Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene
In this article, the pyrolysis and thermo-degradation of 11 virgin-polypropylene (virgin-PP) with different levels of arsenic in its polymer matrix, was carried out in a discontinuous quartz reactor at 500 °C. To quantify arsine (AsH3), 4 points were sampled during the PP synthesis process and a met...
- Autores:
-
Hernández-Fernández, Joaquin
Lopez-Martinez, Juan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9051
- Acceso en línea:
- https://hdl.handle.net/11323/9051
https://doi.org/10.1016/j.jaap.2021.105385
https://repositorio.cuc.edu.co/
- Palabra clave:
- Arsine
Virgin polypropylene
Autocatalysis
Degradation start
Free radicals
Pyrolysis
- Rights
- openAccess
- License
- © 2021 Elsevier B.V. All rights reserved.
id |
RCUC2_8a85060b396d286cb483cc13e142a932 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9051 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
title |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
spellingShingle |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene Arsine Virgin polypropylene Autocatalysis Degradation start Free radicals Pyrolysis |
title_short |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
title_full |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
title_fullStr |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
title_full_unstemmed |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
title_sort |
Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene |
dc.creator.fl_str_mv |
Hernández-Fernández, Joaquin Lopez-Martinez, Juan |
dc.contributor.author.spa.fl_str_mv |
Hernández-Fernández, Joaquin Lopez-Martinez, Juan |
dc.subject.proposal.eng.fl_str_mv |
Arsine Virgin polypropylene Autocatalysis Degradation start Free radicals Pyrolysis |
topic |
Arsine Virgin polypropylene Autocatalysis Degradation start Free radicals Pyrolysis |
description |
In this article, the pyrolysis and thermo-degradation of 11 virgin-polypropylene (virgin-PP) with different levels of arsenic in its polymer matrix, was carried out in a discontinuous quartz reactor at 500 °C. To quantify arsine (AsH3), 4 points were sampled during the PP synthesis process and a methodology was applied by GC with 4 detectors, which simultaneously and with a single injection allowed to quantify multiple components. AsH3 in propylene varied between 0.05 and 4.73 ppm and arsenic in virgin-PP residues between 0.001 and 4.32 ppm for PP0 and PP10. These generated an increase in the melt flow index from 3.0 to 24.51 and maintained a direct relationship with an R2 of 0.9993. The origin of thermo-oxidative degradation and the beginnings of virgin-PP pyrolysis are explained by the formation to aldehyde, ketone, alcohol, carboxylic acid functional groups, CO and CO2. These species caused TG and DTG curves to have atypical behavior for PP. For example, PP10 with an arsenic content of 4.32 ppm presented 3 degradation peaks at 80, 90 and 200 °C with a mass loss ratio of 22%, 18% and 55% °C−1 respectively. During pyrolysis the highest percentage of alkanes was found in PP0 with an average value of 62.4%, and the lowest values were found in PP8 to PP10, with oscillations between 0% and 1.4%. The total concentration of oxidized species for PP0 to PP10 was 2.26%, 32.7%, 43.1%, 50.9%, 59.3%, 66.2%, 75.0%, 83.0%, 89.1% and 97.5% respectively. In an O2 atmosphere ketones and carboxylic acids were only identified in PP0 to PP5. CO2 concentrations in PP5 to PP10 were of 100%. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-04T23:06:37Z |
dc.date.available.none.fl_str_mv |
2022-03-04T23:06:37Z 2024 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0165-2370 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9051 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.jaap.2021.105385 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.jaap.2021.105385 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0165-2370 10.1016/j.jaap.2021.105385 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9051 https://doi.org/10.1016/j.jaap.2021.105385 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Analytical and Applied Pyrolysis |
dc.relation.references.spa.fl_str_mv |
[1] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization, J. Chromatogr. A 2020 (1614) 460736–460743. [2] R. Gras, J. Luong, M. Hawryluk, M. Monagle, Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector, J. Chromatogr. A 1217 (2010) 348–352. [3] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987. [4] J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier, Oxford, 2004. [5] C.A. McAuliffe, W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979. [6] (a) P.W.N.M. van Leeuwen, Homogeneous Catalysis Understanding the Art, Kluwer Academic Publishers, Dordrecht, 2004; (b) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, fourth ed., John Wiley & Sons,, 2005. [7] W. Levason, G. Reid, Developments in the coordination chemistry of stibine ligands, Coord. Chem. Rev 250 (2006) 2565–2594. [8] A.G. Orpen, N.G. Connelly, Structural systematics: the role of P-A.sigma.* orbitals in metal-phosphorus.pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl, Organometallics 9 (1990) 1206–1210. [9] L. Cavallo, S. Del Piero, J.-M. Duc´er´e, R. Fedele, A. Melchior, G. Morini, F. Piemontesi, M. Tolazzi, Key interactions in heterogeneous Ziegler− Natta catalytic systems: structure and energetics of TiCl4− Lewis base complexes, J. Phys. Chem. C 111 (2007) 4412–4419. [10] N. Bahri-Laleh, M. Nekoomanesh-Haghighi, S.A. Mirmohammadi, A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst, J. Organomet. Chem. 719 (2012) 74–79. [11] A. Correa, N. Bahri-Laleh, L. Cavallo, How well can DFT reproduce key interactions in Ziegler–Natta systems, Macromol. Chem. Phys. 214 (2013) 1980–1989. [12] V. Nikolaevna Panchenko, L. Viktorovna Vorontsova, V. Aleksandrovich Zakharov, Ziegler-Natta catalysts for propylene polymerization – interaction of an external donor with the catalyst, Polyolefins J. 4 (2017) 87–97. [13] M. Nikolaeva, T. Mikenas, M. Matsko, V. Zakharov, Effect of AlEt3 and an external donor on the distribution of active sites according to their stereospecificity in propylene polymerization over TiCl4/MgCl2 catalysts with different titanium content, Macromol. Chem. Phys. 217 (2016) 1384–1395. [14] E.I. Vizen, L.A. Rishina, L.N. Sosnovskaja, F.S. Dyachkovsky, I.L. Dubnikova, T. A. Ladygina, Study of hydrogen effect in propylene polymerization on (with) the MgCl2 supported Ziegler-natta catalyst- part 2. Effect of CS2 on polymerization centres, Eur. Polym. J. 30 (1994) 1315–1318. [15] K. Kallio, A. Wartmann, K.H. Reichert, Reactivation of a poisoned metallocene catalyst by irradiation with visible light, Macromol. Rapid Commun. 23 (2002) 187–190. [16] N. Bahri-Laleh, Interaction of different poisons with MgCl2/TiCl4 based ZieglerNatta catalysts, Appl. Surf. Sci. 379 (2016) 395–401. [17] S. Pasynkiewicz, Reactions of organoaluminium compounds with electron donors, Pure Appl. Chem. 30 (1972) 509–522. [18] J. Hernandez-Fernandez, Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in Polypropylene production on an industrial scale, J. Chromatogr. A 2020 (1628) 461478–461489. [19] R.J.H. Clark, in: J.C. Bailar, H.J. Emeleus, R.S. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 3, Pergamon, Oxford, 1973. Ch. 3. [20] C.A. McAuliffe, D.S. Barratt, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry I, vol. 3, Pergamon, Oxford, 1987 (Ch. 31). [21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437. [22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204. [23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95. [24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86. [25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34. [26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284. [27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105. [21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437. [22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204. [23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95. [24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86. [25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34. [26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284. [27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105. [28] M.N. Almustapha, J.M. Andr´esen, Recovery