Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aim...
- Autores:
-
Barreto, Deibys
Fajardo, Juan
Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8322
- Acceso en línea:
- https://hdl.handle.net/11323/8322
https://doi.org/10.1002/ente.202000993
https://repositorio.cuc.edu.co/
- Palabra clave:
- Brayton cycle
compression cooling systems
exergoeconomic
exergy
steam injection
sting cycle
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_8aa502ba49bed072f67cd57d7be14f7b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8322 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
title |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
spellingShingle |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine Brayton cycle compression cooling systems exergoeconomic exergy steam injection sting cycle |
title_short |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
title_full |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
title_fullStr |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
title_full_unstemmed |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
title_sort |
Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine |
dc.creator.fl_str_mv |
Barreto, Deibys Fajardo, Juan Carrillo Caballero, Gaylord Cardenas Escorcia, Yulineth |
dc.contributor.author.spa.fl_str_mv |
Barreto, Deibys Fajardo, Juan Carrillo Caballero, Gaylord Cardenas Escorcia, Yulineth |
dc.subject.eng.fl_str_mv |
Brayton cycle compression cooling systems exergoeconomic exergy steam injection sting cycle |
topic |
Brayton cycle compression cooling systems exergoeconomic exergy steam injection sting cycle |
description |
Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-01T15:21:02Z |
dc.date.available.none.fl_str_mv |
2021-06-01T15:21:02Z |
dc.date.issued.none.fl_str_mv |
2021-03-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-4288, 2194-4296 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8322 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1002/ente.202000993 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-4288, 2194-4296 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8322 https://doi.org/10.1002/ente.202000993 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Udeh, G.T., Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant (Open Access) (2019) Renewable Energy, 133, pp. 295-306. Cited 9 times. http://ezproxy.cuc.edu.co:2147/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2018.10.036 De Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 93 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045 Comodi, G., Renzi, M., Caresana, F., Pelagalli, L. Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique (2015) Applied Energy, 147, pp. 40-48. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.02.076 Mohapatra, A.K., Sanjay Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance (2014) Energy, 68, pp. 191-203. Cited 50 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2014.02.066 Baakeem, S.S., Orfi, J., Al-Ansary, H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia (2018) Applied Thermal Engineering, 138, pp. 417-432. Cited 26 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.04.018 Zare, V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization (2020) Energy Conversion and Management, 215, art. no. 112946. Cited 12 times. https://ezproxy.cuc.edu.co:2070/energy-conversion-and-management doi: 10.1016/j.enconman.2020.112946 Xue, R., Hu, C., Sethi, V., Nikolaidis, T., Pilidis, P. (2016) Appl. Therm. Eng. Zhang, S.-J., Chi, J.-L., Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle (2015) Applied Thermal Engineering, 91, pp. 622-629. Cited 14 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2015.08.062 Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 31 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136 Shukla, A.K., Singh, O. (2016) Int. J. Ambient Energy, p. 1. Cited 3 times. Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 29 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034 Athari, H., Soltani, S., Rosen, M., Mohmoudi, S., Morosuk, T. (2016) Renew. Energy, p. 95. Athari, H., Soltani, S., Rosen, M., Kordoghli, M., Morosuk, T. (2016) Renew. Energy, p. 715. Keçebaş, A., Gökgedik, H. Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis (2015) Energy, 88, pp. 746-755. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.05.094 Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 50 times. doi: 10.1016/j.enconman.2014.03.006 Boyahchi, F.A., Molaine, H. (2015) Energy Convers. Manage., 99, p. 374. Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine (2014) Applied Thermal Engineering, 67 (1-2), pp. 388-395. Cited 54 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description doi: 10.1016/j.applthermaleng.2014.03.005 Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108 (accessed September 2017) https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.php Cengel, Y.A., Boles, M.A. (2014) Thermodinamic. Cited 2 times. Mc Graw Hill, New York Sanaye, S., Amani, M., Amani, P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection (2018) Sustainable Energy Technologies and Assessments, 29, pp. 70-81. Cited 16 times. http://ezproxy.cuc.edu.co:2147/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2018.06.003 Bejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 3710 times. John Wiley & Sons, New York Athari, H., Soltani, S., Rosen, M.A., Seyed Mahmoudi, S.M., Morosuk, T. Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling (Open Access) (2015) Sustainability (Switzerland), 7 (9), pp. 12236-12257. Cited 11 times. http://www.mdpi.com/2071-1050/7/9/12236/pdf doi: 10.3390/su70912236 Aminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (Open Access) (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 67 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180 Morosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 140 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006 Huang, R., Ling, J., Aute, V. Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system (2020) Applied Thermal Engineering, 166, art. no. 114691. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.114691 Li, Z., Chen, E., Jing, Y., Lv, S. Thermodynamic relationship of subcooling power and increase of cooling output in vapour compression chiller (2017) Energy Conversion and Management, 149, pp. 254-262. Cited 18 times. doi: 10.1016/j.enconman.2017.07.030 Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development. Cited 1538 times. segunda),, Elsevier, Oxford Sohret, Y., Acikkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Energy, p. 1219. Kotas, T. (1985) The Exergy Method of Thermal Power Plants. Cited 2565 times. Anchon Brendon, Londres Yumrutas, R., Kunduz, M., Kano, M. (2002) Exergy, 2, p. 266. Cited 155 times. D'Acaddia, M., Vanoli, L. (2004) Int. J. Refriger., 25, p. 433. Szargut, E. (2007) Poradnik obliczania I stosowania. Cited 35 times. Widawnictwo Politechniki Shlaskej, Gliwice Mansouri, M., Ahmadi, P., Kaviri, A., Jaafar, M. (2012) Energy Convers. Manage., 58, p. 47. Abusoglu, A., Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations (2009) Applied Thermal Engineering, 29 (2-3), pp. 234-241. Cited 123 times. doi: 10.1016/j.applthermaleng.2008.02.025 Mehrpooya, M., Moftakhari Sharifzadeh, M.M., Ansarinasab, H. (2017) Appl. Therm. Eng. Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863. Cited 74 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850 Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system (2017) Applied Thermal Engineering, 113, pp. 1452-1463. Cited 18 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.11.146 Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 250 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007 Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 71 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038 Chen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 109 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139 Fallah, M., Siyahi, H., Akbarpour Ghiasi, R., Mahmoudi, S., Yari, M., Rosen, M. (2016) Energy, p. 701. Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108 Palizdar, A., Sadrameli, S.M. Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant (2017) Energy Conversion and Management, 138, pp. 474-485. Cited 13 times. doi: 10.1016/j.enconman.2017.02.019 Barreto, D., Fajardo, J., Campillo, J. (2020) International Mechanical Engineering Congress & Exposition No IMECE2019-10410 Morosuk, T., Tsatsaronis, G. Splitting physical exergy: Theory and application (2019) Energy, 167, pp. 698-707. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.10.090 Ansarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle (2017) Applied Thermal Engineering, 114, pp. 719-732. Cited 47 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.12.003 (2018) F-Chart Software, EES “Engineering Equation Solver”, Wisconsin Mehrpooya, M., Ansarinasab, H., Sharifzadeh, M.M.M., Rosen, M.A. Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit (2018) Energy Conversion and Management, 163, pp. 151-168. Cited 19 times. doi: 10.1016/j.enconman.2018.02.016 Shirazi, A., Aminyavari, M., Najafi, B., Rinaldi, F., Razaghi, M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system (2012) International Journal of Hydrogen Energy, 37 (24), pp. 19111-19124. Cited 126 times. doi: 10.1016/j.ijhydene.2012.09.143 Ahmadi, P., Dincer, I. Exergoeconomics (2018) Comprehensive Energy Systems, 1-5, pp. 340-376. Cited 7 times. http://ezproxy.cuc.edu.co:2053/science/book/9780128149256 ISBN: 978-012809597-3; 978-012814925-6 doi: 10.1016/B978-0-12-809597-3.00107-3 Alashkar, A., Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids (2017) Applied Energy, 191, pp. 469-491. Cited 55 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.084 Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles (2014) Energy, 65, pp. 533-543. Cited 111 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.002 Shokati, N., Khanahmadzadeh, S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle (2018) Applied Thermal Engineering, 141, pp. 1141-1160. Cited 9 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.06.052 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Energy Technology |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ente.202000993 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e3cc7e27-0b12-4913-96fc-4941ab417c64/download https://repositorio.cuc.edu.co/bitstreams/1c671590-b600-4666-84d9-026684cc95de/download https://repositorio.cuc.edu.co/bitstreams/9f4f8c53-63c7-4d77-95f0-58ccd7a20f6d/download https://repositorio.cuc.edu.co/bitstreams/ede4a1b4-7828-4c65-8265-3fe88f7e3d6b/download https://repositorio.cuc.edu.co/bitstreams/77a66fc9-08fe-471e-bd6f-1cbae8378b19/download |
bitstream.checksum.fl_str_mv |
385af23cb1e49422ff7a4ded5e171bac 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad f1fd386a1dc187e87b9ff2f1e80cf8b0 35d2d46cd439afc91799425872d939da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166833445797888 |
spelling |
Barreto, DeibysFajardo, JuanCarrillo Caballero, GaylordCardenas Escorcia, Yulineth2021-06-01T15:21:02Z2021-06-01T15:21:02Z2021-03-032194-4288, 2194-4296https://hdl.handle.net/11323/8322https://doi.org/10.1002/ente.202000993Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine.Barreto, DeibysFajardo, JuanCarrillo Caballero, GaylordCardenas Escorcia, Yulinethapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Technologyhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/ente.202000993Brayton cyclecompression cooling systemsexergoeconomicexergysteam injectionsting cycleAdvanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionUdeh, G.T., Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant (Open Access) (2019) Renewable Energy, 133, pp. 295-306. Cited 9 times. http://ezproxy.cuc.edu.co:2147/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2018.10.036De Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 93 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045Comodi, G., Renzi, M., Caresana, F., Pelagalli, L. Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique (2015) Applied Energy, 147, pp. 40-48. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.02.076Mohapatra, A.K., Sanjay Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance (2014) Energy, 68, pp. 191-203. Cited 50 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2014.02.066Baakeem, S.S., Orfi, J., Al-Ansary, H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia (2018) Applied Thermal Engineering, 138, pp. 417-432. Cited 26 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.04.018Zare, V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization (2020) Energy Conversion and Management, 215, art. no. 112946. Cited 12 times. https://ezproxy.cuc.edu.co:2070/energy-conversion-and-management doi: 10.1016/j.enconman.2020.112946Xue, R., Hu, C., Sethi, V., Nikolaidis, T., Pilidis, P. (2016) Appl. Therm. Eng.Zhang, S.-J., Chi, J.-L., Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle (2015) Applied Thermal Engineering, 91, pp. 622-629. Cited 14 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2015.08.062Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 31 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. (2016) Int. J. Ambient Energy, p. 1. Cited 3 times.Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 29 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034Athari, H., Soltani, S., Rosen, M., Mohmoudi, S., Morosuk, T. (2016) Renew. Energy, p. 95.Athari, H., Soltani, S., Rosen, M., Kordoghli, M., Morosuk, T. (2016) Renew. Energy, p. 715.Keçebaş, A., Gökgedik, H. Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis (2015) Energy, 88, pp. 746-755. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.05.094Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 50 times. doi: 10.1016/j.enconman.2014.03.006Boyahchi, F.A., Molaine, H. (2015) Energy Convers. Manage., 99, p. 374.Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine (2014) Applied Thermal Engineering, 67 (1-2), pp. 388-395. Cited 54 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description doi: 10.1016/j.applthermaleng.2014.03.005Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108(accessed September 2017) https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.phpCengel, Y.A., Boles, M.A. (2014) Thermodinamic. Cited 2 times. Mc Graw Hill, New YorkSanaye, S., Amani, M., Amani, P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection (2018) Sustainable Energy Technologies and Assessments, 29, pp. 70-81. Cited 16 times. http://ezproxy.cuc.edu.co:2147/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2018.06.003Bejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 3710 times. John Wiley & Sons, New YorkAthari, H., Soltani, S., Rosen, M.A., Seyed Mahmoudi, S.M., Morosuk, T. Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling (Open Access) (2015) Sustainability (Switzerland), 7 (9), pp. 12236-12257. Cited 11 times. http://www.mdpi.com/2071-1050/7/9/12236/pdf doi: 10.3390/su70912236Aminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (Open Access) (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 67 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180Morosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 140 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006Huang, R., Ling, J., Aute, V. Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system (2020) Applied Thermal Engineering, 166, art. no. 114691. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.114691Li, Z., Chen, E., Jing, Y., Lv, S. Thermodynamic relationship of subcooling power and increase of cooling output in vapour compression chiller (2017) Energy Conversion and Management, 149, pp. 254-262. Cited 18 times. doi: 10.1016/j.enconman.2017.07.030Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development. Cited 1538 times. segunda),, Elsevier, OxfordSohret, Y., Acikkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Energy, p. 1219.Kotas, T. (1985) The Exergy Method of Thermal Power Plants. Cited 2565 times. Anchon Brendon, LondresYumrutas, R., Kunduz, M., Kano, M. (2002) Exergy, 2, p. 266. Cited 155 times.D'Acaddia, M., Vanoli, L. (2004) Int. J. Refriger., 25, p. 433.Szargut, E. (2007) Poradnik obliczania I stosowania. Cited 35 times. Widawnictwo Politechniki Shlaskej, GliwiceMansouri, M., Ahmadi, P., Kaviri, A., Jaafar, M. (2012) Energy Convers. Manage., 58, p. 47.Abusoglu, A., Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations (2009) Applied Thermal Engineering, 29 (2-3), pp. 234-241. Cited 123 times. doi: 10.1016/j.applthermaleng.2008.02.025Mehrpooya, M., Moftakhari Sharifzadeh, M.M., Ansarinasab, H. (2017) Appl. Therm. Eng.Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863. Cited 74 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system (2017) Applied Thermal Engineering, 113, pp. 1452-1463. Cited 18 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.11.146Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 250 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 71 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038Chen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 109 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139Fallah, M., Siyahi, H., Akbarpour Ghiasi, R., Mahmoudi, S., Yari, M., Rosen, M. (2016) Energy, p. 701.Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108Palizdar, A., Sadrameli, S.M. Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant (2017) Energy Conversion and Management, 138, pp. 474-485. Cited 13 times. doi: 10.1016/j.enconman.2017.02.019Barreto, D., Fajardo, J., Campillo, J. (2020) International Mechanical Engineering Congress & Exposition No IMECE2019-10410Morosuk, T., Tsatsaronis, G. Splitting physical exergy: Theory and application (2019) Energy, 167, pp. 698-707. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.10.090Ansarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle (2017) Applied Thermal Engineering, 114, pp. 719-732. Cited 47 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.12.003(2018) F-Chart Software, EES “Engineering Equation Solver”, WisconsinMehrpooya, M., Ansarinasab, H., Sharifzadeh, M.M.M., Rosen, M.A. Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit (2018) Energy Conversion and Management, 163, pp. 151-168. Cited 19 times. doi: 10.1016/j.enconman.2018.02.016Shirazi, A., Aminyavari, M., Najafi, B., Rinaldi, F., Razaghi, M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system (2012) International Journal of Hydrogen Energy, 37 (24), pp. 19111-19124. Cited 126 times. doi: 10.1016/j.ijhydene.2012.09.143Ahmadi, P., Dincer, I. Exergoeconomics (2018) Comprehensive Energy Systems, 1-5, pp. 340-376. Cited 7 times. http://ezproxy.cuc.edu.co:2053/science/book/9780128149256 ISBN: 978-012809597-3; 978-012814925-6 doi: 10.1016/B978-0-12-809597-3.00107-3Alashkar, A., Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids (2017) Applied Energy, 191, pp. 469-491. Cited 55 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.084Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles (2014) Energy, 65, pp. 533-543. Cited 111 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.002Shokati, N., Khanahmadzadeh, S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle (2018) Applied Thermal Engineering, 141, pp. 1141-1160. Cited 9 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.06.052PublicationORIGINALAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdfAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdfapplication/pdf99722https://repositorio.cuc.edu.co/bitstreams/e3cc7e27-0b12-4913-96fc-4941ab417c64/download385af23cb1e49422ff7a4ded5e171bacMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/1c671590-b600-4666-84d9-026684cc95de/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9f4f8c53-63c7-4d77-95f0-58ccd7a20f6d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.jpgAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.jpgimage/jpeg46798https://repositorio.cuc.edu.co/bitstreams/ede4a1b4-7828-4c65-8265-3fe88f7e3d6b/downloadf1fd386a1dc187e87b9ff2f1e80cf8b0MD54TEXTAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.txtAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.txttext/plain1720https://repositorio.cuc.edu.co/bitstreams/77a66fc9-08fe-471e-bd6f-1cbae8378b19/download35d2d46cd439afc91799425872d939daMD5511323/8322oai:repositorio.cuc.edu.co:11323/83222024-09-17 14:15:39.345http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |