Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine

Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aim...

Full description

Autores:
Barreto, Deibys
Fajardo, Juan
Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8322
Acceso en línea:
https://hdl.handle.net/11323/8322
https://doi.org/10.1002/ente.202000993
https://repositorio.cuc.edu.co/
Palabra clave:
Brayton cycle
compression cooling systems
exergoeconomic
exergy
steam injection
sting cycle
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_8aa502ba49bed072f67cd57d7be14f7b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8322
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
title Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
spellingShingle Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
Brayton cycle
compression cooling systems
exergoeconomic
exergy
steam injection
sting cycle
title_short Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
title_full Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
title_fullStr Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
title_full_unstemmed Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
title_sort Advanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine
dc.creator.fl_str_mv Barreto, Deibys
Fajardo, Juan
Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
dc.contributor.author.spa.fl_str_mv Barreto, Deibys
Fajardo, Juan
Carrillo Caballero, Gaylord
Cardenas Escorcia, Yulineth
dc.subject.eng.fl_str_mv Brayton cycle
compression cooling systems
exergoeconomic
exergy
steam injection
sting cycle
topic Brayton cycle
compression cooling systems
exergoeconomic
exergy
steam injection
sting cycle
description Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-01T15:21:02Z
dc.date.available.none.fl_str_mv 2021-06-01T15:21:02Z
dc.date.issued.none.fl_str_mv 2021-03-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-4288, 2194-4296
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8322
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1002/ente.202000993
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-4288, 2194-4296
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8322
https://doi.org/10.1002/ente.202000993
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Udeh, G.T., Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant (Open Access) (2019) Renewable Energy, 133, pp. 295-306. Cited 9 times. http://ezproxy.cuc.edu.co:2147/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2018.10.036
De Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 93 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045
Comodi, G., Renzi, M., Caresana, F., Pelagalli, L. Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique (2015) Applied Energy, 147, pp. 40-48. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.02.076
Mohapatra, A.K., Sanjay Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance (2014) Energy, 68, pp. 191-203. Cited 50 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2014.02.066
Baakeem, S.S., Orfi, J., Al-Ansary, H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia (2018) Applied Thermal Engineering, 138, pp. 417-432. Cited 26 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.04.018
Zare, V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization (2020) Energy Conversion and Management, 215, art. no. 112946. Cited 12 times. https://ezproxy.cuc.edu.co:2070/energy-conversion-and-management doi: 10.1016/j.enconman.2020.112946
Xue, R., Hu, C., Sethi, V., Nikolaidis, T., Pilidis, P. (2016) Appl. Therm. Eng.
Zhang, S.-J., Chi, J.-L., Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle (2015) Applied Thermal Engineering, 91, pp. 622-629. Cited 14 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2015.08.062
Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 31 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136
Shukla, A.K., Singh, O. (2016) Int. J. Ambient Energy, p. 1. Cited 3 times.
Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 29 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034
Athari, H., Soltani, S., Rosen, M., Mohmoudi, S., Morosuk, T. (2016) Renew. Energy, p. 95.
Athari, H., Soltani, S., Rosen, M., Kordoghli, M., Morosuk, T. (2016) Renew. Energy, p. 715.
Keçebaş, A., Gökgedik, H. Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis (2015) Energy, 88, pp. 746-755. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.05.094
Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 50 times. doi: 10.1016/j.enconman.2014.03.006
Boyahchi, F.A., Molaine, H. (2015) Energy Convers. Manage., 99, p. 374.
Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine (2014) Applied Thermal Engineering, 67 (1-2), pp. 388-395. Cited 54 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description doi: 10.1016/j.applthermaleng.2014.03.005
Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108
(accessed September 2017) https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.php
Cengel, Y.A., Boles, M.A. (2014) Thermodinamic. Cited 2 times. Mc Graw Hill, New York
Sanaye, S., Amani, M., Amani, P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection (2018) Sustainable Energy Technologies and Assessments, 29, pp. 70-81. Cited 16 times. http://ezproxy.cuc.edu.co:2147/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2018.06.003
Bejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 3710 times. John Wiley & Sons, New York
Athari, H., Soltani, S., Rosen, M.A., Seyed Mahmoudi, S.M., Morosuk, T. Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling (Open Access) (2015) Sustainability (Switzerland), 7 (9), pp. 12236-12257. Cited 11 times. http://www.mdpi.com/2071-1050/7/9/12236/pdf doi: 10.3390/su70912236
Aminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (Open Access) (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 67 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180
Morosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 140 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006
Huang, R., Ling, J., Aute, V. Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system (2020) Applied Thermal Engineering, 166, art. no. 114691. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.114691
Li, Z., Chen, E., Jing, Y., Lv, S. Thermodynamic relationship of subcooling power and increase of cooling output in vapour compression chiller (2017) Energy Conversion and Management, 149, pp. 254-262. Cited 18 times. doi: 10.1016/j.enconman.2017.07.030
Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development. Cited 1538 times. segunda),, Elsevier, Oxford
Sohret, Y., Acikkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Energy, p. 1219.
Kotas, T. (1985) The Exergy Method of Thermal Power Plants. Cited 2565 times. Anchon Brendon, Londres
Yumrutas, R., Kunduz, M., Kano, M. (2002) Exergy, 2, p. 266. Cited 155 times.
D'Acaddia, M., Vanoli, L. (2004) Int. J. Refriger., 25, p. 433.
Szargut, E. (2007) Poradnik obliczania I stosowania. Cited 35 times. Widawnictwo Politechniki Shlaskej, Gliwice
Mansouri, M., Ahmadi, P., Kaviri, A., Jaafar, M. (2012) Energy Convers. Manage., 58, p. 47.
Abusoglu, A., Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations (2009) Applied Thermal Engineering, 29 (2-3), pp. 234-241. Cited 123 times. doi: 10.1016/j.applthermaleng.2008.02.025
Mehrpooya, M., Moftakhari Sharifzadeh, M.M., Ansarinasab, H. (2017) Appl. Therm. Eng.
Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863. Cited 74 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850
Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system (2017) Applied Thermal Engineering, 113, pp. 1452-1463. Cited 18 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.11.146
Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 250 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007
Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 71 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038
Chen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 109 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139
Fallah, M., Siyahi, H., Akbarpour Ghiasi, R., Mahmoudi, S., Yari, M., Rosen, M. (2016) Energy, p. 701.
Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108
Palizdar, A., Sadrameli, S.M. Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant (2017) Energy Conversion and Management, 138, pp. 474-485. Cited 13 times. doi: 10.1016/j.enconman.2017.02.019
Barreto, D., Fajardo, J., Campillo, J. (2020) International Mechanical Engineering Congress & Exposition No IMECE2019-10410
Morosuk, T., Tsatsaronis, G. Splitting physical exergy: Theory and application (2019) Energy, 167, pp. 698-707. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.10.090
Ansarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle (2017) Applied Thermal Engineering, 114, pp. 719-732. Cited 47 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.12.003
(2018) F-Chart Software, EES “Engineering Equation Solver”, Wisconsin
Mehrpooya, M., Ansarinasab, H., Sharifzadeh, M.M.M., Rosen, M.A. Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit (2018) Energy Conversion and Management, 163, pp. 151-168. Cited 19 times. doi: 10.1016/j.enconman.2018.02.016
Shirazi, A., Aminyavari, M., Najafi, B., Rinaldi, F., Razaghi, M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system (2012) International Journal of Hydrogen Energy, 37 (24), pp. 19111-19124. Cited 126 times. doi: 10.1016/j.ijhydene.2012.09.143
Ahmadi, P., Dincer, I. Exergoeconomics (2018) Comprehensive Energy Systems, 1-5, pp. 340-376. Cited 7 times. http://ezproxy.cuc.edu.co:2053/science/book/9780128149256 ISBN: 978-012809597-3; 978-012814925-6 doi: 10.1016/B978-0-12-809597-3.00107-3
Alashkar, A., Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids (2017) Applied Energy, 191, pp. 469-491. Cited 55 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.084
Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles (2014) Energy, 65, pp. 533-543. Cited 111 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.002
Shokati, N., Khanahmadzadeh, S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle (2018) Applied Thermal Engineering, 141, pp. 1141-1160. Cited 9 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.06.052
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Energy Technology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://onlinelibrary.wiley.com/doi/pdf/10.1002/ente.202000993
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e3cc7e27-0b12-4913-96fc-4941ab417c64/download
https://repositorio.cuc.edu.co/bitstreams/1c671590-b600-4666-84d9-026684cc95de/download
https://repositorio.cuc.edu.co/bitstreams/9f4f8c53-63c7-4d77-95f0-58ccd7a20f6d/download
https://repositorio.cuc.edu.co/bitstreams/ede4a1b4-7828-4c65-8265-3fe88f7e3d6b/download
https://repositorio.cuc.edu.co/bitstreams/77a66fc9-08fe-471e-bd6f-1cbae8378b19/download
bitstream.checksum.fl_str_mv 385af23cb1e49422ff7a4ded5e171bac
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
f1fd386a1dc187e87b9ff2f1e80cf8b0
35d2d46cd439afc91799425872d939da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166833445797888
spelling Barreto, DeibysFajardo, JuanCarrillo Caballero, GaylordCardenas Escorcia, Yulineth2021-06-01T15:21:02Z2021-06-01T15:21:02Z2021-03-032194-4288, 2194-4296https://hdl.handle.net/11323/8322https://doi.org/10.1002/ente.202000993Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine.Barreto, DeibysFajardo, JuanCarrillo Caballero, GaylordCardenas Escorcia, Yulinethapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Technologyhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/ente.202000993Brayton cyclecompression cooling systemsexergoeconomicexergysteam injectionsting cycleAdvanced exergy and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionUdeh, G.T., Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant (Open Access) (2019) Renewable Energy, 133, pp. 295-306. Cited 9 times. http://ezproxy.cuc.edu.co:2147/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2018.10.036De Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 93 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045Comodi, G., Renzi, M., Caresana, F., Pelagalli, L. Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique (2015) Applied Energy, 147, pp. 40-48. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.02.076Mohapatra, A.K., Sanjay Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance (2014) Energy, 68, pp. 191-203. Cited 50 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2014.02.066Baakeem, S.S., Orfi, J., Al-Ansary, H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia (2018) Applied Thermal Engineering, 138, pp. 417-432. Cited 26 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.04.018Zare, V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization (2020) Energy Conversion and Management, 215, art. no. 112946. Cited 12 times. https://ezproxy.cuc.edu.co:2070/energy-conversion-and-management doi: 10.1016/j.enconman.2020.112946Xue, R., Hu, C., Sethi, V., Nikolaidis, T., Pilidis, P. (2016) Appl. Therm. Eng.Zhang, S.-J., Chi, J.-L., Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle (2015) Applied Thermal Engineering, 91, pp. 622-629. Cited 14 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2015.08.062Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 31 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136Shukla, A.K., Singh, O. (2016) Int. J. Ambient Energy, p. 1. Cited 3 times.Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 29 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034Athari, H., Soltani, S., Rosen, M., Mohmoudi, S., Morosuk, T. (2016) Renew. Energy, p. 95.Athari, H., Soltani, S., Rosen, M., Kordoghli, M., Morosuk, T. (2016) Renew. Energy, p. 715.Keçebaş, A., Gökgedik, H. Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis (2015) Energy, 88, pp. 746-755. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.05.094Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 50 times. doi: 10.1016/j.enconman.2014.03.006Boyahchi, F.A., Molaine, H. (2015) Energy Convers. Manage., 99, p. 374.Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine (2014) Applied Thermal Engineering, 67 (1-2), pp. 388-395. Cited 54 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description doi: 10.1016/j.applthermaleng.2014.03.005Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108(accessed September 2017) https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.phpCengel, Y.A., Boles, M.A. (2014) Thermodinamic. Cited 2 times. Mc Graw Hill, New YorkSanaye, S., Amani, M., Amani, P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection (2018) Sustainable Energy Technologies and Assessments, 29, pp. 70-81. Cited 16 times. http://ezproxy.cuc.edu.co:2147/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2018.06.003Bejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 3710 times. John Wiley & Sons, New YorkAthari, H., Soltani, S., Rosen, M.A., Seyed Mahmoudi, S.M., Morosuk, T. Comparative exergoeconomic analyses of gas turbine steam injection cycles with and without fogging inlet cooling (Open Access) (2015) Sustainability (Switzerland), 7 (9), pp. 12236-12257. Cited 11 times. http://www.mdpi.com/2071-1050/7/9/12236/pdf doi: 10.3390/su70912236Aminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (Open Access) (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 67 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180Morosuk, T., Tsatsaronis, G. Advanced exergetic evaluation of refrigeration machines using different working fluids (2009) Energy, 34 (12), pp. 2248-2258. Cited 140 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.01.006Huang, R., Ling, J., Aute, V. Comparison of approximation-assisted heat exchanger models for steady-state simulation of vapor compression system (2020) Applied Thermal Engineering, 166, art. no. 114691. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.114691Li, Z., Chen, E., Jing, Y., Lv, S. Thermodynamic relationship of subcooling power and increase of cooling output in vapour compression chiller (2017) Energy Conversion and Management, 149, pp. 254-262. Cited 18 times. doi: 10.1016/j.enconman.2017.07.030Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development. Cited 1538 times. segunda),, Elsevier, OxfordSohret, Y., Acikkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Energy, p. 1219.Kotas, T. (1985) The Exergy Method of Thermal Power Plants. Cited 2565 times. Anchon Brendon, LondresYumrutas, R., Kunduz, M., Kano, M. (2002) Exergy, 2, p. 266. Cited 155 times.D'Acaddia, M., Vanoli, L. (2004) Int. J. Refriger., 25, p. 433.Szargut, E. (2007) Poradnik obliczania I stosowania. Cited 35 times. Widawnictwo Politechniki Shlaskej, GliwiceMansouri, M., Ahmadi, P., Kaviri, A., Jaafar, M. (2012) Energy Convers. Manage., 58, p. 47.Abusoglu, A., Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations (2009) Applied Thermal Engineering, 29 (2-3), pp. 234-241. Cited 123 times. doi: 10.1016/j.applthermaleng.2008.02.025Mehrpooya, M., Moftakhari Sharifzadeh, M.M., Ansarinasab, H. (2017) Appl. Therm. Eng.Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863. Cited 74 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system (2017) Applied Thermal Engineering, 113, pp. 1452-1463. Cited 18 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.11.146Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 250 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 71 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038Chen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 109 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139Fallah, M., Siyahi, H., Akbarpour Ghiasi, R., Mahmoudi, S., Yari, M., Rosen, M. (2016) Energy, p. 701.Anvari, S., Khoshbakhti Saray, R., Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production (2015) Energy, 91, pp. 925-939. Cited 51 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.08.108Palizdar, A., Sadrameli, S.M. Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant (2017) Energy Conversion and Management, 138, pp. 474-485. Cited 13 times. doi: 10.1016/j.enconman.2017.02.019Barreto, D., Fajardo, J., Campillo, J. (2020) International Mechanical Engineering Congress & Exposition No IMECE2019-10410Morosuk, T., Tsatsaronis, G. Splitting physical exergy: Theory and application (2019) Energy, 167, pp. 698-707. Cited 22 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.10.090Ansarinasab, H., Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle (2017) Applied Thermal Engineering, 114, pp. 719-732. Cited 47 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.12.003(2018) F-Chart Software, EES “Engineering Equation Solver”, WisconsinMehrpooya, M., Ansarinasab, H., Sharifzadeh, M.M.M., Rosen, M.A. Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit (2018) Energy Conversion and Management, 163, pp. 151-168. Cited 19 times. doi: 10.1016/j.enconman.2018.02.016Shirazi, A., Aminyavari, M., Najafi, B., Rinaldi, F., Razaghi, M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system (2012) International Journal of Hydrogen Energy, 37 (24), pp. 19111-19124. Cited 126 times. doi: 10.1016/j.ijhydene.2012.09.143Ahmadi, P., Dincer, I. Exergoeconomics (2018) Comprehensive Energy Systems, 1-5, pp. 340-376. Cited 7 times. http://ezproxy.cuc.edu.co:2053/science/book/9780128149256 ISBN: 978-012809597-3; 978-012814925-6 doi: 10.1016/B978-0-12-809597-3.00107-3Alashkar, A., Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids (2017) Applied Energy, 191, pp. 469-491. Cited 55 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.01.084Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles (2014) Energy, 65, pp. 533-543. Cited 111 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.002Shokati, N., Khanahmadzadeh, S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle (2018) Applied Thermal Engineering, 141, pp. 1141-1160. Cited 9 times. http://ezproxy.cuc.edu.co:2147/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.06.052PublicationORIGINALAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdfAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdfapplication/pdf99722https://repositorio.cuc.edu.co/bitstreams/e3cc7e27-0b12-4913-96fc-4941ab417c64/download385af23cb1e49422ff7a4ded5e171bacMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/1c671590-b600-4666-84d9-026684cc95de/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9f4f8c53-63c7-4d77-95f0-58ccd7a20f6d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.jpgAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.jpgimage/jpeg46798https://repositorio.cuc.edu.co/bitstreams/ede4a1b4-7828-4c65-8265-3fe88f7e3d6b/downloadf1fd386a1dc187e87b9ff2f1e80cf8b0MD54TEXTAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.txtAdvanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine.pdf.txttext/plain1720https://repositorio.cuc.edu.co/bitstreams/77a66fc9-08fe-471e-bd6f-1cbae8378b19/download35d2d46cd439afc91799425872d939daMD5511323/8322oai:repositorio.cuc.edu.co:11323/83222024-09-17 14:15:39.345http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==