of valuable chemicals from high density polyethylene (HDPE) polymer: a catalytic approach for plastic waste recycling, Int. J. Environ. Sci. Dev. 3 (2012) 3–267. [29] D.C. Tiwari, E. Ahmad, K.K. Kumar Singh, Catalytic degradation of waste plastic into fuel range hydrocarbons, Int. J. Chem. Res. 1 (2) (2009) 31–36. [30] M.F. Ali, M.S. Qureshi, Catalyzed pyrolysis of plastics: a thermogravimetric study, Afr, J. Pure Appl. Chem. 5 (9) (2011) 284–292. [31] G. De la Puente, C. Klocker, U. Sedran, Conversion of waste plastics into fuels recycling polyethylene in FCC, Appl. Catal. B: Environ. 36 (2002) 279–285. [32] K.H. Lee, Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst, Polym. Degrad. Stab. 93 (2008) 1284–1289. [33] S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel, Fuel 192 (2017) 71–82. [34] R. Miandad, M.A. Barakat, A.S. Aburiazaiza, M. Rehan, A.S. Nizami, Catalytic pyrolysis of plastic waste: a review, Process Saf. Environ. Prot. 102 (2016) 822–838. [35] Y. Sakata, M.A. Uddin, A. Muto, Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts, J. Anal. Appl. Pyrolysis 51 (1999) 135–155. [36] S. Thornberg, R. Bernstein, A. Irwin, D. Derzon, S. Klamo, R. Clough, The genesis of CO2 and CO in the thermooxidative degradation of polypropylene, Polym. Degrad. Stab. 92 (2007) 94–102. [37] R. Bernstein, S. Thornberg, R. Assink, A. Irwin, J. Hochrein, J. Brown, D. Derzon, S. Klamo, R. Clough, The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labeling, Polym. Degrad. Stab. 92 (2007) 2076–2094. [38] J. Chien, C. Boss, Polymer reactions. V. Kinetics of autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967), 309-101. [39] J. Chien, C. Boss, Polymer reactions. VI. Inhibited autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967) 1683–1697. [40] J. Chien, E. Vandenberg, H. Jabloner, Polymer reactions. III. Structure of polypropylene hydroperoxide, J. Polym. Sci.,Part A: Polym. Chem. 6 (1968) 381–392. [41] D. Carlsson, D. Wiles, The photodegradation of polypropylene fiof pol. Photolysis of ketonic oxidation products, Macromolecules 2 (1969) 587–597. [42] D. Carlsson, D. Wiles, The photodegradation of polypropylene films.III. Photolysis of polypropylene hydroperoxides, Macromolecules 2 (1969) 597–606. [43] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene I. Thermal oxidation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1077–1090. [44] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene II. Process degradation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1269–1277. [45] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene III. Photodegradation, J. Polym. Sci. Part A: Polym. Chem. 8 (1970) 1279–1288. [46] C. Decker, F. Mayo, Aging and degradation of polyolefins. II.ϒ-Initiatedoxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2847–2877. [47] E. Niki, C. Decker, F. Mayo, Aging and degradation of polyolefins. I.Peroxideinitiated oxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2813–2845. [48] G. Geuskens, M. Kabamba, Photo-oxidation of polymers - part V: a newchain scission mechanism in polyolefins, Polym. Degrad. Stab. 4 (1982) 69–76. [49] M. Iring, F. Tudos, Thermal oxidation of polyethylene and polypropylene:effects of chemical structure and reaction conditions on the oxidation process, Prog. Polym. Sci. 15 (1990) 217–262. [50] J. Hernandez-Fernandez, ´ E. Rodríguez, Determination of phenolic antioxidants additives in wastewater from polypropylene production using solid-phase extraction with high performance liquid chromatography, J. Chromatogr. A 2019 (1607) 460442–460448. [51] J. Hernandez-Fern ´ andez, ´ E. Rayon, ´ J. Lopez, ´ M. Arrieta, Enhancing the thermal stability of polypropylene by blending with low amounts of natural antioxidant, Macromol. Mater. Eng 304 (2019) 1900379–1900391. [52] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis, J. Anal. Appl. Pyrolysis 155 (2021) 105052–105064. [53] J. Suh, N. Kang, J. Lee, Direct determination of arsine in gases by inductively coupled plasma–dynamic reaction cell–mass spectrometry, Talanta 78 (2009) 321–325. [54] L. Helsen, Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review, Environ. Pollut. 137 (2005) 305–315. [55] M. Pantsar-Kallio, A. Korpela, Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry, Anal. Chim. Acta 410 (2000) 65–70. [56] R. Firor, B. Quimby, Dual-Channel Gas Chromatographic System for the Determination of Low-level Sulfur in Hydrocarbon Gases, Agilent Technologies Application Note 5988-8904EN, Agilent Technologies publisher, Wilmington, Delaware, USA, 2003. [57] M. Pantsar-Kallio, P. Manninen, Simultaneous determination of toxic arsenic and chromium species in water samples by ion chromatography-inductively coupled plasma mass spectrometry, J. Chromatogr. A 779 (1997) 139–146. [58] G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals a review, Renew. Sustain. Energy Rev. 73 (2017) 346–368. [59] C. Pavon, M. Aldas, J. Lopez-Martínez, ´ J. Hern´ andez-Fernandez, ´ M. Arrieta, Films based on thermoplastic starch blended with pine resin derivatives for food packaging, Foods 10 (2021) 1171–1186. [60] C. Pavon, M. Aldas, J. Hernandez-Fernandez, J. Lopez-Martínez, Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices, J. Appl. Polym. Sci. (2021) 51734–51743. [61] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry, J. Chromatogr. A 2021 (1637) 461833–461844. [62] J. Hernandez-Fern ´ andez, ´ Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions, Atmospheric Pollut. Res. 12 (2021) 167–176. [63] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene, J. Chromatogr. A 263 (2021) 128027–128038. |
dc.relation.citationendpage.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
161 |
dc.rights.spa.fl_str_mv |
© 2021 Elsevier B.V. All rights reserved. Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2021 Elsevier B.V. All rights reserved. Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0165237021003715 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a5dcf644-5991-4c76-8348-cb9c395dd4e4/download https://repositorio.cuc.edu.co/bitstreams/3d4ed5a8-4185-49fc-83de-c7b47a820b83/download https://repositorio.cuc.edu.co/bitstreams/862d375a-979a-4213-a999-708f93027a3d/download https://repositorio.cuc.edu.co/bitstreams/58ca1d1d-ce32-41eb-bf8d-7e1bd0f9608f/download |
bitstream.checksum.fl_str_mv |
c3f4f3e6b5448f914bbc139cb1f268f0 e30e9215131d99561d40d6b0abbe9bad da9efb84eed55b1988466f6b97e53c43 7e45e6d112d5f9748b27bd9755a3a1fc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760729699647488 |
spelling |
Hernández-Fernández, JoaquinLopez-Martinez, Juan2022-03-04T23:06:37Z20242022-03-04T23:06:37Z20220165-2370https://hdl.handle.net/11323/9051https://doi.org/10.1016/j.jaap.2021.10538510.1016/j.jaap.2021.105385Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this article, the pyrolysis and thermo-degradation of 11 virgin-polypropylene (virgin-PP) with different levels of arsenic in its polymer matrix, was carried out in a discontinuous quartz reactor at 500 °C. To quantify arsine (AsH3), 4 points were sampled during the PP synthesis process and a methodology was applied by GC with 4 detectors, which simultaneously and with a single injection allowed to quantify multiple components. AsH3 in propylene varied between 0.05 and 4.73 ppm and arsenic in virgin-PP residues between 0.001 and 4.32 ppm for PP0 and PP10. These generated an increase in the melt flow index from 3.0 to 24.51 and maintained a direct relationship with an R2 of 0.9993. The origin of thermo-oxidative degradation and the beginnings of virgin-PP pyrolysis are explained by the formation to aldehyde, ketone, alcohol, carboxylic acid functional groups, CO and CO2. These species caused TG and DTG curves to have atypical behavior for PP. For example, PP10 with an arsenic content of 4.32 ppm presented 3 degradation peaks at 80, 90 and 200 °C with a mass loss ratio of 22%, 18% and 55% °C−1 respectively. During pyrolysis the highest percentage of alkanes was found in PP0 with an average value of 62.4%, and the lowest values were found in PP8 to PP10, with oscillations between 0% and 1.4%. The total concentration of oxidized species for PP0 to PP10 was 2.26%, 32.7%, 43.1%, 50.9%, 59.3%, 66.2%, 75.0%, 83.0%, 89.1% and 97.5% respectively. In an O2 atmosphere ketones and carboxylic acids were only identified in PP0 to PP5. CO2 concentrations in PP5 to PP10 were of 100%.9 páginasapplication/pdfspaElsevierNetherlands© 2021 Elsevier B.V. All rights reserved.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropyleneArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S0165237021003715Journal of Analytical and Applied Pyrolysis[1] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization, J. Chromatogr. A 2020 (1614) 460736–460743.[2] R. Gras, J. Luong, M. Hawryluk, M. Monagle, Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector, J. Chromatogr. A 1217 (2010) 348–352.[3] G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987.[4] J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier, Oxford, 2004.[5] C.A. McAuliffe, W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.[6] (a) P.W.N.M. van Leeuwen, Homogeneous Catalysis Understanding the Art, Kluwer Academic Publishers, Dordrecht, 2004; (b) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, fourth ed., John Wiley & Sons,, 2005.[7] W. Levason, G. Reid, Developments in the coordination chemistry of stibine ligands, Coord. Chem. Rev 250 (2006) 2565–2594.[8] A.G. Orpen, N.G. Connelly, Structural systematics: the role of P-A.sigma.* orbitals in metal-phosphorus.pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl, Organometallics 9 (1990) 1206–1210.[9] L. Cavallo, S. Del Piero, J.-M. Duc´er´e, R. Fedele, A. Melchior, G. Morini, F. Piemontesi, M. Tolazzi, Key interactions in heterogeneous Ziegler− Natta catalytic systems: structure and energetics of TiCl4− Lewis base complexes, J. Phys. Chem. C 111 (2007) 4412–4419.[10] N. Bahri-Laleh, M. Nekoomanesh-Haghighi, S.A. Mirmohammadi, A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst, J. Organomet. Chem. 719 (2012) 74–79.[11] A. Correa, N. Bahri-Laleh, L. Cavallo, How well can DFT reproduce key interactions in Ziegler–Natta systems, Macromol. Chem. Phys. 214 (2013) 1980–1989.[12] V. Nikolaevna Panchenko, L. Viktorovna Vorontsova, V. Aleksandrovich Zakharov, Ziegler-Natta catalysts for propylene polymerization – interaction of an external donor with the catalyst, Polyolefins J. 4 (2017) 87–97.[13] M. Nikolaeva, T. Mikenas, M. Matsko, V. Zakharov, Effect of AlEt3 and an external donor on the distribution of active sites according to their stereospecificity in propylene polymerization over TiCl4/MgCl2 catalysts with different titanium content, Macromol. Chem. Phys. 217 (2016) 1384–1395.[14] E.I. Vizen, L.A. Rishina, L.N. Sosnovskaja, F.S. Dyachkovsky, I.L. Dubnikova, T. A. Ladygina, Study of hydrogen effect in propylene polymerization on (with) the MgCl2 supported Ziegler-natta catalyst- part 2. Effect of CS2 on polymerization centres, Eur. Polym. J. 30 (1994) 1315–1318.[15] K. Kallio, A. Wartmann, K.H. Reichert, Reactivation of a poisoned metallocene catalyst by irradiation with visible light, Macromol. Rapid Commun. 23 (2002) 187–190.[16] N. Bahri-Laleh, Interaction of different poisons with MgCl2/TiCl4 based ZieglerNatta catalysts, Appl. Surf. Sci. 379 (2016) 395–401.[17] S. Pasynkiewicz, Reactions of organoaluminium compounds with electron donors, Pure Appl. Chem. 30 (1972) 509–522.[18] J. Hernandez-Fernandez, Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in Polypropylene production on an industrial scale, J. Chromatogr. A 2020 (1628) 461478–461489.[19] R.J.H. Clark, in: J.C. Bailar, H.J. Emeleus, R.S. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 3, Pergamon, Oxford, 1973. Ch. 3.[20] C.A. McAuliffe, D.S. Barratt, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry I, vol. 3, Pergamon, Oxford, 1987 (Ch. 31).[21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437.[22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204.[23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95.[24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86.[25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34.[26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284.[27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105.[21] M.R. Jan, J. Shah, H. Gulab, Catalytic degradation of waste high-density polyethylene into fuel products using BaCO3 as a catalyst, Fuel Process. Technol. 91 (11) (2010) 1428–1437.[22] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor, J. Anal. Appl. Pyrolysis 95 (2012) 198–204.[23] M. Seifali Abbas-Abadi, M. Nekoomanesh Haghighi, H. Yeganeh, Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor, Fuel Process. Technol. 109 (2012) 90–95.[24] A. Marcilla, M.I. Beltr´ an, R. Navarro, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B: Environ. 86 (2009) 78–86.[25] E. Ahmad, S. Chadar, S.S. Tomar, M.K. Akram, Catalytic degradation of waste plastic into fuel oil, Int. J. Petrol. Sci. Technol. 3 (1) (2009) 25–34.[26] S.H. Jung, M.H. Cho, B.S. Kang, J.S. Kim, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Process. Technol. 91 (2010) 277–284.[27] M. Salman, R. Rehman, U. Shafique, T. Mahmud, B. Ali, Comparative thermal and catalytic recycling of low density polyethylene into diesel-like oil using different commercial catalysts, Electron. J. Environ. Agric. Food Chem. 11 (2) (2012) 96–105.[28] M.N. Almustapha, J.M. Andr´esen, Recovery of valuable chemicals from high density polyethylene (HDPE) polymer: a catalytic approach for plastic waste recycling, Int. J. Environ. Sci. Dev. 3 (2012) 3–267.[29] D.C. Tiwari, E. Ahmad, K.K. Kumar Singh, Catalytic degradation of waste plastic into fuel range hydrocarbons, Int. J. Chem. Res. 1 (2) (2009) 31–36.[30] M.F. Ali, M.S. Qureshi, Catalyzed pyrolysis of plastics: a thermogravimetric study, Afr, J. Pure Appl. Chem. 5 (9) (2011) 284–292.[31] G. De la Puente, C. Klocker, U. Sedran, Conversion of waste plastics into fuels recycling polyethylene in FCC, Appl. Catal. B: Environ. 36 (2002) 279–285.[32] K.H. Lee, Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst, Polym. Degrad. Stab. 93 (2008) 1284–1289.[33] S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel, Fuel 192 (2017) 71–82.[34] R. Miandad, M.A. Barakat, A.S. Aburiazaiza, M. Rehan, A.S. Nizami, Catalytic pyrolysis of plastic waste: a review, Process Saf. Environ. Prot. 102 (2016) 822–838.[35] Y. Sakata, M.A. Uddin, A. Muto, Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts, J. Anal. Appl. Pyrolysis 51 (1999) 135–155.[36] S. Thornberg, R. Bernstein, A. Irwin, D. Derzon, S. Klamo, R. Clough, The genesis of CO2 and CO in the thermooxidative degradation of polypropylene, Polym. Degrad. Stab. 92 (2007) 94–102.[37] R. Bernstein, S. Thornberg, R. Assink, A. Irwin, J. Hochrein, J. Brown, D. Derzon, S. Klamo, R. Clough, The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labeling, Polym. Degrad. Stab. 92 (2007) 2076–2094.[38] J. Chien, C. Boss, Polymer reactions. V. Kinetics of autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967), 309-101.[39] J. Chien, C. Boss, Polymer reactions. VI. Inhibited autoxidation of polypropylene, J. Polym. Sci.,Part A: Polym. Chem. 5 (1967) 1683–1697.[40] J. Chien, E. Vandenberg, H. Jabloner, Polymer reactions. III. Structure of polypropylene hydroperoxide, J. Polym. Sci.,Part A: Polym. Chem. 6 (1968) 381–392.[41] D. Carlsson, D. Wiles, The photodegradation of polypropylene fiof pol. Photolysis of ketonic oxidation products, Macromolecules 2 (1969) 587–597.[42] D. Carlsson, D. Wiles, The photodegradation of polypropylene films.III. Photolysis of polypropylene hydroperoxides, Macromolecules 2 (1969) 597–606.[43] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene I. Thermal oxidation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1077–1090.[44] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene II. Process degradation, J. Polym. Sci.,Part A: Polym. Chem. 8 (1970) 1269–1277.[45] J. Adams, Analysis of the nonvolatile oxidation products of polypropyl-ene III. Photodegradation, J. Polym. Sci. Part A: Polym. Chem. 8 (1970) 1279–1288.[46] C. Decker, F. Mayo, Aging and degradation of polyolefins. II.ϒ-Initiatedoxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2847–2877.[47] E. Niki, C. Decker, F. Mayo, Aging and degradation of polyolefins. I.Peroxideinitiated oxidations of atactic polypropylene, J. Polym. Sci. Part A: Polym. Chem. 11 (1973) 2813–2845.[48] G. Geuskens, M. Kabamba, Photo-oxidation of polymers - part V: a newchain scission mechanism in polyolefins, Polym. Degrad. Stab. 4 (1982) 69–76.[49] M. Iring, F. Tudos, Thermal oxidation of polyethylene and polypropylene:effects of chemical structure and reaction conditions on the oxidation process, Prog. Polym. Sci. 15 (1990) 217–262.[50] J. Hernandez-Fernandez, ´ E. Rodríguez, Determination of phenolic antioxidants additives in wastewater from polypropylene production using solid-phase extraction with high performance liquid chromatography, J. Chromatogr. A 2019 (1607) 460442–460448.[51] J. Hernandez-Fern ´ andez, ´ E. Rayon, ´ J. Lopez, ´ M. Arrieta, Enhancing the thermal stability of polypropylene by blending with low amounts of natural antioxidant, Macromol. Mater. Eng 304 (2019) 1900379–1900391.[52] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis, J. Anal. Appl. Pyrolysis 155 (2021) 105052–105064.[53] J. Suh, N. Kang, J. Lee, Direct determination of arsine in gases by inductively coupled plasma–dynamic reaction cell–mass spectrometry, Talanta 78 (2009) 321–325.[54] L. Helsen, Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review, Environ. Pollut. 137 (2005) 305–315.[55] M. Pantsar-Kallio, A. Korpela, Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry, Anal. Chim. Acta 410 (2000) 65–70.[56] R. Firor, B. Quimby, Dual-Channel Gas Chromatographic System for the Determination of Low-level Sulfur in Hydrocarbon Gases, Agilent Technologies Application Note 5988-8904EN, Agilent Technologies publisher, Wilmington, Delaware, USA, 2003.[57] M. Pantsar-Kallio, P. Manninen, Simultaneous determination of toxic arsenic and chromium species in water samples by ion chromatography-inductively coupled plasma mass spectrometry, J. Chromatogr. A 779 (1997) 139–146.[58] G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, M. Olazar, Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals a review, Renew. Sustain. Energy Rev. 73 (2017) 346–368.[59] C. Pavon, M. Aldas, J. Lopez-Martínez, ´ J. Hern´ andez-Fernandez, ´ M. Arrieta, Films based on thermoplastic starch blended with pine resin derivatives for food packaging, Foods 10 (2021) 1171–1186.[60] C. Pavon, M. Aldas, J. Hernandez-Fernandez, J. Lopez-Martínez, Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices, J. Appl. Polym. Sci. (2021) 51734–51743.[61] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry, J. Chromatogr. A 2021 (1637) 461833–461844.[62] J. Hernandez-Fern ´ andez, ´ Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions, Atmospheric Pollut. Res. 12 (2021) 167–176.[63] J. Hernandez-Fern ´ andez, ´ J. Lopez, ´ D. Barcelo, Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene, J. Chromatogr. A 263 (2021) 128027–128038.91161ArsineVirgin polypropyleneAutocatalysisDegradation startFree radicalsPyrolysisPublicationORIGINALAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdfAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdfapplication/pdf1820009https://repositorio.cuc.edu.co/bitstreams/a5dcf644-5991-4c76-8348-cb9c395dd4e4/downloadc3f4f3e6b5448f914bbc139cb1f268f0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3d4ed5a8-4185-49fc-83de-c7b47a820b83/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdf.txtAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdf.txttext/plain43438https://repositorio.cuc.edu.co/bitstreams/862d375a-979a-4213-a999-708f93027a3d/downloadda9efb84eed55b1988466f6b97e53c43MD53THUMBNAILAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdf.jpgAutocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene.pdf.jpgimage/jpeg15031https://repositorio.cuc.edu.co/bitstreams/58ca1d1d-ce32-41eb-bf8d-7e1bd0f9608f/download7e45e6d112d5f9748b27bd9755a3a1fcMD5411323/9051oai:repositorio.cuc.edu.co:11323/90512024-09-17 10:51:21.661https://creativecommons.org/licenses/by/4.0/© 2021 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |