnergetica/Proyeccion_Demanda_Regional_Energia_A br_2019.pdfUPME. Res. 0536 - 2012, Pub. L. No. 0536–2012 (2012). Colombia.Vihacencu, M. Ş., Ciuriuc, A., & Dumitran, L. M. (2013). Experimental study of electrical properties of mineral and vegetable transformer oils. UPB Scientific Bulletin, Series C: Electrical Engineering, 75(3), 171–182. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84894199395&partnerID=tZOtx3y1Villardi, H. G. D., Leal, M. F., De Andrade, P. H. A., Pessoa, F. L. P., & Salgado, A. M. (2017). Study of the production of ethyl esters of soybean industry using waste acid with and without catalyst. Chemical Engineering Transactions, 57, 163–168. https://doi.org/10.3303/CET1757028Vukovi, D., Jovalekic, M., & Tenbohlen, S. (2012). Comparative Experimental Study of Dielectric Strength of Oil-cellulose Insulation for Mineral and Vegetable-based Oils, 424–428.Wflo, & Manual, S. Rancidity and Antioxidants (2008).Wilson, A. C. . (1980). Insulating liquids: their uses, manufacture and properties. ELECTRONICS & POWER, (June), 1980.Yang, L., Liao, R., Sun, C., Yin, J., & Zhu, M. (2010). Influence of Vegetable Oil on the Thermal Aging Rate of Kraft Paper and its Mechanism, 381–384.В.С. Ким. (2008). Учебное пособие по профессиональному английскому языку (физика диэлектриков). Tomsk Polytechnic University. Retrieved from http://portal.tpu.ru:7777/departments/otdel/publish/izdaniya_razrabotanye_v_ramkah_IOP/ Tab1/uch_posobie_po_prof_english_zac_0.pdfГредина, И. В., Научно-технической, П. В., Ббк, Ш., & Гредина, И. В. (2010). Перевод в научно-технической деятельности (Traducción: Translations into scientific and technical activities). Tomsk Polytechnic University.PublicationORIGINALESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdfESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdfapplication/pdf952738https://repositorio.cuc.edu.co/bitstreams/a6b48e3f-d557-40dd-91bc-78240333732c/downloadf04cb829f246f8c69dd8df9e18183e70MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/21a39217-b5a3-4c7b-a8d2-a0335afcea6a/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a5bb3bb2-7a89-4585-a36a-568d5a3ee4f5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgimage/jpeg27753https://repositorio.cuc.edu.co/bitstreams/cae5fa66-ff37-47e1-879c-d9766e5a39e8/download8d130ee6e46fdee2b5d55be2cccf6addMD54THUMBNAILESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.jpgimage/jpeg27753https://repositorio.cuc.edu.co/bitstreams/7bff8699-62ed-4eee-80db-5e15a3c60349/download8d130ee6e46fdee2b5d55be2cccf6addMD54TEXTESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.txtESTUDIO DE FACTIBILIDAD TÉCNICO-ECONÓMICA PARA LA IMPLEMENTACIÓN DE TRANSFORMADORES DE DISTRIBUCIÓN.pdf.txttext/plain136144https://repositorio.cuc.edu.co/bitstreams/ebe8ca4e-0296-40fb-9257-e98a91f844c0/downloade94b02c713a53feb35a00793e058958aMD5511323/7071oai:repositorio.cuc.edu.co:11323/70712024-09-17 14:07:20.215http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==