Evaluation of contaminants in agricultural soils in an irrigation district in Colombia
This study evaluated the concentration and distribution of heavy metals (HM) (Cr, Ni, Pb, Cd, Hg, and Zn) and pesticides (organochlorine and organophosphorus) and the relationship of these pollutants with the physicochemical properties of agricultural soils in an Irrigation District (ID) in Colombia...
- Autores:
-
Martínez Mera, Eliana Andrea
Torregroza Espinosa, Ana Carolina
Crissien Borrero, Tito José
Marrugo Negrete, José Luis
González Márquez, Luis Carlos
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5232
- Acceso en línea:
- https://hdl.handle.net/11323/5232
https://repositorio.cuc.edu.co/
- Palabra clave:
- Agricultural soils
Irrigation district
Colombia
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
RCUC2_8a9630020bd9f7be028d3d90365b4b93 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5232 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
title |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
spellingShingle |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia Agricultural soils Irrigation district Colombia |
title_short |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
title_full |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
title_fullStr |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
title_full_unstemmed |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
title_sort |
Evaluation of contaminants in agricultural soils in an irrigation district in Colombia |
dc.creator.fl_str_mv |
Martínez Mera, Eliana Andrea Torregroza Espinosa, Ana Carolina Crissien Borrero, Tito José Marrugo Negrete, José Luis González Márquez, Luis Carlos |
dc.contributor.author.spa.fl_str_mv |
Martínez Mera, Eliana Andrea Torregroza Espinosa, Ana Carolina Crissien Borrero, Tito José Marrugo Negrete, José Luis González Márquez, Luis Carlos |
dc.subject.spa.fl_str_mv |
Agricultural soils Irrigation district Colombia |
topic |
Agricultural soils Irrigation district Colombia |
description |
This study evaluated the concentration and distribution of heavy metals (HM) (Cr, Ni, Pb, Cd, Hg, and Zn) and pesticides (organochlorine and organophosphorus) and the relationship of these pollutants with the physicochemical properties of agricultural soils in an Irrigation District (ID) in Colombia. Soils samples were analyzed for pH, humidity, organic matter, P total, N total, electric conductivity (EC), cation exchange capacity, and texture (% sand, clay and silt). Canonical correlation was used to determined relationship between soil properties and HM. Soil pollution were evaluated with geoaccumulation index (Igeo), contamination factor (CF), degree of contamination (Cdeg) and pollution load index (PLI). The results indicated that, in general, the soils had adequate physicochemical conditions for the establishment and development of crops. The presence of pesticides in the soils was not reported. However, concentrations HM was detected (Zn > Cr > Ni > Pb > Hg > Cd). The soil characteristics (silt, clay, pH and EC) contributed to explain HM concentrations. The Igeo indicated that the soils are heavily contaminated with Hg (3 < Igeo<4). The CF was very high for Hg (>6). The Cdeg presented moderate to considerable variations (>6Cdeg<24). The PLI indicated that the soils are contaminated (1.308). The presence of HM may be associated with the agricultural and quarries activities carried out near the ID. The impact caused by high concentrations of HM can lead environmental, economic and social impacts in the study zone. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-02T19:36:31Z |
dc.date.available.none.fl_str_mv |
2019-09-02T19:36:31Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5232 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5232 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Ahumada, I., Mendoza, J., Ascar, L. 1999. Sequential extraction of heavy metals in soils irrigated with wastewater. Commun. Soil Sci. Plant Anal., 30, 1507-1519. https://doi.org/10.1080/00103629909370303 Alcaldía de Repelón-Atlántico. 2016. Información general. [Online] Available at: http://www.repelon-atlantico.gov.co/informacion_general.shtml#geografia [Accessed 15 March 2017]. Alcaldía de Repelón-Atlántico. 2017. Información general. [Online] Available at: http://www.repelonatlantico.gov.co/index.shtml?apc=gbxx2760911&sh_itm=98bd43dd20b101b40297b595248a69a4&add_disc=1. [Accessed 20 November 2017]. Alloway, B.J. 2013. Sources of heavy metals and metalloids in soils. In Heavy metals in soils (Alloway, B.J. Ed.). Trace Metals and Metalloids in Soils and their Bioavailability. Third edition. Springer, 11-50. http://doi.org/10.1007/987-94-007-4470-7 Andrades, M., Martínez, E. 2014. Fertilidad del suelo y parámetros que la definen. Tercera Edición. Universidad de la Rioja. Logroño: España, 34. Angelova, V.R., Akova, V.I., Artinova, N.S., Ivanov, K.I. 2013. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci., 19, 5, 958-971. Antoniadis, V., Robinson, J., Alloway, B. 2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere, 71, 759–764. http://doi:10.1016/j.chemosphere.2007.10.015 Basta, N.T., Ryan, J.A., Chaney, L. 2005. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual, 34, 49–63. Bautista-Cruz, A., Etchevers-Barra, J., Del Castillo, R. F., Gutiérrez, C. 2004. La calidad del suelo y sus indicadores. Ecosistemas, 13, 2, 90-97. Belmonte-Serrato, F., Romero-Díaz, A., Moreno-Brotóns, J. 2010. Contaminación ambiental por estériles mineros en un espacio turístico en desarrollo, la sierra minera de Cartagena-La Unión (sureste de España). Cuad. Turismo, 25, 11-24. Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. [Online] Available at: 8310https://repository.library.noaa.gov/view/noaa/9327. [Accessed 16 November 2017]. Carrillo, R., Cajuste, L. 1995. Behavior of trace metals in soils of Hidalgo, México. J. Environ. Sci. Health. B., 30, 143-155. Castellanos, J. 2016. Manual para la interpretación de análisis de suelo. [Online] Available at: http://www.fec-chiapas.com.mx/sistema/biblioteca_digital/guia-de-interpretacion-de-analisis-de-suelos-y-aguas-intagri-3.pdf/. [Accessed 28 October 2017]. Cornejo, J., Jamet, P. 2000. Pesticide/soil interactions: some current research methods. Institut National de la Recherche Agronomique (INRA). Paris, Francia. Chen, X., Xia, X., Zhao, Y., Zhang P. 2010. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater., 181, 1-3, 640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060 Climate, Data. 2017. National Center for Environmental Information. [Online] Available at: http://es.climate-data.org/location/50352/. [Accessed 1 March 2017]. CRA – CRADIQUE, Corporación Autónoma Regional del Atlántico y Corporación Autónoma del Canal del Dique. 2002. Ministerio del Medio Ambiente – Colombia. 243p. CRA - Corporación Autónoma Regional del Atlántico. 2014. Diagnóstico inicial para el ordenamiento del embalse El Guájaro y la ciénaga de Luruaco. Barranquilla, Atlántico. De Alba, S., Torri, D.; Borselli, L., Lindstrom, M. 2003. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J. Soil Sci. 10, 3, 93-101. FAO-United Nations Food and Agriculture Organization. 2018. World agriculture: towards 2015/2030. In: Food and agriculture in national and international environments. Available at http://www.fao.org/docrep/004/y3557s/y3557s07.htm. [Accessed 29 January 2019]. Galán-Huertos, E., Romero-Baena, A. 2008. Contaminación de suelos por metales pesados. Macla, 10, 48-60. García, Y., Ramírez, W., Sánchez, S. 2012. Indicadores de la calidad de los suelos: una nueva manera de evaluar este recurso. Pastos y Forrajes, 35, 2, 125-138. Gaw, S. K., Wilkins, A. L., Kim, N. D., Palmer, G. T., Robinson, P. 2006. Trace elements and ΣDDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand. Sci. Total Environ., 355, 1–3, 31-47 https://doi.org/10.1016/j.scitotenv.2005.02.020 Gilden R. C., Huffling K., B. Sattle. 2010. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs., 39, 1, 103-10. https://doi.org/10.1111/j.1552-6909.2009.01092.x Gimeno-García, E., Andreu, V., Boluda, R. 1996. Incidence of heavy metals in the application of inorganic fertilizers to rice farming soils (Valencia, Spain). In: Rodriguez-Barrueco C. (Eds) Fertilizers and Environment. Dev. Plant Soil Sci. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1586-2_85 Guangwei, D., Xiaobing, L., Stephen, H., Jeffrey, N., Dula, A., Baoshan, X. 2006. Effect of cover crop management on soil organic matter. Geoderma, 130, 3-4, 229-239. https://doi.org/10.1016/j.geoderma.2005.01.019 Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., 14, 975–1001. Hoskins, B. 2017. Interpreting soil test results for gardens and grounds. Maine Soil Testing Service. University of Maine. [Online] Available at https://extension.umaine.edu/gardening/manual/soils/interpretting-soil-tests/. [Accessed 19 November 2017]. ICA-Instituto Colombiano Agropecuario. [Online] Available at https://www.ica.gov.co/getdoc/b2e5ff99-bd80-45e8-aa7a-e55f0b5b42dc/PLAGUICIDAS-PROHIBIDOS.aspx. [Accessed 19 November 2017]. IDEAM- Instituto de Hidrología, Meteorología y Estudios Ambientales. 2017. Estudio Nacional del Agua. Bogotá a, D.C. 253p. IGAC- Instituto Geográfico Agustín Codazzi. 2006. Métodos Analíticos del Laboratorio de Suelos Sexta edición. Bogotá: Imprenta Nacional de Colombia. 647p. IGAC- Instituto Geográfico Agustín Codazzi. 2008. Estudio general de suelos y zonificación de tierras. Departamento del Atlántico. Bogotá: Imprenta Nacional de Colombia. 324p. Iqbal, J., Saleem, M., Shah, M.H. 2016. Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem. Erde-Geochem, 76, 1, 171–177. http://doi.org/10.1016/j.chemer.2016.02.002 Iwata, S., Tabuchi, T., Warkentin, B.P. 1994. Soil-Water Interactions: Mechanisms Applications. Second edition. CRC, Press, New York. 464p. Jaurixje, M., Torres, D., Mendoza, B., Henríquez, M., Contreras, J. 2013. Propiedades físicas y químicas del suelo y su relación con la actividad biológica bajo diferentes manejos en la zona de Quíbor, Estado Lara. Bioagro, 25, 1, 47-56. Jiao, W., Chen, W., Chang, A.C., Page, A.L. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizer applications: a review. Environ. Pollut., 168, 44-53. https://doi.org/10.1016/j.envpol.2012.03.052. Jung, M.C. 2008. Heavy Metal concentrations in soils and factors affecting metal uptake by plants in the Vicinity of a Korean Cu-W Mine. Sensors (Basel), 8, 4, 2413–2423. Kabata-Pendias, A. 2011. Trace elements in soils and plants. Fourth edition. CRC, Press, Boca Ratón, FL, USA., 505p. Kashem, M.A., Singh, B.R. 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosys., 61, 3, 247-255. https://doi.org/10.1023/A:1013762204510 Kim, H.K., Jang, T.I., Kim, S.M., Park, S.W. 2015. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci., 73, 5, 2377-2383. https://doi.org/10.1007/s12665-014-3581-2 Marković, M., Cupać, C., Đurović, R., Milinović, J., Kljajić, P. 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch. Environ. Contam. Toxicol., 58, 2, 341-51. http://doi.org/10.1007/s00244-009-9359 Marrugo-Negrete, J. Pinedo-Hernández, J., Díez, S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res., 154, 380-388. http://dx.doi.org/10.1016/j.envres.2017.01.021. Martínez, E., Fuente, J., Acevedo, E. 2008. Carbono orgánico y propiedades del suelo. J. Soil Sci. Plant Nutr., 8, 1, 68-96. Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Valencia-García, A., Rojas-Gerónimo, L. 2017. Distribution of nitrogen fixing bacterial isolates and its relationship to the physicochemical characteristics of southern agricultural soils of the Atlántico department, Colombia. Soil Environ., 36, 2, 174-181. http://doi.org/10.25252/SE/17/51202 Melo, V.F.; Novais, R.F.; Fontes, M.P.F.; Schaefer, C.E.G.R. 2000. Potassium and magnesium minerals from sand and silt fractions of different soils. Rev. Bras. Cienc. Solo., 24: 269-284. http://dx.doi.org/10.1590/S0100-06832000000200004 Mir-Mohammad, A., Mohammad-Lokman, A., Md.-Saiful, I., Md.-Zillur, R. 2016. Preliminary assessment of heavy metal in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manage., 5, 27-35. https://doi.org/10.1016/j.enmm.2016.01.002 Müller, G. 1981. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflu¨sse. Chem. Ztg., 6, 157– 64. McKenzie, R. 2013. Soil Salinity - Causes and Management. [Online] Available at http://www.thecropsite.com/articles/1500/soil-salinity-causes-and-management/. [Accessed 12 December 2017]. Narváez, J., Palacio, J., Molina, F. 2012. Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes. Gest. Ambiente, 15, 3, 27-38. Narwal, R.P., Singh, B.R., Selbu, B. 1999. Association of Cd, Zn, Cu y Ni with components in naturally heavy metal rich soils studied by parallel and sequential extraction. Commun. Soil Sci. Plant Anal., 30, 1209-1230. https://doi.org/10.1080/00103629909370279 Nederlof, M.M., Van-Riemsdijk, W.H., De Haan, F.A.M. 1993. Effect of pH on the bioavailability of eetals in soils. In: Eijsackers, H.J.P. Hamers T. (Eds) Integrated Soil and Sediment Research: A Basis for Proper Protection. Soil and Environment, Springer, Dordrecht. Novello, O.A., Quintero, C. E. 2009. Contenidos de fósforo total en suelos distrito Villa Eloisa (Santa Fé). Inf. Agronómicas, 41, 11-15. NTC-Norma Técnica Colombiana - 5264. 2008. Calidad de Suelo, Determinación del pH. Bogotá, D. C, Colombia. NTC-Norma Técnica Colombiana - 5889. 2011. Análisis de Suelos, Determinación del Nitrógeno Total. Bogotá, D. C, Colombia. 8p. NTC-Norma Técnica Colombiana - 5268. 2014. Calidad de Suelo. Determinación de la capacidad de intercambio catiónico. Bogotá, D. C, Colombia. 8p. Olsen, S.R., C.V. Cole, F.S. Watanabe., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ. 939. Poot, A., Gillissen, F., Koelmans, A. 2007. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environ Pollut., 148, 779–787. http://dx.doi.org/10.1016/j.envpol.2007.01.045 Puga, S., Sosa, M., Lebgue, T., Quintana, C., Campos, A. 2006. Contaminación por metales pesados en el suelo provocado por la industria minera. Ecología Aplicada, 5, 1–2, 149-155. Reichaman, M.S. 2002. The responses of plants to metals toxicity: A review focusing on copper, manganese and zinc. Australian Minerals and Energy Environment Foundation 54p. Melbourne, Australia. Roqueme, J., Pinedo, J., Marrugo, J., Aparicio, A. 2014. Metales pesados en suelos agrícolas del valle medio y bajo del rio Sinú, departamento de Córdoba. Memorias del II Seminario de Ciencias Ambientales Sue-Caribe & VII Seminario Internacional de Gestión Ambiental, 2014. Universidad de Córdoba, Montería. Colombia. Rueda-Saá, G., Rodríguez-Victoria, J.A., Madriñán-Molina, R. 2011. Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. AcAg., 60, 3, 203-218. Ruíz-Cabarcas, A.C., Pabón-Caicedo, J.D. 2013. Efecto de los fenómenos del niño y la niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico, Colombia. Cuad. Geogr., 22, 2, 35–54. Silva S.M., Correa F.J. 2009. Análisis de la contaminación del suelo: revisión de la normativa y posibilidades de regulación económica. Semestre Económico, 12, 23, 13-34 Silveira, M., Alleoni, L., Guilherme, L. 2003. Biosolids and heavy metals in soils. Sci. Agric. (Piracicaba, Braz.), 60, 4, 793–806. http://dx.doi.org/10.1590/S0103-90162003000400029 Simón, M., Peralta, N., Costa, J.L. 2013. Relación entre conductividad eléctrica aparente con propiedades del suelo y nutrientes. Cienc. Suelo, 31, 1, 45-55. Suñer, L., Galantini, J., Rosell, R., Chamadoira. M. 2001. Cambios en el contenido de las formas de fósforo en suelos de la región semiárida pampeana cultivados con trigo. Revista Fac. Agron., 104, 2, 113-119. Sparks, D. L. 2003. Environmental Soil Chemistry. Second edition. CA: Academic Press. San Diego, CA., 352. Takáč, P., Szabová, T., Kozáková, Ľ., Benková, M. 2009. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ., 55, 4, 167-172 Tomlinson, D.C., Wilson, D.J., Harris, C.R., Jeffrey D.W. 1980. Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeres., 33, 1–4, 566–575. Torregroza‑Espinosa, A.C., Martínez‑Mera, E.A., Castañeda‑Valbuena, D., González Márquez, L.C., Torres‑Bejarano, F.M. 2018. Contamination level and spatial distribution of heavy metals in wáter and sediments of El Guájaro Reservoir, Colombia. Bull. Environ. Contam. Toxicol., 101, 61-67. https://doi.org/10.1007/s00128-018-2365-x UPRA–Unidad de Planificación Rural Agropecuaria. 2013. Uso agrícola. En UPRA, Leyenda de usos agropecuarios del suelo. Bogotá: Imprenta Nacional. US-EPA, United States-Environmental Protection Agency. 2007a. SW-846 Test Method 8081B: Organochlorine pesticides by gas chromatography. p 57. US-EPA, United States-Environmental Protection Agency. 2007b. SW-846 Test Method 8141B: Organophosphorus pesticides by gas chromatography. p. 57. US-EPA, United States-Environmental Protection Agency. 2007c. SW-846 Test Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. p. 30. US-EPA, United States-Environmental Protection Agency. 2007d. SW-846 Test Method 7471B: Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique). p. 11. Uzcátegui, J., Araujo, Y., Mendoza, L. 2011. Residuos de plaguicidas organoclorados y su relación con paramétros físicoquímicos en suelos del municipio Pueblo Llano, Estado Mérida. Bioagro, 23, 2, 115-120. Vallejo, P., Vásquez, L., Correa, I., Bernal, G., Alcántara, J., Palacio, J. 2016. Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar. Pollut. Bull., 111(1-2), 311-320. https://doi.org/10.1016/j.marpolbul.2016.06.093 Wu, G., Wu, J.Y., Shao, H.B. 2012. Hazardous heavy metal distribution in Dahuofang Catchment, Fushun, Liaoning, an important industry city in China: A Case Study. Clean - Soil, Air, Water, 40, 12, 1372–1375. http://doi.org/ 10.1002/clen.201000589 Yacomelo, M. 2014. Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, en el sur del Atlántico, Colombia. Tesis Maestría. Universidad Nacional de Colombia. Yap, B.P., Sim, C.H. 2011. Comparisons of various types of normality tests. J. Stat. Comput. Sim., 81, 12, 2141-2155. https://doi.org/10.1080/00949655.2010.520163.ord Weather Online. 2018. Available at https://www.worldweatheronline.com/lang/en-au/repelon-weather-averages/atlantico/co.aspx [Accessed 04 March 2018]. Wuana, R.A., Okieimen, F.E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Notices. Article ID 402647, 20 pages. |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a1de6aae-14a9-4f86-aefc-3683e5e23170/download https://repositorio.cuc.edu.co/bitstreams/21f8cb07-2920-4552-be68-c49cf68b6aaf/download https://repositorio.cuc.edu.co/bitstreams/2cd74a26-4e8f-4c29-8926-28e6c2df7ee2/download https://repositorio.cuc.edu.co/bitstreams/31980833-1839-452c-af45-89696fb5fe51/download https://repositorio.cuc.edu.co/bitstreams/5d175dcc-e9ce-42f1-ba94-0bc15acf07f7/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 437a28a70a979f1212445a629580326d 510951ddfc7624ca0d329c8083593c8a 5239f70e686450b0e8f11b80b9470f8c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760832043810816 |
spelling |
Martínez Mera, Eliana AndreaTorregroza Espinosa, Ana CarolinaCrissien Borrero, Tito JoséMarrugo Negrete, José LuisGonzález Márquez, Luis Carlos2019-09-02T19:36:31Z2019-09-02T19:36:31Z2019https://hdl.handle.net/11323/5232Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study evaluated the concentration and distribution of heavy metals (HM) (Cr, Ni, Pb, Cd, Hg, and Zn) and pesticides (organochlorine and organophosphorus) and the relationship of these pollutants with the physicochemical properties of agricultural soils in an Irrigation District (ID) in Colombia. Soils samples were analyzed for pH, humidity, organic matter, P total, N total, electric conductivity (EC), cation exchange capacity, and texture (% sand, clay and silt). Canonical correlation was used to determined relationship between soil properties and HM. Soil pollution were evaluated with geoaccumulation index (Igeo), contamination factor (CF), degree of contamination (Cdeg) and pollution load index (PLI). The results indicated that, in general, the soils had adequate physicochemical conditions for the establishment and development of crops. The presence of pesticides in the soils was not reported. However, concentrations HM was detected (Zn > Cr > Ni > Pb > Hg > Cd). The soil characteristics (silt, clay, pH and EC) contributed to explain HM concentrations. The Igeo indicated that the soils are heavily contaminated with Hg (3 < Igeo<4). The CF was very high for Hg (>6). The Cdeg presented moderate to considerable variations (>6Cdeg<24). The PLI indicated that the soils are contaminated (1.308). The presence of HM may be associated with the agricultural and quarries activities carried out near the ID. The impact caused by high concentrations of HM can lead environmental, economic and social impacts in the study zone.Universidad de la Costa, Universidad Autónoma de Nayarit, Universidad de Córdoba, Universidad Autónoma de Occidente.Martínez Mera, Eliana AndreaTorregroza Espinosa, Ana CarolinaCrissien Borrero, Tito JoséMarrugo Negrete, José LuisGonzález Márquez, Luis CarlosengUniversidad de la Costahttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agricultural soilsIrrigation districtColombiaEvaluation of contaminants in agricultural soils in an irrigation district in ColombiaPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAhumada, I., Mendoza, J., Ascar, L. 1999. Sequential extraction of heavy metals in soils irrigated with wastewater. Commun. Soil Sci. Plant Anal., 30, 1507-1519. https://doi.org/10.1080/00103629909370303 Alcaldía de Repelón-Atlántico. 2016. Información general. [Online] Available at: http://www.repelon-atlantico.gov.co/informacion_general.shtml#geografia [Accessed 15 March 2017]. Alcaldía de Repelón-Atlántico. 2017. Información general. [Online] Available at: http://www.repelonatlantico.gov.co/index.shtml?apc=gbxx2760911&sh_itm=98bd43dd20b101b40297b595248a69a4&add_disc=1. [Accessed 20 November 2017]. Alloway, B.J. 2013. Sources of heavy metals and metalloids in soils. In Heavy metals in soils (Alloway, B.J. Ed.). Trace Metals and Metalloids in Soils and their Bioavailability. Third edition. Springer, 11-50. http://doi.org/10.1007/987-94-007-4470-7 Andrades, M., Martínez, E. 2014. Fertilidad del suelo y parámetros que la definen. Tercera Edición. Universidad de la Rioja. Logroño: España, 34. Angelova, V.R., Akova, V.I., Artinova, N.S., Ivanov, K.I. 2013. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci., 19, 5, 958-971. Antoniadis, V., Robinson, J., Alloway, B. 2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere, 71, 759–764. http://doi:10.1016/j.chemosphere.2007.10.015 Basta, N.T., Ryan, J.A., Chaney, L. 2005. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual, 34, 49–63. Bautista-Cruz, A., Etchevers-Barra, J., Del Castillo, R. F., Gutiérrez, C. 2004. La calidad del suelo y sus indicadores. Ecosistemas, 13, 2, 90-97. Belmonte-Serrato, F., Romero-Díaz, A., Moreno-Brotóns, J. 2010. Contaminación ambiental por estériles mineros en un espacio turístico en desarrollo, la sierra minera de Cartagena-La Unión (sureste de España). Cuad. Turismo, 25, 11-24. Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. [Online] Available at: 8310https://repository.library.noaa.gov/view/noaa/9327. [Accessed 16 November 2017]. Carrillo, R., Cajuste, L. 1995. Behavior of trace metals in soils of Hidalgo, México. J. Environ. Sci. Health. B., 30, 143-155. Castellanos, J. 2016. Manual para la interpretación de análisis de suelo. [Online] Available at: http://www.fec-chiapas.com.mx/sistema/biblioteca_digital/guia-de-interpretacion-de-analisis-de-suelos-y-aguas-intagri-3.pdf/. [Accessed 28 October 2017]. Cornejo, J., Jamet, P. 2000. Pesticide/soil interactions: some current research methods. Institut National de la Recherche Agronomique (INRA). Paris, Francia. Chen, X., Xia, X., Zhao, Y., Zhang P. 2010. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater., 181, 1-3, 640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060 Climate, Data. 2017. National Center for Environmental Information. [Online] Available at: http://es.climate-data.org/location/50352/. [Accessed 1 March 2017]. CRA – CRADIQUE, Corporación Autónoma Regional del Atlántico y Corporación Autónoma del Canal del Dique. 2002. Ministerio del Medio Ambiente – Colombia. 243p. CRA - Corporación Autónoma Regional del Atlántico. 2014. Diagnóstico inicial para el ordenamiento del embalse El Guájaro y la ciénaga de Luruaco. Barranquilla, Atlántico. De Alba, S., Torri, D.; Borselli, L., Lindstrom, M. 2003. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J. Soil Sci. 10, 3, 93-101. FAO-United Nations Food and Agriculture Organization. 2018. World agriculture: towards 2015/2030. In: Food and agriculture in national and international environments. Available at http://www.fao.org/docrep/004/y3557s/y3557s07.htm. [Accessed 29 January 2019]. Galán-Huertos, E., Romero-Baena, A. 2008. Contaminación de suelos por metales pesados. Macla, 10, 48-60. García, Y., Ramírez, W., Sánchez, S. 2012. Indicadores de la calidad de los suelos: una nueva manera de evaluar este recurso. Pastos y Forrajes, 35, 2, 125-138. Gaw, S. K., Wilkins, A. L., Kim, N. D., Palmer, G. T., Robinson, P. 2006. Trace elements and ΣDDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand. Sci. Total Environ., 355, 1–3, 31-47 https://doi.org/10.1016/j.scitotenv.2005.02.020 Gilden R. C., Huffling K., B. Sattle. 2010. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs., 39, 1, 103-10. https://doi.org/10.1111/j.1552-6909.2009.01092.x Gimeno-García, E., Andreu, V., Boluda, R. 1996. Incidence of heavy metals in the application of inorganic fertilizers to rice farming soils (Valencia, Spain). In: Rodriguez-Barrueco C. (Eds) Fertilizers and Environment. Dev. Plant Soil Sci. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1586-2_85 Guangwei, D., Xiaobing, L., Stephen, H., Jeffrey, N., Dula, A., Baoshan, X. 2006. Effect of cover crop management on soil organic matter. Geoderma, 130, 3-4, 229-239. https://doi.org/10.1016/j.geoderma.2005.01.019 Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., 14, 975–1001. Hoskins, B. 2017. Interpreting soil test results for gardens and grounds. Maine Soil Testing Service. University of Maine. [Online] Available at https://extension.umaine.edu/gardening/manual/soils/interpretting-soil-tests/. [Accessed 19 November 2017]. ICA-Instituto Colombiano Agropecuario. [Online] Available at https://www.ica.gov.co/getdoc/b2e5ff99-bd80-45e8-aa7a-e55f0b5b42dc/PLAGUICIDAS-PROHIBIDOS.aspx. [Accessed 19 November 2017]. IDEAM- Instituto de Hidrología, Meteorología y Estudios Ambientales. 2017. Estudio Nacional del Agua. Bogotá a, D.C. 253p. IGAC- Instituto Geográfico Agustín Codazzi. 2006. Métodos Analíticos del Laboratorio de Suelos Sexta edición. Bogotá: Imprenta Nacional de Colombia. 647p. IGAC- Instituto Geográfico Agustín Codazzi. 2008. Estudio general de suelos y zonificación de tierras. Departamento del Atlántico. Bogotá: Imprenta Nacional de Colombia. 324p. Iqbal, J., Saleem, M., Shah, M.H. 2016. Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem. Erde-Geochem, 76, 1, 171–177. http://doi.org/10.1016/j.chemer.2016.02.002 Iwata, S., Tabuchi, T., Warkentin, B.P. 1994. Soil-Water Interactions: Mechanisms Applications. Second edition. CRC, Press, New York. 464p. Jaurixje, M., Torres, D., Mendoza, B., Henríquez, M., Contreras, J. 2013. Propiedades físicas y químicas del suelo y su relación con la actividad biológica bajo diferentes manejos en la zona de Quíbor, Estado Lara. Bioagro, 25, 1, 47-56. Jiao, W., Chen, W., Chang, A.C., Page, A.L. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizer applications: a review. Environ. Pollut., 168, 44-53. https://doi.org/10.1016/j.envpol.2012.03.052. Jung, M.C. 2008. Heavy Metal concentrations in soils and factors affecting metal uptake by plants in the Vicinity of a Korean Cu-W Mine. Sensors (Basel), 8, 4, 2413–2423. Kabata-Pendias, A. 2011. Trace elements in soils and plants. Fourth edition. CRC, Press, Boca Ratón, FL, USA., 505p. Kashem, M.A., Singh, B.R. 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosys., 61, 3, 247-255. https://doi.org/10.1023/A:1013762204510 Kim, H.K., Jang, T.I., Kim, S.M., Park, S.W. 2015. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci., 73, 5, 2377-2383. https://doi.org/10.1007/s12665-014-3581-2 Marković, M., Cupać, C., Đurović, R., Milinović, J., Kljajić, P. 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch. Environ. Contam. Toxicol., 58, 2, 341-51. http://doi.org/10.1007/s00244-009-9359 Marrugo-Negrete, J. Pinedo-Hernández, J., Díez, S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res., 154, 380-388. http://dx.doi.org/10.1016/j.envres.2017.01.021. Martínez, E., Fuente, J., Acevedo, E. 2008. Carbono orgánico y propiedades del suelo. J. Soil Sci. Plant Nutr., 8, 1, 68-96. Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Valencia-García, A., Rojas-Gerónimo, L. 2017. Distribution of nitrogen fixing bacterial isolates and its relationship to the physicochemical characteristics of southern agricultural soils of the Atlántico department, Colombia. Soil Environ., 36, 2, 174-181. http://doi.org/10.25252/SE/17/51202 Melo, V.F.; Novais, R.F.; Fontes, M.P.F.; Schaefer, C.E.G.R. 2000. Potassium and magnesium minerals from sand and silt fractions of different soils. Rev. Bras. Cienc. Solo., 24: 269-284. http://dx.doi.org/10.1590/S0100-06832000000200004 Mir-Mohammad, A., Mohammad-Lokman, A., Md.-Saiful, I., Md.-Zillur, R. 2016. Preliminary assessment of heavy metal in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manage., 5, 27-35. https://doi.org/10.1016/j.enmm.2016.01.002 Müller, G. 1981. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflu¨sse. Chem. Ztg., 6, 157– 64. McKenzie, R. 2013. Soil Salinity - Causes and Management. [Online] Available at http://www.thecropsite.com/articles/1500/soil-salinity-causes-and-management/. [Accessed 12 December 2017]. Narváez, J., Palacio, J., Molina, F. 2012. Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes. Gest. Ambiente, 15, 3, 27-38. Narwal, R.P., Singh, B.R., Selbu, B. 1999. Association of Cd, Zn, Cu y Ni with components in naturally heavy metal rich soils studied by parallel and sequential extraction. Commun. Soil Sci. Plant Anal., 30, 1209-1230. https://doi.org/10.1080/00103629909370279 Nederlof, M.M., Van-Riemsdijk, W.H., De Haan, F.A.M. 1993. Effect of pH on the bioavailability of eetals in soils. In: Eijsackers, H.J.P. Hamers T. (Eds) Integrated Soil and Sediment Research: A Basis for Proper Protection. Soil and Environment, Springer, Dordrecht. Novello, O.A., Quintero, C. E. 2009. Contenidos de fósforo total en suelos distrito Villa Eloisa (Santa Fé). Inf. Agronómicas, 41, 11-15. NTC-Norma Técnica Colombiana - 5264. 2008. Calidad de Suelo, Determinación del pH. Bogotá, D. C, Colombia. NTC-Norma Técnica Colombiana - 5889. 2011. Análisis de Suelos, Determinación del Nitrógeno Total. Bogotá, D. C, Colombia. 8p. NTC-Norma Técnica Colombiana - 5268. 2014. Calidad de Suelo. Determinación de la capacidad de intercambio catiónico. Bogotá, D. C, Colombia. 8p. Olsen, S.R., C.V. Cole, F.S. Watanabe., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ. 939. Poot, A., Gillissen, F., Koelmans, A. 2007. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environ Pollut., 148, 779–787. http://dx.doi.org/10.1016/j.envpol.2007.01.045 Puga, S., Sosa, M., Lebgue, T., Quintana, C., Campos, A. 2006. Contaminación por metales pesados en el suelo provocado por la industria minera. Ecología Aplicada, 5, 1–2, 149-155. Reichaman, M.S. 2002. The responses of plants to metals toxicity: A review focusing on copper, manganese and zinc. Australian Minerals and Energy Environment Foundation 54p. Melbourne, Australia. Roqueme, J., Pinedo, J., Marrugo, J., Aparicio, A. 2014. Metales pesados en suelos agrícolas del valle medio y bajo del rio Sinú, departamento de Córdoba. Memorias del II Seminario de Ciencias Ambientales Sue-Caribe & VII Seminario Internacional de Gestión Ambiental, 2014. Universidad de Córdoba, Montería. Colombia. Rueda-Saá, G., Rodríguez-Victoria, J.A., Madriñán-Molina, R. 2011. Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. AcAg., 60, 3, 203-218. Ruíz-Cabarcas, A.C., Pabón-Caicedo, J.D. 2013. Efecto de los fenómenos del niño y la niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico, Colombia. Cuad. Geogr., 22, 2, 35–54. Silva S.M., Correa F.J. 2009. Análisis de la contaminación del suelo: revisión de la normativa y posibilidades de regulación económica. Semestre Económico, 12, 23, 13-34 Silveira, M., Alleoni, L., Guilherme, L. 2003. Biosolids and heavy metals in soils. Sci. Agric. (Piracicaba, Braz.), 60, 4, 793–806. http://dx.doi.org/10.1590/S0103-90162003000400029 Simón, M., Peralta, N., Costa, J.L. 2013. Relación entre conductividad eléctrica aparente con propiedades del suelo y nutrientes. Cienc. Suelo, 31, 1, 45-55. Suñer, L., Galantini, J., Rosell, R., Chamadoira. M. 2001. Cambios en el contenido de las formas de fósforo en suelos de la región semiárida pampeana cultivados con trigo. Revista Fac. Agron., 104, 2, 113-119. Sparks, D. L. 2003. Environmental Soil Chemistry. Second edition. CA: Academic Press. San Diego, CA., 352. Takáč, P., Szabová, T., Kozáková, Ľ., Benková, M. 2009. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ., 55, 4, 167-172 Tomlinson, D.C., Wilson, D.J., Harris, C.R., Jeffrey D.W. 1980. Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeres., 33, 1–4, 566–575. Torregroza‑Espinosa, A.C., Martínez‑Mera, E.A., Castañeda‑Valbuena, D., González Márquez, L.C., Torres‑Bejarano, F.M. 2018. Contamination level and spatial distribution of heavy metals in wáter and sediments of El Guájaro Reservoir, Colombia. Bull. Environ. Contam. Toxicol., 101, 61-67. https://doi.org/10.1007/s00128-018-2365-x UPRA–Unidad de Planificación Rural Agropecuaria. 2013. Uso agrícola. En UPRA, Leyenda de usos agropecuarios del suelo. Bogotá: Imprenta Nacional. US-EPA, United States-Environmental Protection Agency. 2007a. SW-846 Test Method 8081B: Organochlorine pesticides by gas chromatography. p 57. US-EPA, United States-Environmental Protection Agency. 2007b. SW-846 Test Method 8141B: Organophosphorus pesticides by gas chromatography. p. 57. US-EPA, United States-Environmental Protection Agency. 2007c. SW-846 Test Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. p. 30. US-EPA, United States-Environmental Protection Agency. 2007d. SW-846 Test Method 7471B: Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique). p. 11. Uzcátegui, J., Araujo, Y., Mendoza, L. 2011. Residuos de plaguicidas organoclorados y su relación con paramétros físicoquímicos en suelos del municipio Pueblo Llano, Estado Mérida. Bioagro, 23, 2, 115-120. Vallejo, P., Vásquez, L., Correa, I., Bernal, G., Alcántara, J., Palacio, J. 2016. Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar. Pollut. Bull., 111(1-2), 311-320. https://doi.org/10.1016/j.marpolbul.2016.06.093 Wu, G., Wu, J.Y., Shao, H.B. 2012. Hazardous heavy metal distribution in Dahuofang Catchment, Fushun, Liaoning, an important industry city in China: A Case Study. Clean - Soil, Air, Water, 40, 12, 1372–1375. http://doi.org/ 10.1002/clen.201000589 Yacomelo, M. 2014. Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, en el sur del Atlántico, Colombia. Tesis Maestría. Universidad Nacional de Colombia. Yap, B.P., Sim, C.H. 2011. Comparisons of various types of normality tests. J. Stat. Comput. Sim., 81, 12, 2141-2155. https://doi.org/10.1080/00949655.2010.520163.ord Weather Online. 2018. Available at https://www.worldweatheronline.com/lang/en-au/repelon-weather-averages/atlantico/co.aspx [Accessed 04 March 2018]. Wuana, R.A., Okieimen, F.E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Notices. Article ID 402647, 20 pages.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a1de6aae-14a9-4f86-aefc-3683e5e23170/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/21f8cb07-2920-4552-be68-c49cf68b6aaf/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdfEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdfapplication/pdf636117https://repositorio.cuc.edu.co/bitstreams/2cd74a26-4e8f-4c29-8926-28e6c2df7ee2/download437a28a70a979f1212445a629580326dMD51THUMBNAILEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdf.jpgEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdf.jpgimage/jpeg64562https://repositorio.cuc.edu.co/bitstreams/31980833-1839-452c-af45-89696fb5fe51/download510951ddfc7624ca0d329c8083593c8aMD55TEXTEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdf.txtEVALUATION OF CONTAMINANTS IN AGRICULTURAL SOILS IN AN IRRIGATION DISTRICT IN COLOMBIA .pdf.txttext/plain61957https://repositorio.cuc.edu.co/bitstreams/5d175dcc-e9ce-42f1-ba94-0bc15acf07f7/download5239f70e686450b0e8f11b80b9470f8cMD5611323/5232oai:repositorio.cuc.edu.co:11323/52322024-09-17 14:07:10.802http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |