Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer
Recent ecotoxicological studies have indicated mercury (Hg) contamination in aquatic ecosystems in the Amazon Basin. Although Hg contamination can be associated with small-scale gold mining, the soils of the Amazon region have naturally high Hg concentrations, and can be transported to aquatic ecosy...
- Autores:
-
Nunes Neto, Osvaldo Gato
Dias, Salatiel Ribeiro
Albuquerque, Fábio Edir Amaral
Miranda, Marta
Lopez Alonso, Marta
Oliveira, Ricardo Bezerra
Pinto, Diana
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13482
- Acceso en línea:
- https://hdl.handle.net/11323/13482
https://repositorio.cuc.edu.co/
- Palabra clave:
- Mercury
Fish
DMA-80
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_8b03c03371a2d9597857351717e87e9b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13482 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
title |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
spellingShingle |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer Mercury Fish DMA-80 |
title_short |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
title_full |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
title_fullStr |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
title_full_unstemmed |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
title_sort |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer |
dc.creator.fl_str_mv |
Nunes Neto, Osvaldo Gato Dias, Salatiel Ribeiro Albuquerque, Fábio Edir Amaral Miranda, Marta Lopez Alonso, Marta Oliveira, Ricardo Bezerra Pinto, Diana |
dc.contributor.author.none.fl_str_mv |
Nunes Neto, Osvaldo Gato Dias, Salatiel Ribeiro Albuquerque, Fábio Edir Amaral Miranda, Marta Lopez Alonso, Marta Oliveira, Ricardo Bezerra Pinto, Diana |
dc.subject.proposal.eng.fl_str_mv |
Mercury Fish DMA-80 |
topic |
Mercury Fish DMA-80 |
description |
Recent ecotoxicological studies have indicated mercury (Hg) contamination in aquatic ecosystems in the Amazon Basin. Although Hg contamination can be associated with small-scale gold mining, the soils of the Amazon region have naturally high Hg concentrations, and can be transported to aquatic ecosystems via deforestation and mining activities. Biomagnification of Hg can pose risks to the local human population; therefore, its concentration in fish tissues must be monitored consistently. Fast and sensitive Hg determination is required for continuously monitoring ecosystems impacted by mineral exploration. The direct mercury analyzer (DMA-80) is widely used for determining total Hg levels in tissue samples; it is fast and cost-effective, without requiring sample preparation. Here, we determined the sensitivity and specificity of Hg detection accomplished using DMA-80, and whether these results are reliable compared to those obtained using Inductively Coupled Plasma Mass Spectrometer (ICP-MS), which is the gold standard. We obtained 106 paired dried samples of muscle tissue from fish species occupying different trophic levels in the Lower Amazon region, and analyzed them using both equipment (DMA-80 and ICP-MS). The results obtained using DMA-80 had an overall Hg mean of 1.90 ± 0.18 mg/kg which was higher (p < 0.05) than the mean of those obtained using ICP-MS (1.55 ± 0.13 mg/kg). Linear regression analysis comparing the Hg levels obtained using both devices was within the 95% prediction interval, and a high coefficient of correlation showed agreement between the devices (r = 0.979; 0.069 to 0.986, 95% CI). Bland-Altman analysis showed that DMA-80 had a positive bias of 6.5% in relation to ICP-MS, which is more evident in samples with high Hg concentrations. DMA-80 was efficient in determining whether the Hg levels exceeded the maximum allowed levels required by the European Union, USA, and Brazil, showing a specificity and sensitivity of above 95%. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-23T12:43:40Z |
dc.date.available.none.fl_str_mv |
2024-10-23T12:43:40Z |
dc.date.issued.none.fl_str_mv |
2024-01-09 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer, Chemosphere, Volume 351, 2024, 141146, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2024.141146. |
dc.identifier.issn.none.fl_str_mv |
0045-6535 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13482 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.chemosphere.2024.141146 |
dc.identifier.eissn.none.fl_str_mv |
1879-1298 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer, Chemosphere, Volume 351, 2024, 141146, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2024.141146. 0045-6535 10.1016/j.chemosphere.2024.141146 1879-1298 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13482 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Chemosphere |
dc.relation.references.none.fl_str_mv |
Albuquerque, F.E.A., Herrero-Latorre, C., Miranda, M., Barrˆeto Júnior, R.A., Oliveira, F. L.C., Sucupira, M.C.A., Ortolani, E.L., Minervino, A.H.H., Lopez-Alonso, ´ M., 2021. Fish tissues for biomonitoring toxic and essential trace elements in the Lower Amazon. Environ. Pollut. 283, 117024 https://doi.org/10.1016/J. ENVPOL.2021.117024. Albuquerque, F.E.A., Minervino, A.H.H., Miranda, M., Herrero-Latorre, C., Barrˆeto Júnior, R.A., Oliveira, F.L.C., Sucupira, M.C.A., Ortolani, E.L., Lopez-Alonso, ´ M., 2020. Toxic and essential trace element concentrations in fish species in the Lower Amazon, Brazil. Sci. Total Environ. 732, 138983 https://doi.org/10.1016/j. scitotenv.2020.138983 Ansel, M.A., 2021. Hg, As, Cr, Sn, Ni, and Se concentrations in the muscle of little tunny (Euthynnus alletteratus) from the western Algerian stock. Biol. Trace Elem. Res. 199, 3898–3904. https://doi.org/10.1007/s12011-020-02514-z ANVISA, 2013. Agˆencia Nacional de Vigilˆ ancia Sanit´ aria. Resoluçao ˜ - RDC Nº 42. Available at: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/rdc0042_ 29_08_2013.html. Arias, A.R.L., Buss, D.F., Alburquerque, C., Inacio, ´ A.F., Freire, M.M., Egler, M., Mugnai, R., Baptista, D.F., 2007. Use of bioindicators for assessing and monitoring pesticides contamination in streams and rivers. Ciˆencia Saúde Coletiva 12 (1), 61–72. Bandeira Junior, C.M., Carvalho, L.G., 2023. Transformations in artisanal and small-scale gold mining work and production structures in the tapajos ´ region of Brazil’s amazon. Resour. Pol. 83, 103597 https://doi.org/10.1016/j.resourpol.2023.103597. Behrooz, R.D., Poma, G., 2021. Evaluation of mercury contamination in Iranian Wild Cats through hair analysis. Biol. Trace Elem. Res. 199, 166–172. https://doi.org/ 10.1007/s12011-020-02148-1. Bourdineaud, J.P., Durrieu, G., Sarrazin, S.L.F., da Silva, W.C.R., Mourao, ˜ R.H.V., de Oliveira, R.B., 2015. Mercurial exposure of residents of Santar´em and Oriximina ´ cities (Par´ a, Brazil) through fish consumption. Environ. Sci. Pollut. Control Ser. 22, 12150–12161. https://doi.org/10.1007/s11356-015-4502-y. Buck, D.G., Evers, D.C., Adams, E., DiGangi, J., Beeler, B., Samanek, ´ J., Petrlik, J., Turnquist, M.A., Speranskaya, O., Regan, K., Johnson, S., 2019. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966. https://doi.org/10.1016/j. scitotenv.2019.06.159 Bussan, D.D., Sessums, R.F., Cizdziel, J.V., 2015. Direct mercury analysis in environmental solids by ICP-MS with on-line sample ashing and mercury preconcentration using a direct mercury analyzer. J. Anal. Atomic Spectrom. 30 (7), 1668–1672. https://doi.org/10.1039/C5JA00087D. Carbonell, G., Bravo, J.C., Fernandez, ´ C., Tarazona, J.V., 2009. A new method for total mercury and methyl mercury analysis in muscle of seawater fish. Bull. Environ. Contam. Toxicol. 83, 210–213. https://doi.org/10.1007/s00128-009-9720-x Castro-Rendon, ´ R.D., Calle-Moran, ´ M.D., García-Ar´evalo, I., Ordiano-Flores, A., Galvan- ´ Magana, ˜ F., 2022. Mercury and cadmium concentrations in muscle tissue of the Blue Shark (Prionace glauca) in the Central Eastern Pacific ocean. Biol. Trace Elem. Res. 200, 3400–3411. https://doi.org/10.1007/s12011-021-02932-7. Costa, C.R., Olivi, P., Botta, C.M.R., Espindola, E.L.G., 2008. A toxicidade em ambientes aqu´ aticos: discuss˜ ao e m´etodos de avaliaçao. ˜ Quim. Nova 31, 1820–1830. https:// doi.org/10.1002/ajmg.1320460106. De Muynck, D., Cloquet, C., Vanhaecke, F., 2008. Development of a new method for Pb isotopic analysis of archaeological artefacts using single-collector ICP-dynamic reaction cell-MS. J. Anal. Atomic Spectrom. 23 (1), 62–71. https://doi.org/10.1039/ b709461b. De Queiroz, J.V., Vieira, J.C.S., da Cunha Bataglioli, I., Bittarello, A.C., Braga, C.P., de Oliveira, G., do Carmo Federici Padilha, C., de Magalh˜ aes Padilha, P., 2018. Total mercury determination in muscle and liver tissue samples from Brazilian amazon fish using slurry sampling. Biol. Trace Elem. Res. 184, 517–522. https://doi.org/ 10.1007/s12011-017-1212-y. Di Bella, G., Bua, G.D., Fede, M.R., Mottese, A.F., Potortì, A.G., Cicero, N., Benameur, Q., Dugo, G., Lo Turco, V., 2020. Potentially toxic elements in Xiphias gladius from Mediterranean Sea and risks related to human consumption. Mar. Pollut. Bull. 159, 111512 https://doi.org/10.1016/j.marpolbul.2020.111512. Di Bella, G., Russo, E., Dugo, G., 2017. Heavy metals and persistent organic pollutants in marine organisms from two Sicilian protected areas: Strait of Messina and Cape Peloro Lakes. Curr. Org. Chem. 21, 387–394. https://doi.org/10.2174/ 1385272820666161017164744. Di Bella, G., Tardugno, R., Cicero, N., 2018. Investigation of Hg content by a rapid analytical technique in Mediterranean Pelagic fishes. Separations 5, 51. https://doi. org/10.3390/separations5040051. EFSA, 2004. Opinion of the Scientific Panel on contaminants in the food chain on a request from the commission related to mercury and methylmercury in food. EFSA J. 34, 1–14. https://doi.org/10.2903/J.EFSA.2004.34. Emenike, E.C., Iwuozor, K.O., Anidiobi, S.U., 2022. Heavy metal pollution in aquaculture: sources, impacts and Mitigation techniques. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-021-03037-x Filho, A.M.L., Campos, R.C., Goes, V.A., Pinto, R.A.G., 1999. Determination of mercury losses in fish after cooking. Food Sci. Technol. 19 (1) https://doi.org/10.1590/ S0101-20611999000100006. Gomes, K.D., Custodio, ´ L.G., Bonifacio, ´ R.L., 2013. Validaç˜ ao de metodologia de an´ alise de mercúrio total em ´ aguas, solos e sedimentos, conforme m´etodo EPA 7473, pp. 2–3. Gonzalez, D.J.X., Arain, A., Fernandez, L.E., 2019. Mercury exposure, risk factors, and perceptions among women of childbearing age in an artisanal gold mining region of the Peruvian Amazon. Environ. Res. 179 (Pt A), 108786. Gonzalez, S., Paredes, M., Petrlik, J., 2013. A. SGM and LSGM site: Paso Yobai ´ in Paraguay ASGM and LSGM site: Paso Yob´ ai in Paraguay. Asuncion, alter Vida. In: Arnika Association and IPEN: 7. https://doi.org/10.13140/RG.2.2.12943.69282. Hacon, S. de S., Oliveira-Da-costa, M., Gama, C. de S., Ferreira, R., Basta, P.C., Schramm, A., Yokota, D., 2020. Mercury exposure through fish consumption in traditional communities in the Brazilian Northern Amazon. Int. J. Environ. Res. Publ. Health 17, 1–15. https://doi.org/10.3390/ijerph17155269. Han, E.S., Goleman, D., Boyatzis, R., Mckee, A., 2019. The determination of total mercury in fish & biological tissues using Direct Analysis for Mercury Detection. J. Chem. Inf. Model. 53, 1689–1699. Jebara, A., Lo Turco, V., Faggio, C., Licata, P., Nava, V., Potortì, A.G., Crupi, R., Mansour, H.B., Di Bella, G., 2021. Monitoring of environmental Hg occurrence in Tunisian Coastal areas. Int. J. Environ. Res. Publ. Health 18, 5202. https://doi.org/ 10.3390/ijerph18105202. Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., Korrick, S., 2012. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 120 (6), 799–806. Kasper, D., Forsberg, B.R., De Almeida, R., Bastos, W.R., Malm, O., 2015. Metodologias de coleta, preservaç˜ ao e armazenamento de amostras de agua ´ para an´ alise de mercúrio – Uma revis˜ ao. Quim. Nova 38 (3), 410–418. https://doi.org/10.5935/ 0100-4042.20150020. Lima, A.P.S., Sarkis Müller, R.C., de Souza Sarkis, J.E., Nahum Alves, C., da Silva Bentes, M.H., Brabo, E., de Oliveira Santos, E., 2000. Mercury contamination in fish from Santarem, para, Brazil. Environ. Res. 83, 117–122. https://doi.org/10.1006/ enrs.2000.4051. Lobo, F., Costa, M., Novo, E., Telmer, K., 2016. Distribution of artisanal and small-scale gold mining in the tapajos ´ river basin (Brazilian Amazon) over the past 40 Years and relationship with water siltation. Remote Sens. (Basel) 8, 579. https://doi.org/ 10.3390/rs8070579. Luna, D., Miranda, M., Minervino, A.H.H., Herrero-Latorre, C., Lopez-Alonso, ´ M., Pineiro, ˜ V., 2019. Validation of a simple sample preparation method for multielement analysis of bovine serum. PLoS One 14, e0211859. https://doi.org/ 10.1371/journal.pone.0211859. Micaroni, R.C., da, C.M., Bueno, M.I.M.S., Jardim, W. de F., 2000. Compostos de mercúrio. Revisao ˜ de m´etodos de determinaçao, ˜ tratamento e descarte. Quím. Nova 23 (4). https://doi.org/10.1590/s0100-40422000000400011. Nava, V., Di Bella, G., Fazio, F., Potortì, A.G., Lo Turco, V., Licata, P., 2023. Hg content in EU and non-EU processed meat and fish foods. Appl. Sci. 13, 793. https://doi.org/ 10.3390/app13020793. Nortje, J., 2008. Determination of total mercury in sorbent tubes using direct mercury analysis. Am. Lab. 40, 1–2. Oliveira, R.C., Dorea, ´ J.G., Bernardi, J.V.E., Bastos, W.R., Almeida, R., Manzatto, N.G., 2010. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury. Ann. Hum. Biol. 37, 629–642. https://doi.org/ 10.3109/03014460903525177. Olivero-Verbel, J., Caballero-Gallardo, K., Turizo-Tapia, A., 2015. Mercury in the gold mining district of san Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Control Ser. 22, 5897–5907. https://doi.org/10.1007/s11356-014-3724-8. Olivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., Munoz-Sosa, ˜ D., 2016. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ. Sci. Pollut. Control Ser. 23 https://doi.org/10.1007/s11356-016-7255-3. Prazeres, L.F.N., Silva, H.M.L., Palheta, D.C., Penha, I.C.S., Medeiros, C.N.O.B, 2018. Determinaçao ˜ de mercúrio total em Colossoma macropomum proveniente da APA do igarap´e do Gelado. Revista Valore 3, 43–52. https://doi.org/10.22408/ REVA30201849043-52. Rey-Crespo, F., Miranda, M., Lopez-Alonso, ´ M., 2013. Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food Chem. Toxicol. 55, 513–518. https://doi.org/10.1016/j.fct.2013.01.040. Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.S.F., Melo, L.F.C., 2004. Validaçao ˜ em M´etodos Cromatogr´ aficos e Eletrofor´eticos. Quim. Nova 27, 771–780. Ribeiro, R.F.L., Germano, A., 2015. Development and validation of a method for the determination of Hg in animal tissues (equine muscle, bovine kidney and swine kidney, and poultry muscle) by direct mercury analysis (DMA). Microchem. J. 121, 237–243. https://doi.org/10.1016/j.microc.2015.03.005 Sannac, S., Chen, Y.-H., Wahlen, R., McCurdy, E., 2012. Benefits of HPLC-ICP-MS Coupling for Mercury Speciation in Food. Agilent Technologies, Manchester. Shepis, W.R., Medeiros, T.V., Silva, S.A., Abessa, D.M.S., 2016. Toxicidade aguda e contaminaç˜ ao por metais em sedimentos do rio dos Bugres, ilha de Sao ˜ Vicente, SP. Braz. J. Aquat. Sci. Technol. 20, 42–52. https://doi.org/10.14210/bjast.v20n1. Silva, R., Rocha, S., Menegario, ´ A., Pedrobom, J., Sulato, E., Luko, K.S., Elias, L., Oliveira, L., Junior, E., ´ 2021. Determinaçao ˜ de mercúrio em fígado de tetr´ apodes marinhos por espectrometria de fluorescˆencia atomica ˆ acoplada a geraç˜ ao de vapor frio (CV-AFS) e espectrometria de massa com fonte de plasma indutivamente acoplado (ICP-MS): uma comparaç˜ ao sistematica ´ entre as duas t´ecnicas. Quim. Nova 44, 64–69. https://doi.org/10.21577/0100-4042.20170675. Suzuki, T., Akagi, H., Arimura, K., Ando, T., Sakamoto, M., Satoh, H., Naganuma, A., Fut, M., Atsuka, Matsuyama, A., 2004. Mercury Analysis Manual. Ministry of the Environment, Japan, March, pp. 21–26. Torres, D.P., Martins-Teixeira, M.B., Silva, E.F., Queiroz, H.M., 2012. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS). Food Addit. Contam. 29, 625–632. https://doi.org/10.1080/ 19440049.2011.642310. Trasande, L., DiGangi, J., Evers, D.C., Petrlik, J., Buck, D.G., Sam ˇ anek, ´ J., Beeler, B., Turnquist, M.A., Regan, K., 2016. Economic implications of mercury exposure in the context of the global mercury treaty: hair mercury levels and es!mated lost economic productivity in selected developing countries. J. Environ. Manag. 183 (1), 229–235. Tseng, C.M., de Diego, A., Martin, F.M., Amouroux, D., Donard, O.F.X., 1997. Rapid determination of inorganic mercury and methylmercury in biological reference materials by hydride generation, cryofocusing, atomic absorption spectrometry after open focused microwave-assisted alkaline digestion. J. Anal. At. Spectrom. 12, 743–750. https://doi.org/10.1039/a700956i. UNEP, 2019. Global Mercury Assessment 2018. UNEP, p. 62. USEPA, 2001. Water Quality Criterion for the Protection of Human Health: Methylmercury. EPA-823-R-01-001. U.S. Environmental Protection Agency Washington. Available at: https://www.epa.gov/sites/default/files/2020-01/docu ments/methylmercury-criterion-2001.pdf. USEPA, 2007. SW-846 test method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils United States environmental protection agency. Revision 1. Washington, DC, vol. 3. Issue September. Voegborlo, R.B., El-Methnani, A.M., Abedin, M.Z., 1999. Mercury, cadmium and lead content of canned tuna fish. Food Chem. 67, 341–345. https://doi.org/10.1016/ S0308-8146(98)00008-9. Zhang, S., Zhou, M., 2020. Comparison of DMA-80 and ICP-MS combined with closedvessel microwave digestion for the determination of mercury in coal. J Anal Methods Chem 2020, 1–9. https://doi.org/10.1155/2020/8867653. |
dc.relation.citationendpage.none.fl_str_mv |
7 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationissue.none.fl_str_mv |
141146 |
dc.relation.citationvolume.none.fl_str_mv |
351 |
dc.rights.none.fl_str_mv |
© 2024 Elsevier Ltd |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2024 Elsevier Ltd https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
7 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0045653524000390?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c0d55a05-084c-4307-8fa5-25acf6ecb2a3/download https://repositorio.cuc.edu.co/bitstreams/9ba301e4-0672-4526-b937-adecd8752e1c/download https://repositorio.cuc.edu.co/bitstreams/d4b0ae6a-cf95-46fb-a90d-d68c12469aa5/download https://repositorio.cuc.edu.co/bitstreams/969fc7c1-fb61-474d-a648-bf6ded752a94/download |
bitstream.checksum.fl_str_mv |
0e6bfc62ee931fe69b01904eb479d9db 73a5432e0b76442b22b026844140d683 c47e50f60fda92ebef0bb912736047c9 92143464a2e921d10d7d531337d65e69 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166739535331328 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier Ltdhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nunes Neto, Osvaldo GatoDias, Salatiel RibeiroAlbuquerque, Fábio Edir AmaralMiranda, MartaLopez Alonso, MartaOliveira, Ricardo BezerraPinto, Diana2024-10-23T12:43:40Z2024-10-23T12:43:40Z2024-01-09Comparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer, Chemosphere, Volume 351, 2024, 141146, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2024.141146.0045-6535https://hdl.handle.net/11323/1348210.1016/j.chemosphere.2024.1411461879-1298Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Recent ecotoxicological studies have indicated mercury (Hg) contamination in aquatic ecosystems in the Amazon Basin. Although Hg contamination can be associated with small-scale gold mining, the soils of the Amazon region have naturally high Hg concentrations, and can be transported to aquatic ecosystems via deforestation and mining activities. Biomagnification of Hg can pose risks to the local human population; therefore, its concentration in fish tissues must be monitored consistently. Fast and sensitive Hg determination is required for continuously monitoring ecosystems impacted by mineral exploration. The direct mercury analyzer (DMA-80) is widely used for determining total Hg levels in tissue samples; it is fast and cost-effective, without requiring sample preparation. Here, we determined the sensitivity and specificity of Hg detection accomplished using DMA-80, and whether these results are reliable compared to those obtained using Inductively Coupled Plasma Mass Spectrometer (ICP-MS), which is the gold standard. We obtained 106 paired dried samples of muscle tissue from fish species occupying different trophic levels in the Lower Amazon region, and analyzed them using both equipment (DMA-80 and ICP-MS). The results obtained using DMA-80 had an overall Hg mean of 1.90 ± 0.18 mg/kg which was higher (p < 0.05) than the mean of those obtained using ICP-MS (1.55 ± 0.13 mg/kg). Linear regression analysis comparing the Hg levels obtained using both devices was within the 95% prediction interval, and a high coefficient of correlation showed agreement between the devices (r = 0.979; 0.069 to 0.986, 95% CI). Bland-Altman analysis showed that DMA-80 had a positive bias of 6.5% in relation to ICP-MS, which is more evident in samples with high Hg concentrations. DMA-80 was efficient in determining whether the Hg levels exceeded the maximum allowed levels required by the European Union, USA, and Brazil, showing a specificity and sensitivity of above 95%.7 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0045653524000390?via%3DihubComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometerArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ChemosphereAlbuquerque, F.E.A., Herrero-Latorre, C., Miranda, M., Barrˆeto Júnior, R.A., Oliveira, F. L.C., Sucupira, M.C.A., Ortolani, E.L., Minervino, A.H.H., Lopez-Alonso, ´ M., 2021. Fish tissues for biomonitoring toxic and essential trace elements in the Lower Amazon. Environ. Pollut. 283, 117024 https://doi.org/10.1016/J. ENVPOL.2021.117024.Albuquerque, F.E.A., Minervino, A.H.H., Miranda, M., Herrero-Latorre, C., Barrˆeto Júnior, R.A., Oliveira, F.L.C., Sucupira, M.C.A., Ortolani, E.L., Lopez-Alonso, ´ M., 2020. Toxic and essential trace element concentrations in fish species in the Lower Amazon, Brazil. Sci. Total Environ. 732, 138983 https://doi.org/10.1016/j. scitotenv.2020.138983Ansel, M.A., 2021. Hg, As, Cr, Sn, Ni, and Se concentrations in the muscle of little tunny (Euthynnus alletteratus) from the western Algerian stock. Biol. Trace Elem. Res. 199, 3898–3904. https://doi.org/10.1007/s12011-020-02514-zANVISA, 2013. Agˆencia Nacional de Vigilˆ ancia Sanit´ aria. Resoluçao ˜ - RDC Nº 42. Available at: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/rdc0042_ 29_08_2013.html.Arias, A.R.L., Buss, D.F., Alburquerque, C., Inacio, ´ A.F., Freire, M.M., Egler, M., Mugnai, R., Baptista, D.F., 2007. Use of bioindicators for assessing and monitoring pesticides contamination in streams and rivers. Ciˆencia Saúde Coletiva 12 (1), 61–72.Bandeira Junior, C.M., Carvalho, L.G., 2023. Transformations in artisanal and small-scale gold mining work and production structures in the tapajos ´ region of Brazil’s amazon. Resour. Pol. 83, 103597 https://doi.org/10.1016/j.resourpol.2023.103597.Behrooz, R.D., Poma, G., 2021. Evaluation of mercury contamination in Iranian Wild Cats through hair analysis. Biol. Trace Elem. Res. 199, 166–172. https://doi.org/ 10.1007/s12011-020-02148-1.Bourdineaud, J.P., Durrieu, G., Sarrazin, S.L.F., da Silva, W.C.R., Mourao, ˜ R.H.V., de Oliveira, R.B., 2015. Mercurial exposure of residents of Santar´em and Oriximina ´ cities (Par´ a, Brazil) through fish consumption. Environ. Sci. Pollut. Control Ser. 22, 12150–12161. https://doi.org/10.1007/s11356-015-4502-y.Buck, D.G., Evers, D.C., Adams, E., DiGangi, J., Beeler, B., Samanek, ´ J., Petrlik, J., Turnquist, M.A., Speranskaya, O., Regan, K., Johnson, S., 2019. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966. https://doi.org/10.1016/j. scitotenv.2019.06.159Bussan, D.D., Sessums, R.F., Cizdziel, J.V., 2015. Direct mercury analysis in environmental solids by ICP-MS with on-line sample ashing and mercury preconcentration using a direct mercury analyzer. J. Anal. Atomic Spectrom. 30 (7), 1668–1672. https://doi.org/10.1039/C5JA00087D.Carbonell, G., Bravo, J.C., Fernandez, ´ C., Tarazona, J.V., 2009. A new method for total mercury and methyl mercury analysis in muscle of seawater fish. Bull. Environ. Contam. Toxicol. 83, 210–213. https://doi.org/10.1007/s00128-009-9720-xCastro-Rendon, ´ R.D., Calle-Moran, ´ M.D., García-Ar´evalo, I., Ordiano-Flores, A., Galvan- ´ Magana, ˜ F., 2022. Mercury and cadmium concentrations in muscle tissue of the Blue Shark (Prionace glauca) in the Central Eastern Pacific ocean. Biol. Trace Elem. Res. 200, 3400–3411. https://doi.org/10.1007/s12011-021-02932-7.Costa, C.R., Olivi, P., Botta, C.M.R., Espindola, E.L.G., 2008. A toxicidade em ambientes aqu´ aticos: discuss˜ ao e m´etodos de avaliaçao. ˜ Quim. Nova 31, 1820–1830. https:// doi.org/10.1002/ajmg.1320460106.De Muynck, D., Cloquet, C., Vanhaecke, F., 2008. Development of a new method for Pb isotopic analysis of archaeological artefacts using single-collector ICP-dynamic reaction cell-MS. J. Anal. Atomic Spectrom. 23 (1), 62–71. https://doi.org/10.1039/ b709461b.De Queiroz, J.V., Vieira, J.C.S., da Cunha Bataglioli, I., Bittarello, A.C., Braga, C.P., de Oliveira, G., do Carmo Federici Padilha, C., de Magalh˜ aes Padilha, P., 2018. Total mercury determination in muscle and liver tissue samples from Brazilian amazon fish using slurry sampling. Biol. Trace Elem. Res. 184, 517–522. https://doi.org/ 10.1007/s12011-017-1212-y.Di Bella, G., Bua, G.D., Fede, M.R., Mottese, A.F., Potortì, A.G., Cicero, N., Benameur, Q., Dugo, G., Lo Turco, V., 2020. Potentially toxic elements in Xiphias gladius from Mediterranean Sea and risks related to human consumption. Mar. Pollut. Bull. 159, 111512 https://doi.org/10.1016/j.marpolbul.2020.111512.Di Bella, G., Russo, E., Dugo, G., 2017. Heavy metals and persistent organic pollutants in marine organisms from two Sicilian protected areas: Strait of Messina and Cape Peloro Lakes. Curr. Org. Chem. 21, 387–394. https://doi.org/10.2174/ 1385272820666161017164744.Di Bella, G., Tardugno, R., Cicero, N., 2018. Investigation of Hg content by a rapid analytical technique in Mediterranean Pelagic fishes. Separations 5, 51. https://doi. org/10.3390/separations5040051.EFSA, 2004. Opinion of the Scientific Panel on contaminants in the food chain on a request from the commission related to mercury and methylmercury in food. EFSA J. 34, 1–14. https://doi.org/10.2903/J.EFSA.2004.34.Emenike, E.C., Iwuozor, K.O., Anidiobi, S.U., 2022. Heavy metal pollution in aquaculture: sources, impacts and Mitigation techniques. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-021-03037-xFilho, A.M.L., Campos, R.C., Goes, V.A., Pinto, R.A.G., 1999. Determination of mercury losses in fish after cooking. Food Sci. Technol. 19 (1) https://doi.org/10.1590/ S0101-20611999000100006.Gomes, K.D., Custodio, ´ L.G., Bonifacio, ´ R.L., 2013. Validaç˜ ao de metodologia de an´ alise de mercúrio total em ´ aguas, solos e sedimentos, conforme m´etodo EPA 7473, pp. 2–3.Gonzalez, D.J.X., Arain, A., Fernandez, L.E., 2019. Mercury exposure, risk factors, and perceptions among women of childbearing age in an artisanal gold mining region of the Peruvian Amazon. Environ. Res. 179 (Pt A), 108786.Gonzalez, S., Paredes, M., Petrlik, J., 2013. A. SGM and LSGM site: Paso Yobai ´ in Paraguay ASGM and LSGM site: Paso Yob´ ai in Paraguay. Asuncion, alter Vida. In: Arnika Association and IPEN: 7. https://doi.org/10.13140/RG.2.2.12943.69282.Hacon, S. de S., Oliveira-Da-costa, M., Gama, C. de S., Ferreira, R., Basta, P.C., Schramm, A., Yokota, D., 2020. Mercury exposure through fish consumption in traditional communities in the Brazilian Northern Amazon. Int. J. Environ. Res. Publ. Health 17, 1–15. https://doi.org/10.3390/ijerph17155269.Han, E.S., Goleman, D., Boyatzis, R., Mckee, A., 2019. The determination of total mercury in fish & biological tissues using Direct Analysis for Mercury Detection. J. Chem. Inf. Model. 53, 1689–1699.Jebara, A., Lo Turco, V., Faggio, C., Licata, P., Nava, V., Potortì, A.G., Crupi, R., Mansour, H.B., Di Bella, G., 2021. Monitoring of environmental Hg occurrence in Tunisian Coastal areas. Int. J. Environ. Res. Publ. Health 18, 5202. https://doi.org/ 10.3390/ijerph18105202.Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., Korrick, S., 2012. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 120 (6), 799–806.Kasper, D., Forsberg, B.R., De Almeida, R., Bastos, W.R., Malm, O., 2015. Metodologias de coleta, preservaç˜ ao e armazenamento de amostras de agua ´ para an´ alise de mercúrio – Uma revis˜ ao. Quim. Nova 38 (3), 410–418. https://doi.org/10.5935/ 0100-4042.20150020.Lima, A.P.S., Sarkis Müller, R.C., de Souza Sarkis, J.E., Nahum Alves, C., da Silva Bentes, M.H., Brabo, E., de Oliveira Santos, E., 2000. Mercury contamination in fish from Santarem, para, Brazil. Environ. Res. 83, 117–122. https://doi.org/10.1006/ enrs.2000.4051.Lobo, F., Costa, M., Novo, E., Telmer, K., 2016. Distribution of artisanal and small-scale gold mining in the tapajos ´ river basin (Brazilian Amazon) over the past 40 Years and relationship with water siltation. Remote Sens. (Basel) 8, 579. https://doi.org/ 10.3390/rs8070579.Luna, D., Miranda, M., Minervino, A.H.H., Herrero-Latorre, C., Lopez-Alonso, ´ M., Pineiro, ˜ V., 2019. Validation of a simple sample preparation method for multielement analysis of bovine serum. PLoS One 14, e0211859. https://doi.org/ 10.1371/journal.pone.0211859.Micaroni, R.C., da, C.M., Bueno, M.I.M.S., Jardim, W. de F., 2000. Compostos de mercúrio. Revisao ˜ de m´etodos de determinaçao, ˜ tratamento e descarte. Quím. Nova 23 (4). https://doi.org/10.1590/s0100-40422000000400011.Nava, V., Di Bella, G., Fazio, F., Potortì, A.G., Lo Turco, V., Licata, P., 2023. Hg content in EU and non-EU processed meat and fish foods. Appl. Sci. 13, 793. https://doi.org/ 10.3390/app13020793.Nortje, J., 2008. Determination of total mercury in sorbent tubes using direct mercury analysis. Am. Lab. 40, 1–2.Oliveira, R.C., Dorea, ´ J.G., Bernardi, J.V.E., Bastos, W.R., Almeida, R., Manzatto, N.G., 2010. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury. Ann. Hum. Biol. 37, 629–642. https://doi.org/ 10.3109/03014460903525177.Olivero-Verbel, J., Caballero-Gallardo, K., Turizo-Tapia, A., 2015. Mercury in the gold mining district of san Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Control Ser. 22, 5897–5907. https://doi.org/10.1007/s11356-014-3724-8.Olivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., Munoz-Sosa, ˜ D., 2016. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ. Sci. Pollut. Control Ser. 23 https://doi.org/10.1007/s11356-016-7255-3.Prazeres, L.F.N., Silva, H.M.L., Palheta, D.C., Penha, I.C.S., Medeiros, C.N.O.B, 2018. Determinaçao ˜ de mercúrio total em Colossoma macropomum proveniente da APA do igarap´e do Gelado. Revista Valore 3, 43–52. https://doi.org/10.22408/ REVA30201849043-52.Rey-Crespo, F., Miranda, M., Lopez-Alonso, ´ M., 2013. Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food Chem. Toxicol. 55, 513–518. https://doi.org/10.1016/j.fct.2013.01.040.Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.S.F., Melo, L.F.C., 2004. Validaçao ˜ em M´etodos Cromatogr´ aficos e Eletrofor´eticos. Quim. Nova 27, 771–780.Ribeiro, R.F.L., Germano, A., 2015. Development and validation of a method for the determination of Hg in animal tissues (equine muscle, bovine kidney and swine kidney, and poultry muscle) by direct mercury analysis (DMA). Microchem. J. 121, 237–243. https://doi.org/10.1016/j.microc.2015.03.005Sannac, S., Chen, Y.-H., Wahlen, R., McCurdy, E., 2012. Benefits of HPLC-ICP-MS Coupling for Mercury Speciation in Food. Agilent Technologies, Manchester.Shepis, W.R., Medeiros, T.V., Silva, S.A., Abessa, D.M.S., 2016. Toxicidade aguda e contaminaç˜ ao por metais em sedimentos do rio dos Bugres, ilha de Sao ˜ Vicente, SP. Braz. J. Aquat. Sci. Technol. 20, 42–52. https://doi.org/10.14210/bjast.v20n1.Silva, R., Rocha, S., Menegario, ´ A., Pedrobom, J., Sulato, E., Luko, K.S., Elias, L., Oliveira, L., Junior, E., ´ 2021. Determinaçao ˜ de mercúrio em fígado de tetr´ apodes marinhos por espectrometria de fluorescˆencia atomica ˆ acoplada a geraç˜ ao de vapor frio (CV-AFS) e espectrometria de massa com fonte de plasma indutivamente acoplado (ICP-MS): uma comparaç˜ ao sistematica ´ entre as duas t´ecnicas. Quim. Nova 44, 64–69. https://doi.org/10.21577/0100-4042.20170675.Suzuki, T., Akagi, H., Arimura, K., Ando, T., Sakamoto, M., Satoh, H., Naganuma, A., Fut, M., Atsuka, Matsuyama, A., 2004. Mercury Analysis Manual. Ministry of the Environment, Japan, March, pp. 21–26.Torres, D.P., Martins-Teixeira, M.B., Silva, E.F., Queiroz, H.M., 2012. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS). Food Addit. Contam. 29, 625–632. https://doi.org/10.1080/ 19440049.2011.642310.Trasande, L., DiGangi, J., Evers, D.C., Petrlik, J., Buck, D.G., Sam ˇ anek, ´ J., Beeler, B., Turnquist, M.A., Regan, K., 2016. Economic implications of mercury exposure in the context of the global mercury treaty: hair mercury levels and es!mated lost economic productivity in selected developing countries. J. Environ. Manag. 183 (1), 229–235.Tseng, C.M., de Diego, A., Martin, F.M., Amouroux, D., Donard, O.F.X., 1997. Rapid determination of inorganic mercury and methylmercury in biological reference materials by hydride generation, cryofocusing, atomic absorption spectrometry after open focused microwave-assisted alkaline digestion. J. Anal. At. Spectrom. 12, 743–750. https://doi.org/10.1039/a700956i.UNEP, 2019. Global Mercury Assessment 2018. UNEP, p. 62.USEPA, 2001. Water Quality Criterion for the Protection of Human Health: Methylmercury. EPA-823-R-01-001. U.S. Environmental Protection Agency Washington. Available at: https://www.epa.gov/sites/default/files/2020-01/docu ments/methylmercury-criterion-2001.pdf.USEPA, 2007. SW-846 test method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils United States environmental protection agency. Revision 1. Washington, DC, vol. 3. Issue September.Voegborlo, R.B., El-Methnani, A.M., Abedin, M.Z., 1999. Mercury, cadmium and lead content of canned tuna fish. Food Chem. 67, 341–345. https://doi.org/10.1016/ S0308-8146(98)00008-9.Zhang, S., Zhou, M., 2020. Comparison of DMA-80 and ICP-MS combined with closedvessel microwave digestion for the determination of mercury in coal. J Anal Methods Chem 2020, 1–9. https://doi.org/10.1155/2020/8867653.71141146351MercuryFishDMA-80PublicationORIGINALComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdfComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdfapplication/pdf1496550https://repositorio.cuc.edu.co/bitstreams/c0d55a05-084c-4307-8fa5-25acf6ecb2a3/download0e6bfc62ee931fe69b01904eb479d9dbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/9ba301e4-0672-4526-b937-adecd8752e1c/download73a5432e0b76442b22b026844140d683MD52TEXTComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdf.txtComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdf.txtExtracted texttext/plain53936https://repositorio.cuc.edu.co/bitstreams/d4b0ae6a-cf95-46fb-a90d-d68c12469aa5/downloadc47e50f60fda92ebef0bb912736047c9MD53THUMBNAILComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdf.jpgComparative analysis between mercury levels in fish tissues evaluated using direct mercury analyzer and inductively plasma-coupled mass spectrometer.pdf.jpgGenerated Thumbnailimage/jpeg13414https://repositorio.cuc.edu.co/bitstreams/969fc7c1-fb61-474d-a648-bf6ded752a94/download92143464a2e921d10d7d531337d65e69MD5411323/13482oai:repositorio.cuc.edu.co:11323/134822024-10-24 03:01:31.877https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier Ltdopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |