Compatibility and correlation of multi-attribute decision making: a case of industrial relocation
Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as cost...
- Autores:
-
MARTINO NETO, JOSE
Salomon, Valerio
Ortiz Barrios, Miguel Angel
Petrillo, Antonella
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9265
- Acceso en línea:
- https://hdl.handle.net/11323/9265
https://repositorio.cuc.edu.co/
- Palabra clave:
- Analytic hierarchy process
Compatibility
Correlation
Industrial relocation
Multi-attribute utility theory
Technique of order preference by similarity to ideal solution
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_8a6015579f5bd63ca6a7d0fce0d7a3ec |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9265 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
title |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
spellingShingle |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation Analytic hierarchy process Compatibility Correlation Industrial relocation Multi-attribute utility theory Technique of order preference by similarity to ideal solution |
title_short |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
title_full |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
title_fullStr |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
title_full_unstemmed |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
title_sort |
Compatibility and correlation of multi-attribute decision making: a case of industrial relocation |
dc.creator.fl_str_mv |
MARTINO NETO, JOSE Salomon, Valerio Ortiz Barrios, Miguel Angel Petrillo, Antonella |
dc.contributor.author.spa.fl_str_mv |
MARTINO NETO, JOSE Salomon, Valerio Ortiz Barrios, Miguel Angel Petrillo, Antonella |
dc.subject.proposal.eng.fl_str_mv |
Analytic hierarchy process Compatibility Correlation Industrial relocation Multi-attribute utility theory Technique of order preference by similarity to ideal solution |
topic |
Analytic hierarchy process Compatibility Correlation Industrial relocation Multi-attribute utility theory Technique of order preference by similarity to ideal solution |
description |
Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-16T14:38:18Z |
dc.date.available.none.fl_str_mv |
2022-06-16T14:38:18Z 2024-02-28 |
dc.date.issued.none.fl_str_mv |
2022-02-28 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
JOUR Martino Neto, Jose Salomon, Valerio Antonio Pamplona, Ortiz-Barrios, Miguel Angel, Petrillo Antonella 2022 2022/02/28 Compatibility and correlation of multi-attribute decision making: a case of industrial relocation Annals of Operations Research Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM. 1572-9338 https://doi.org/10.1007/s10479-022-04603-9 |
dc.identifier.issn.spa.fl_str_mv |
0254-5330 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9265 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s10479-022-04603-9 |
dc.identifier.eissn.spa.fl_str_mv |
1572-9338 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
JOUR Martino Neto, Jose Salomon, Valerio Antonio Pamplona, Ortiz-Barrios, Miguel Angel, Petrillo Antonella 2022 2022/02/28 Compatibility and correlation of multi-attribute decision making: a case of industrial relocation Annals of Operations Research Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM. 1572-9338 https://doi.org/10.1007/s10479-022-04603-9 0254-5330 10.1007/s10479-022-04603-9 1572-9338 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9265 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Annals of Operations Research |
dc.relation.references.spa.fl_str_mv |
Arena, M., Azzone, G., & Piantoni, G. (2020). Shared value creation during site decommissioning: A case study from the energy sector. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119587 Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766 Atakhan-Kenneweg, M., Oerlemans, L. A., & Raab, J. (2021). New inter-organizational knowledge tie forma tion after firm relocation: Investigating the impact of spatial, relational, and temporal context. Journal of Business Research, 127, 264–276. https://doi.org/10.1016/j.jbusres.2021.01.023 Aus Dem Moore, N., Großkurth, P., & Themann, M. (2019). Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization. Journal of Environmental Economics and Management, 94, 1–26. https://doi.org/10.1016/j.jeem.2018.11.003 Brouwer, A. E., Mariotti, I., & Van Ommeren, J. N. (2004). The firm relocation decision: An empirical inves tigation. The Annals of Regional Science, 38(2), 335–347. https://doi.org/10.1007/s00168-004-0198-5 Cay, T., & Yuan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541–548. https://doi.org/10.1016/j.landusepol.2012.04.023 Central Intelligence Agency. (2021). The World Factbook 2021. Retrieved June 18, 2021, from https://www.cia.gov/the-world-factbook/ Chang, W.-L. (2009). Using multi-criteria decision aid to rank and select co-branding partners: From a brand personality perspective. Kybernetes, 38(6), 950–965. https://doi.org/10.1108/03684920910973171 Chen, W., Shen, Y., Wang, Y., & Wu, Q. (2018). The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. Journal of Cleaner Production, 205, 525–535. https://doi.org/10.1016/j.jclepro.2018.09.106 Doczy, R., & AbdelRazig, Y. (2017). Green buildings case study analysis using AHP and MAUT in sus tainability and costs. Journal of Architectural Engineering, 23(3), 05017002. https://doi.org/10.1061/ (ASCE)AE.1943-5568.0000252 Doumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. Kluwer. Emrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research, 55(22), 6653–6675. https://doi.org/10.1080/00207543.2017.1334976 Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey.Applied Mathematical Modelling, 34(7), 1689–1709. https://doi.org/10.1016/j.apm.2009.10.005 Garuti, C., & Salomon, V. (2012). Compatibility indices between priority vectors. International Journal of the Analytic Hierarchy Process, 4(2), 152–160. https://doi.org/10.13033/ijahp.v4i2.130 Garuti, C. E. (2019). A set theory justification of Garuti’s compatibility index. Journal of Multi-Criteria Decision Analysis, 27(2), 50–60. https://doi.org/10.1002/mcda.1667 Grillitsch, M., & Asheim, B. (2018). Place-based innovation policy for industrial diversification in regions. European Planning Studies, 26(8), 1638–1662. https://doi.org/10.1080/09654313.2018.1484892 Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Springer. Indraprahasta, G. S., Derudder, B., & Hudalah, D. (2019). Local institutional actors and globally linked terri torial development in Bekasi District: A strategic coupling? Singapore Journal of Tropical Geography, 40(2), 219–238. https://doi.org/10.1111/sjtg.12269 Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis. Wiley. Jiang, Y., Timmermans, H., & Yu, B. (2018). Relocation of manufacturing industry from the perspective of transport accessibility: An application of percolation theory. Transport Policy, 63, 10–29. https://doi.org/ 10.1016/j.tranpol.2017.11.003 Johansson, M., & Olhager, J. (2017). Manufacturing relocation through offshoring and backshoring: The case of Sweden. Journal of Manufacturing Technology Management, 29(4), 637–657. https://doi.org/10.1108/ JMTM-01-2017-0006 Khan, S. A., Chaabane, A., & Dweiri, F. T. (2018). Multi-criteria decision-making methods application in supply chain management: A systematic literature review. In V. A. Salomon (Ed.), Multi-criteria methods and techniques applied to supply chain management (pp. 3–31). Intech Open. Koch, N., & Basse Mama, H. (2019). Does the EU Emissions Trading Systems induce investment leakage? Evidence from German multinational firms. Energy Economics, 81, 479–492. https://doi.org/10.1016/j. eneco.2019.04.018 Kurata, H., Nomura, R., & Suga, N. (2020). Vertical specialization in North-South trade: Industrial relocation, wage and welfare. Review of International Economics, 28(1), 119–137. https://doi.org/10.1111/roie. 12444 Lee, C.-Y., & Chen, B.-S. (2018). Mutually-exclusive-and-collectively-exhaustive feature selection scheme.Applied Soft Computing, 68, 961–971. https://doi.org/10.1016/j.asoc.2017.04.055 Lee, E., Lee, J., & Jongseok, L. (2006). Reconsideration of the winner-take-all hypothesis: Complex networks and local bias. Management ScienceVol., 52(12), 1838–1848. https://doi.org/10.1287/mnsc.1060.0571 Li, M., & Wang, Q. (2020). Does industrial relocation alleviate environmental pollution? A mathematical economics analysis. Environmental, Development and Sustainability, 22(5), 4673–4698. https://doi.org/10.1007/s10668-019-00403-7 Li, T., Liu, Y., Wang, C., Olfsson, G., Wang, Z., & Wang, H. (2019). Decentralization of the non-capital functions of Beiijing: Industrial relocation and its environmental effects. Journal of Cleaner Production, 224, 545–556. https://doi.org/10.1016/j.jclepro.2019.03.247 Liao, H. F., & Chan, R. C. (2011). Industrial relocation of Hong Kong manufacturing firms: Towards an expanding industrial space beyond the Pearl River Delta. GeoJournal, 76(6), 623–639. https://doi.org/10.1007/s10708-009-9316-3 Liern, V., & Pérez-Gladish, B. (2020). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03718-1 Lipovetsky, S. (2020). Priority vector estimation: Consistency, compatibility, precision. International Journal of the Analytic Hierarchy Process, 12(3), 577–591. https://doi.org/10.13033/ijahp.v12i3.801 Liu, Y., Sun, Z., Liang, H., & Dong, Y. (2021a). Ranking range model in multiple attribute decision making: A comparison of selected methods. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2021.107180 Liu, Y., Yeung, G., Liang, Y.-T., & Li, X. (2021). Pro-active regional policy and the relocation of manufacturing firms: A case study of state-led industrial relocation in Guangdong. China: Eurasian Geography and Economics. https://doi.org/10.1080/15387216.2020.1870515 Lombardi Netto, A., Salomon, V. A., Ortiz-Barrios, M. A., Florek-Paszkowska, A. K., Petrillo, A., & De Oliveira, O. J. (2020). Multiple criteria assessment of sustainability programs in the textile industry. Inter national Transactions in Operational Research, 28(3), 1550–1572. https://doi.org/10.1111/itor.12871 Lundberg, H., Andresen, E., & Törnroos, J. -Å. (2016). Understanding network emergence after turbulent industrial relocation: A Swedish biorefinery initiative. European Management Journal, 34(5), 475–483. https://doi.org/10.1016/j.emj.2016.03.001 Mardani, A., Jusoh, A., Nor, K. M. D., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple crite ria decision-making techniques and their applications: A review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139 Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications: Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003 Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management: A review. European Journal of Operational Research, 169(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007 Mu, E., Cooper, O., & Peasley, M. (2020). Best practices in analytic network process studies. Expert Systems with Applications, 159, 113536. https://doi.org/10.1016/j.eswa.2020.113536 Oliveira, G. D., & Dias, L. C. (2020). The potential learning effect of a MCDA approach on consumer preferences for alternative fuel vehicles. Annals of Operations Research, 293(2), 767–787. https://doi.org/10.1007/s10479-020-03584-x Oppio, A., Bottero, M., & Arcidiacono, A. (2018). Assessing urban quality: a proposal for a MCDA evaluation framework. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2738-2 Ortiz Barrios, M., Cabarcas Reyes, J., Ishizaka, A., Barbati, M., Jaramillo Rueda, N., & Carrascal Zambrano, G. J. (2020). A hybrid fuzzy multi criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03737-y Ortiz-Barrios, M., & Alfaro-Saiz, J.-J. (2020). A hybrid fuzzy multi-criteria decision-making model to evaluate the overall performance of public emergency departments: A case study. International Journal of Infor mation Technology & Decision Making, 19(6), 1485–1548. https://doi.org/10.1142/S0219622020500364 Ortiz-Barrios, M., Hoz, C.M.-D., López-Meza, P., Petrillo, A., & De Felice, F. (2020). A case of food supply chain management with AHP, DEMATEL, and TOPSIS. Journal of Multi-Criteria Decision Analysis, 27(1–2), 104–128. https://doi.org/10.1002/mcda.1693 Pappas, D., Chalvatzis, K. J., Guan, D., & Ioannidis, A. (2018). Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 225, 183–194. https://doi.org/10.1016/j.apenergy.2018.04.132 Rice, J. A. (2007). Mathematical statistics and data analysis (e-book ed.). Cengage. Roy, B. (1981). The optimisation problem formulation: Criticism and overstepping. Journal of the Operational Research Society, 32(6), 427–436. https://doi.org/10.1057/jors.1981.93 Saaty, T. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61. https://doi.org/10.1080/01969727408546075 Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psy chology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5 Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill. Saaty, T. L. (1986). Absolute and relative measurement with the AHP–The most livable cities in the United States. Socio-Economic Planning Sciences, 20(6), 327–331. https://doi.org/10.1016/0038-0121(86)90043-1 Saaty, T. L. (2013). Principia mathematica decernendi (Kindle). RWS. Saaty, T. L., & Rogers, P. C. (1976). Higher education in the United States (1985–2000) Scenario construction using a hierarchical framework with eigenvector weighting. Socio-Economic Planning Sciences, 10(6), 251–263. https://doi.org/10.1016/0038-0121(76)90012-4 Salomon, V. A. (2016). Absolute measurement and ideal synthesis on AHP. International Journal of the Analytic Hierarchy Process, 3(1), 538–545. https://doi.org/10.13033/ijahp.v8i3.452 Salomon, V. A., & Rangel, L. D. (2015). Comparing rankings from using TODIM and a fuzzy expert system. Procedia Computer Science, 55, 126–138. https://doi.org/10.1016/j.procs.2015.07.019 Salomon, V. P., Tramarico, C. L., & Marins, F. S. (2016). Analytic hierarchy process applied to supply chain management. In F. De Felice, T. L. Saaty, & A. Petrillo (Eds.), Applications and theory of analytic hierarchy process—Decision making for strategic decisions (pp. 1–16). IntechOpen. Schamp, E. W. (2005). Decline of the district, renewal of firms: An evolutionary approach to footwear produc tion in the Pirmasens area, Germany. Environment and Planning a: Economy and Space, 37(4), 617–634. https://doi.org/10.1068/a36275 Shih, H.-S., Cheng, C.-B., Chen, C.-C., & Lin, Y.-C. (2014). Environmental impact on the vendor selection problem in electronics firms: A systematic analytic network process with BOCR. International Journal of the Analytic Hierarchy Process, 6(2), 202–227. https://doi.org/10.13033/ijahp.v6i2.256 Tang, T., Li, Z., Ni, J., & Yuan, J. (2020). Land costs, government intervention, and migration of firms: The case of China. China Economic Review. https://doi.org/10.1016/j.chieco.2020.101560 Tramarico, C. L., Mizuno, D., Salomon, V. P., & Marins, F. S. (2015). Analytic hierarchy process and supply chain management: A bibliometric study. Procedia Computer Science, 55, 441–450. https://doi.org/10.1016/j.procs.2015.07.005 Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028 Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer. Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838 Wang, H., Dong, C., & Liu, Y. (2019). Beijing direct investment to its neighbors: A pollution haven or pollution halo effects? Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118062 Wang, Y. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing, 30, 412–420. https://doi.org/10.1016/j.asoc.2015.02.002 Whitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46(7–8), 840–859. https://doi.org/10.1016/j.mcm.2007.03.018 Wijnmalen, D. J. (2007). Analysis of benefits, opportunities, costs, and risks (BOCR) with the AHP–ANP: A critical validation. Mathematical and Computer Modelling, 46(7–8), 892–905. https://doi.org/10.1016/j.mcm.2007.03.020 Wikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6 Wikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6 Wu, A., Li, G., Sun, T., & Liang, Y. (2014). Effects of industrial relocation on Chinese regional economic growth disparities: Based on system dynamics modeling. Chinese Geographical Science, 24, 706–716. https://doi.org/10.1007/s11769-014-0664-7 Yang, Y., & Gallagher, M. (2017). Moving in and moving up? Labor conditions and China’s changing devel opment model. Public Administration and Development, 37(3), 160–175. https://doi.org/10.1002/pad.1818 Yoon, M.-S. (2020). Notes on the use of compatibility index in the analytic hierarchy process. In: Proceed ings of the International Symposium on the Analytic Hierarchy Process. https://doi.org/10.13033/isahp.y2020.047 Zamani-Sabzi, H., King, J. P., Gard, C. C., & Abudu, S. (2016). Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Operations Research Perspectives, 3, 92–117. https://doi.org/10.1016/j.orp.2016.11.001 Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research,107(3), 507–529. https://doi.org/10.1016/S0377-217(97)00147-1 Zavadskas, E. K., Turskis, Z., & Kildien˙e, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037 Zhang, L., Meng, Q., Sun, Z., & Sun, Y. (2017). Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over China. International Journal of Geo Information, 6(4), 1–14. https://doi.org/10.3390/ijgi6040121 Zhang, W., Zhang, X., Zhang, M., & Li, W. (2020). How to coordinate economic, logistics and ecological environment? Evidences from 30 provinces and cities in China. Sustainability, 12(3), 1–23. https://doi.org/10.3390/su12031058 Zhang, X., Xu, Z., & Wang, H. (2015). Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach. Information Fusion, 25, 49–62. https://doi.org/10.1016/j.inffus.2014.10.006 |
dc.relation.citationendpage.spa.fl_str_mv |
22 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
22 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Netherlands |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s10479-022-04603-9 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ade1901e-38a5-4c60-b4f0-259f12879be1/download https://repositorio.cuc.edu.co/bitstreams/b9d7ef91-6f76-4489-a361-2b53f7f714f1/download https://repositorio.cuc.edu.co/bitstreams/a3fe76e0-85d8-4e68-9696-aba718d9c660/download https://repositorio.cuc.edu.co/bitstreams/535141f3-86fb-45e3-8688-93c271548e5e/download |
bitstream.checksum.fl_str_mv |
909dd869fc7e39c73f59f422a20e320d e30e9215131d99561d40d6b0abbe9bad db08ee98ce891dc791d2409b9b4f9253 d7a54635eec7ea086b29da4be13307b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760843813027840 |
spelling |
MARTINO NETO, JOSESalomon, ValerioOrtiz Barrios, Miguel AngelPetrillo, Antonella2022-06-16T14:38:18Z2024-02-282022-06-16T14:38:18Z2022-02-28JOUR Martino Neto, Jose Salomon, Valerio Antonio Pamplona, Ortiz-Barrios, Miguel Angel, Petrillo Antonella 2022 2022/02/28 Compatibility and correlation of multi-attribute decision making: a case of industrial relocation Annals of Operations Research Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM. 1572-9338 https://doi.org/10.1007/s10479-022-04603-90254-5330https://hdl.handle.net/11323/926510.1007/s10479-022-04603-91572-9338Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM.22 páginasapplication/pdfengSpringer NetherlandsNetherlandsAtribución 4.0 Internacional (CC BY 4.0)© The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Nature 2022https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCompatibility and correlation of multi-attribute decision making: a case of industrial relocationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link.springer.com/article/10.1007/s10479-022-04603-9Annals of Operations ResearchArena, M., Azzone, G., & Piantoni, G. (2020). Shared value creation during site decommissioning: A case study from the energy sector. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119587Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766Atakhan-Kenneweg, M., Oerlemans, L. A., & Raab, J. (2021). New inter-organizational knowledge tie forma tion after firm relocation: Investigating the impact of spatial, relational, and temporal context. Journal of Business Research, 127, 264–276. https://doi.org/10.1016/j.jbusres.2021.01.023Aus Dem Moore, N., Großkurth, P., & Themann, M. (2019). Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization. Journal of Environmental Economics and Management, 94, 1–26. https://doi.org/10.1016/j.jeem.2018.11.003Brouwer, A. E., Mariotti, I., & Van Ommeren, J. N. (2004). The firm relocation decision: An empirical inves tigation. The Annals of Regional Science, 38(2), 335–347. https://doi.org/10.1007/s00168-004-0198-5Cay, T., & Yuan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541–548. https://doi.org/10.1016/j.landusepol.2012.04.023Central Intelligence Agency. (2021). The World Factbook 2021. Retrieved June 18, 2021, from https://www.cia.gov/the-world-factbook/Chang, W.-L. (2009). Using multi-criteria decision aid to rank and select co-branding partners: From a brand personality perspective. Kybernetes, 38(6), 950–965. https://doi.org/10.1108/03684920910973171Chen, W., Shen, Y., Wang, Y., & Wu, Q. (2018). The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. Journal of Cleaner Production, 205, 525–535. https://doi.org/10.1016/j.jclepro.2018.09.106Doczy, R., & AbdelRazig, Y. (2017). Green buildings case study analysis using AHP and MAUT in sus tainability and costs. Journal of Architectural Engineering, 23(3), 05017002. https://doi.org/10.1061/ (ASCE)AE.1943-5568.0000252Doumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. Kluwer.Emrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research, 55(22), 6653–6675. https://doi.org/10.1080/00207543.2017.1334976Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey.Applied Mathematical Modelling, 34(7), 1689–1709. https://doi.org/10.1016/j.apm.2009.10.005Garuti, C., & Salomon, V. (2012). Compatibility indices between priority vectors. International Journal of the Analytic Hierarchy Process, 4(2), 152–160. https://doi.org/10.13033/ijahp.v4i2.130Garuti, C. E. (2019). A set theory justification of Garuti’s compatibility index. Journal of Multi-Criteria Decision Analysis, 27(2), 50–60. https://doi.org/10.1002/mcda.1667Grillitsch, M., & Asheim, B. (2018). Place-based innovation policy for industrial diversification in regions. European Planning Studies, 26(8), 1638–1662. https://doi.org/10.1080/09654313.2018.1484892Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Springer.Indraprahasta, G. S., Derudder, B., & Hudalah, D. (2019). Local institutional actors and globally linked terri torial development in Bekasi District: A strategic coupling? Singapore Journal of Tropical Geography, 40(2), 219–238. https://doi.org/10.1111/sjtg.12269Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis. Wiley.Jiang, Y., Timmermans, H., & Yu, B. (2018). Relocation of manufacturing industry from the perspective of transport accessibility: An application of percolation theory. Transport Policy, 63, 10–29. https://doi.org/ 10.1016/j.tranpol.2017.11.003Johansson, M., & Olhager, J. (2017). Manufacturing relocation through offshoring and backshoring: The case of Sweden. Journal of Manufacturing Technology Management, 29(4), 637–657. https://doi.org/10.1108/ JMTM-01-2017-0006Khan, S. A., Chaabane, A., & Dweiri, F. T. (2018). Multi-criteria decision-making methods application in supply chain management: A systematic literature review. In V. A. Salomon (Ed.), Multi-criteria methods and techniques applied to supply chain management (pp. 3–31). Intech Open.Koch, N., & Basse Mama, H. (2019). Does the EU Emissions Trading Systems induce investment leakage? Evidence from German multinational firms. Energy Economics, 81, 479–492. https://doi.org/10.1016/j. eneco.2019.04.018Kurata, H., Nomura, R., & Suga, N. (2020). Vertical specialization in North-South trade: Industrial relocation, wage and welfare. Review of International Economics, 28(1), 119–137. https://doi.org/10.1111/roie. 12444Lee, C.-Y., & Chen, B.-S. (2018). Mutually-exclusive-and-collectively-exhaustive feature selection scheme.Applied Soft Computing, 68, 961–971. https://doi.org/10.1016/j.asoc.2017.04.055Lee, E., Lee, J., & Jongseok, L. (2006). Reconsideration of the winner-take-all hypothesis: Complex networks and local bias. Management ScienceVol., 52(12), 1838–1848. https://doi.org/10.1287/mnsc.1060.0571Li, M., & Wang, Q. (2020). Does industrial relocation alleviate environmental pollution? A mathematical economics analysis. Environmental, Development and Sustainability, 22(5), 4673–4698. https://doi.org/10.1007/s10668-019-00403-7Li, T., Liu, Y., Wang, C., Olfsson, G., Wang, Z., & Wang, H. (2019). Decentralization of the non-capital functions of Beiijing: Industrial relocation and its environmental effects. Journal of Cleaner Production, 224, 545–556. https://doi.org/10.1016/j.jclepro.2019.03.247Liao, H. F., & Chan, R. C. (2011). Industrial relocation of Hong Kong manufacturing firms: Towards an expanding industrial space beyond the Pearl River Delta. GeoJournal, 76(6), 623–639. https://doi.org/10.1007/s10708-009-9316-3Liern, V., & Pérez-Gladish, B. (2020). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03718-1Lipovetsky, S. (2020). Priority vector estimation: Consistency, compatibility, precision. International Journal of the Analytic Hierarchy Process, 12(3), 577–591. https://doi.org/10.13033/ijahp.v12i3.801Liu, Y., Sun, Z., Liang, H., & Dong, Y. (2021a). Ranking range model in multiple attribute decision making: A comparison of selected methods. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2021.107180Liu, Y., Yeung, G., Liang, Y.-T., & Li, X. (2021). Pro-active regional policy and the relocation of manufacturing firms: A case study of state-led industrial relocation in Guangdong. China: Eurasian Geography and Economics. https://doi.org/10.1080/15387216.2020.1870515Lombardi Netto, A., Salomon, V. A., Ortiz-Barrios, M. A., Florek-Paszkowska, A. K., Petrillo, A., & De Oliveira, O. J. (2020). Multiple criteria assessment of sustainability programs in the textile industry. Inter national Transactions in Operational Research, 28(3), 1550–1572. https://doi.org/10.1111/itor.12871Lundberg, H., Andresen, E., & Törnroos, J. -Å. (2016). Understanding network emergence after turbulent industrial relocation: A Swedish biorefinery initiative. European Management Journal, 34(5), 475–483. https://doi.org/10.1016/j.emj.2016.03.001Mardani, A., Jusoh, A., Nor, K. M. D., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple crite ria decision-making techniques and their applications: A review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications: Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management: A review. European Journal of Operational Research, 169(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007Mu, E., Cooper, O., & Peasley, M. (2020). Best practices in analytic network process studies. Expert Systems with Applications, 159, 113536. https://doi.org/10.1016/j.eswa.2020.113536Oliveira, G. D., & Dias, L. C. (2020). The potential learning effect of a MCDA approach on consumer preferences for alternative fuel vehicles. Annals of Operations Research, 293(2), 767–787. https://doi.org/10.1007/s10479-020-03584-xOppio, A., Bottero, M., & Arcidiacono, A. (2018). Assessing urban quality: a proposal for a MCDA evaluation framework. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2738-2Ortiz Barrios, M., Cabarcas Reyes, J., Ishizaka, A., Barbati, M., Jaramillo Rueda, N., & Carrascal Zambrano, G. J. (2020). A hybrid fuzzy multi criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03737-yOrtiz-Barrios, M., & Alfaro-Saiz, J.-J. (2020). A hybrid fuzzy multi-criteria decision-making model to evaluate the overall performance of public emergency departments: A case study. International Journal of Infor mation Technology & Decision Making, 19(6), 1485–1548. https://doi.org/10.1142/S0219622020500364Ortiz-Barrios, M., Hoz, C.M.-D., López-Meza, P., Petrillo, A., & De Felice, F. (2020). A case of food supply chain management with AHP, DEMATEL, and TOPSIS. Journal of Multi-Criteria Decision Analysis, 27(1–2), 104–128. https://doi.org/10.1002/mcda.1693Pappas, D., Chalvatzis, K. J., Guan, D., & Ioannidis, A. (2018). Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 225, 183–194. https://doi.org/10.1016/j.apenergy.2018.04.132Rice, J. A. (2007). Mathematical statistics and data analysis (e-book ed.). Cengage.Roy, B. (1981). The optimisation problem formulation: Criticism and overstepping. Journal of the Operational Research Society, 32(6), 427–436. https://doi.org/10.1057/jors.1981.93Saaty, T. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61. https://doi.org/10.1080/01969727408546075Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psy chology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.Saaty, T. L. (1986). Absolute and relative measurement with the AHP–The most livable cities in the United States. Socio-Economic Planning Sciences, 20(6), 327–331. https://doi.org/10.1016/0038-0121(86)90043-1Saaty, T. L. (2013). Principia mathematica decernendi (Kindle). RWS.Saaty, T. L., & Rogers, P. C. (1976). Higher education in the United States (1985–2000) Scenario construction using a hierarchical framework with eigenvector weighting. Socio-Economic Planning Sciences, 10(6), 251–263. https://doi.org/10.1016/0038-0121(76)90012-4Salomon, V. A. (2016). Absolute measurement and ideal synthesis on AHP. International Journal of the Analytic Hierarchy Process, 3(1), 538–545. https://doi.org/10.13033/ijahp.v8i3.452Salomon, V. A., & Rangel, L. D. (2015). Comparing rankings from using TODIM and a fuzzy expert system. Procedia Computer Science, 55, 126–138. https://doi.org/10.1016/j.procs.2015.07.019Salomon, V. P., Tramarico, C. L., & Marins, F. S. (2016). Analytic hierarchy process applied to supply chain management. In F. De Felice, T. L. Saaty, & A. Petrillo (Eds.), Applications and theory of analytic hierarchy process—Decision making for strategic decisions (pp. 1–16). IntechOpen.Schamp, E. W. (2005). Decline of the district, renewal of firms: An evolutionary approach to footwear produc tion in the Pirmasens area, Germany. Environment and Planning a: Economy and Space, 37(4), 617–634. https://doi.org/10.1068/a36275Shih, H.-S., Cheng, C.-B., Chen, C.-C., & Lin, Y.-C. (2014). Environmental impact on the vendor selection problem in electronics firms: A systematic analytic network process with BOCR. International Journal of the Analytic Hierarchy Process, 6(2), 202–227. https://doi.org/10.13033/ijahp.v6i2.256Tang, T., Li, Z., Ni, J., & Yuan, J. (2020). Land costs, government intervention, and migration of firms: The case of China. China Economic Review. https://doi.org/10.1016/j.chieco.2020.101560Tramarico, C. L., Mizuno, D., Salomon, V. P., & Marins, F. S. (2015). Analytic hierarchy process and supply chain management: A bibliometric study. Procedia Computer Science, 55, 441–450. https://doi.org/10.1016/j.procs.2015.07.005Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838Wang, H., Dong, C., & Liu, Y. (2019). Beijing direct investment to its neighbors: A pollution haven or pollution halo effects? Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118062Wang, Y. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing, 30, 412–420. https://doi.org/10.1016/j.asoc.2015.02.002Whitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46(7–8), 840–859. https://doi.org/10.1016/j.mcm.2007.03.018Wijnmalen, D. J. (2007). Analysis of benefits, opportunities, costs, and risks (BOCR) with the AHP–ANP: A critical validation. Mathematical and Computer Modelling, 46(7–8), 892–905. https://doi.org/10.1016/j.mcm.2007.03.020Wikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6Wikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6Wu, A., Li, G., Sun, T., & Liang, Y. (2014). Effects of industrial relocation on Chinese regional economic growth disparities: Based on system dynamics modeling. Chinese Geographical Science, 24, 706–716. https://doi.org/10.1007/s11769-014-0664-7Yang, Y., & Gallagher, M. (2017). Moving in and moving up? Labor conditions and China’s changing devel opment model. Public Administration and Development, 37(3), 160–175. https://doi.org/10.1002/pad.1818Yoon, M.-S. (2020). Notes on the use of compatibility index in the analytic hierarchy process. In: Proceed ings of the International Symposium on the Analytic Hierarchy Process. https://doi.org/10.13033/isahp.y2020.047Zamani-Sabzi, H., King, J. P., Gard, C. C., & Abudu, S. (2016). Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Operations Research Perspectives, 3, 92–117. https://doi.org/10.1016/j.orp.2016.11.001Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research,107(3), 507–529. https://doi.org/10.1016/S0377-217(97)00147-1Zavadskas, E. K., Turskis, Z., & Kildien˙e, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037Zhang, L., Meng, Q., Sun, Z., & Sun, Y. (2017). Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over China. International Journal of Geo Information, 6(4), 1–14. https://doi.org/10.3390/ijgi6040121Zhang, W., Zhang, X., Zhang, M., & Li, W. (2020). How to coordinate economic, logistics and ecological environment? Evidences from 30 provinces and cities in China. Sustainability, 12(3), 1–23. https://doi.org/10.3390/su12031058Zhang, X., Xu, Z., & Wang, H. (2015). Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach. Information Fusion, 25, 49–62. https://doi.org/10.1016/j.inffus.2014.10.006221Analytic hierarchy processCompatibilityCorrelationIndustrial relocationMulti-attribute utility theoryTechnique of order preference by similarity to ideal solutionPublicationORIGINALMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdfMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdfapplication/pdf642617https://repositorio.cuc.edu.co/bitstreams/ade1901e-38a5-4c60-b4f0-259f12879be1/download909dd869fc7e39c73f59f422a20e320dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b9d7ef91-6f76-4489-a361-2b53f7f714f1/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdf.txtMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdf.txttext/plain62272https://repositorio.cuc.edu.co/bitstreams/a3fe76e0-85d8-4e68-9696-aba718d9c660/downloaddb08ee98ce891dc791d2409b9b4f9253MD53THUMBNAILMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdf.jpgMartinoNeto2022_Article_CompatibilityAndCorrelationOfM.pdf.jpgimage/jpeg10872https://repositorio.cuc.edu.co/bitstreams/535141f3-86fb-45e3-8688-93c271548e5e/downloadd7a54635eec7ea086b29da4be13307b8MD5411323/9265oai:repositorio.cuc.edu.co:11323/92652024-09-17 14:09:36.391https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |