A machine learning solution for bed occupancy issue for smart healthcare sector
The health care domain is a culmination and emergence of many other economic sectors that give different services from patient treatment to healing, protective, rehabilitation, and palliative care. The GDP consumes to facilitate health in terms of smart device development, clinical examinations, out...
- Autores:
-
Gochhait, Dr Saikat
De-La-Hoz-Franco, Emiro
Shaheen, Qaisar
Diaz Martinez, Jorge Luis
Piñeres Espitia, Gabriel Dario
MERCADO POLO, DARWIN
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9475
- Acceso en línea:
- https://hdl.handle.net/11323/9475
https://doi.org/10.3103/S0146411621060043
https://repositorio.cuc.edu.co/
- Palabra clave:
- Algorithms
Bed occupancy rate
Healthcare
Machine learning
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_8a4f211e841e55b906b5cfb0bfb7e188 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9475 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A machine learning solution for bed occupancy issue for smart healthcare sector |
title |
A machine learning solution for bed occupancy issue for smart healthcare sector |
spellingShingle |
A machine learning solution for bed occupancy issue for smart healthcare sector Algorithms Bed occupancy rate Healthcare Machine learning |
title_short |
A machine learning solution for bed occupancy issue for smart healthcare sector |
title_full |
A machine learning solution for bed occupancy issue for smart healthcare sector |
title_fullStr |
A machine learning solution for bed occupancy issue for smart healthcare sector |
title_full_unstemmed |
A machine learning solution for bed occupancy issue for smart healthcare sector |
title_sort |
A machine learning solution for bed occupancy issue for smart healthcare sector |
dc.creator.fl_str_mv |
Gochhait, Dr Saikat De-La-Hoz-Franco, Emiro Shaheen, Qaisar Diaz Martinez, Jorge Luis Piñeres Espitia, Gabriel Dario MERCADO POLO, DARWIN |
dc.contributor.author.spa.fl_str_mv |
Gochhait, Dr Saikat De-La-Hoz-Franco, Emiro Shaheen, Qaisar Diaz Martinez, Jorge Luis Piñeres Espitia, Gabriel Dario MERCADO POLO, DARWIN |
dc.subject.proposal.eng.fl_str_mv |
Algorithms Bed occupancy rate Healthcare Machine learning |
topic |
Algorithms Bed occupancy rate Healthcare Machine learning |
description |
The health care domain is a culmination and emergence of many other economic sectors that give different services from patient treatment to healing, protective, rehabilitation, and palliative care. The GDP consumes to facilitate health in terms of smart device development, clinical examinations, outsourcing, and tele-medication facilities. The Asian countries and less developed countries with a high population rate are facing health care services related issues. One of these countries is India. India has two types of health care services systems: (i) public service system and (ii) private system. The public health system, i.e., the government, provides facilities to patients as primary health centers (PHCs) through limited secondary and tertiary health institutions like hospitals in rural areas while the private service is owned by local practitioners and institutions. Both of these service providers are facing bed occupancy issues for patients due to a highly populated country. To overcome this issue, we propose a machine learning solution for patient admission scheduling autonomously. The proposed framework helps hospitals to enhance the decision process for bed occupancy for patients concerning their departments and their diseases. We have deployed our framework in real time environment and find that it facilitates the overall performance of bed allocation in the prescribed hospitals. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-08-25T00:01:36Z |
dc.date.available.none.fl_str_mv |
2022 2022-08-25T00:01:36Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Gochhait, S., Butt, S.A., De-La-Hoz-Franco, E. et al. A Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector. Aut. Control Comp. Sci. 55, 546–556 (2021). https://doi.org/10.3103/S0146411621060043 |
dc.identifier.issn.spa.fl_str_mv |
0146-4116 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9475 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3103/S0146411621060043 |
dc.identifier.doi.spa.fl_str_mv |
10.3103/S0146411621060043 |
dc.identifier.eissn.spa.fl_str_mv |
1558-108X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Gochhait, S., Butt, S.A., De-La-Hoz-Franco, E. et al. A Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector. Aut. Control Comp. Sci. 55, 546–556 (2021). https://doi.org/10.3103/S0146411621060043 0146-4116 10.3103/S0146411621060043 1558-108X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9475 https://doi.org/10.3103/S0146411621060043 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Automatic Control and Computer Sciences |
dc.relation.references.spa.fl_str_mv |
1 Ndurukia, Z., Njeru, A.W., Waiganjo, E. Factors influencing demand for micro insurance services in the insurance industry in Kenya, Int (2017) J. Acad. Res. Bus. Soc. Sci., 7, pp. 232-259. Cited 2 times. 2 Healthcare, and Pharmaceuticals (2017) The Economic Intelligence Unit 3 Roughley, S.D. Five years of the knime vernalis cheminformatics community contribution (Open Access) (2020) Current Medicinal Chemistry, 27 (38), pp. 6495-6522. Cited 6 times. https://www.eurekaselect.com/165102/article doi: 10.2174/0929867325666180904113616 4 Hildebrandt, H. Crossing the boundaries from individual medical care to regional public health outcomes: The triple aim of “Gesundes Kinzigtal” – better health + improved care + affordable costs (2014) Int. J. Integr. Care, 14 (5). Cited 3 times. 5 Kathpalia, B.S.K. (2015) WITHDRAWN: Disabilities found during services selection board medical examination – An overview 6 Dam, L. Comparative analysis of life insurance sector in India with BRIC nations, Anveshak – Int (2017) J. Manage., 6, pp. 66-75. 7 Gassmann, O., Schuhmacher, A., von Zedtwitz, M., Reepmeyer, G. Leading pharmaceutical innovation: How to win the life science race: Third edition (2018) Leading Pharmaceutical Innovation: How to Win the Life Science Race: Third Edition, pp. 1-179. Cited 4 times. https://www.springer.com/in/book/9783319668321 ISBN: 978-331966833-8; 978-331966832-1 doi: 10.1007/978-3-319-66833-8 8 Yoon, E., Lim, Y. A study on green building certification criteria for healthcare facilities–Focused on system and contents for healthcare in BREEAM, LEED, CASBEE (2016) J. Korea Inst. Healthcare Archit., 22, pp. 17-26. 9 Pujar, S.M., Kamat, R.K., Bansode, S.Y., Kamat, R.R., Katigennavar, S.H. Identifying and exploiting human needs for a people centric evolving knowledge society: A case study of Indian ICT Emergence (2008) International Information and Library Review, 40 (3), pp. 165-170. Cited 5 times. doi: 10.1080/10572317.2008.10762777 10 De-Loyde, K.J., Harrison, J.D., Durcinoska, I., Shepherd, H.L., Solomon, M.J., Young, J.M. Which information source is best? Concordance between patient report, clinician report and medical records of patient co-morbidity and adjuvant therapy health information (2015) Journal of Evaluation in Clinical Practice, 21 (2), pp. 339-346. Cited 20 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2753 doi: 10.1111/jep.12327 11 Butt, S.A., Tariq, M.I. (2020) Big Data with Green Internet of Things (G-Iot) for the Development of Smart Cities and Technologies. Cited 2 times. 12 Beck, C., Georgiou, J. A wearable, multimodal, vitals acquisition unit for intelligent field triage (2016) Proceedings - IEEE International Symposium on Circuits and Systems, 2016-July, art. no. 7538853, pp. 1530-1533. Cited 7 times. ISBN: 978-147995340-0 doi: 10.1109/ISCAS.2016.7538853 13 Wang, J., Qiu, M., Guo, B Enabling real-time information service on telehealth system over cloud-based big data platform (Open Access) (2017) Journal of Systems Architecture, 72, pp. 69-79. Cited 69 times. https://www.journals.elsevier.com/journal-of-systems-architecture doi: 10.1016/j.sysarc.2016.05.003 14 Butt, S.A. Analysis of unfair means cases in computer-based examination systems (2016) Pac. Sci. Rev. B: Humanit. Soc. Sci., 2, pp. 75-79. Cited 7 times. 15 Hill, J., Nielsen, M., Fox, M.H. Understanding the social factors that contribute to diabetes: a means to informing health care and social policies for the chronically ill. (Open Access) (2013) The Permanente journal, 17 (2), pp. 67-72. Cited 95 times. doi: 10.7812/TPP/12-099 16 Goodwin, N. How should integrated care address the challenge of people with complex health and social care needs? Emerging lessons from international case studies (Open Access) (2015) International Journal of Integrated Care, 15 (JULY), art. no. A006. Cited 15 times. http://www.ijic.org/index.php/ijic/article/download/2254/3038 doi: 10.5334/ijic.2254 17 Marmot, Sir, Friel, S., Bell, R., Houweling, T.A., Taylor, S. Closing the gap in a generation: health equity through action on the social determinants of health (Open Access) (2008) The Lancet, 372 (9650), pp. 1661-1669. Cited 1975 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(08)61690-6 18 Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., (...), Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 (Open Access) (2017) The Lancet, 389 (10082), pp. 1907-1918. Cited 2827 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(17)30505-6 19 Shaheen, Q., Shiraz, M., Khan, S., Majeed, R., Guizani, M., Khan, N., Aseere, A.M. Towards Energy Saving in Computational Clouds: Taxonomy, Review, and Open Challenges (Open Access) (2018) IEEE Access, 6, pp. 29407-29418. Cited 15 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2833551 20 Tripathi, V.V.R., Tripathi, A., Jaiswal, S. Health welfare system in modern India revitalizing Indian healthcare–Its potential and challenges (2019) ZENITH Int. J. Multidiscip. Res., 9, pp. 178-193. Cited 2 times. 21 Prinja, S., Bahuguna, P., Gupta, I., Chowdhury, S., Trivedi, M. Role of insurance in determining utilization of healthcare and financial risk protection in India (Open Access) (2019) PLoS ONE, 14 (2), art. no. e0211793. Cited 29 times. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211793&type=printable doi: 10.1371/journal.pone.0211793 22 Jones, R. Links between bed occupancy, deaths and costs (2015) British Journal of Health Care Management, 21 (11), pp. 544-545. Cited 7 times. http://www.magonlinelibrary.com/doi/pdf/10.12968/bjhc.2015.21.11.544 doi: 10.12968/bjhc.2015.21.11.544 23 (2020) Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. Cited 3 times. 24 Earnest, A., Chen, M.I., Ng, D., Leo, Y.S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore (Open Access) (2005) BMC Health Services Research, 5, art. no. 36. Cited 101 times. http://www.biomedcentral.com/content/pdf/1472-6963-5-36.pdf doi: 10.1186/1472-6963-5-36 25 Kutafina, E., Bechtold, I., Kabino, K., Jonas, S.M. Recursive neural networks in hospital bed occupancy forecasting (Open Access) (2019) BMC Medical Informatics and Decision Making, 19 (1), art. no. 39. Cited 11 times. http://www.biomedcentral.com/bmcmedinformdecismak/ doi: 10.1186/s12911-019-0776-1 26 Awan, I.A., Shiraz, M., Hashmi, M.U., Shaheen, Q., Akhtar, R., Ditta, A. Secure Framework Enhancing AES Algorithm in Cloud Computing (Open Access) (2020) Security and Communication Networks, 2020, art. no. 8863345. Cited 12 times. https://www.hindawi.com/journals/scn/ doi: 10.1155/2020/8863345 27 Zhecheng, Z. An online short-term bed occupancy rate prediction procedure based on discrete event simulation (2014) J. Hosp. Adm., 3, pp. 37-42. Cited 4 times. 28 Butt, S.A., Gochhait, S., Andleeb, S., Adeel, M. (2021) Games features for health disciplines for patient learning as entertainment, Digital Entertainment. Cited 5 times. Palgrave Macmillan, Singapore 29 Butt, S.A., Anjum, M.W., Hassan, S.A., Garai, A., Onyema, E.M. (2021) Smart health application for remote tracking of ambulatory patients, Smart Healthcare System Design: Security and Privacy Aspects, Hafizul Islam, S.K. and Samanta, D. 30 Carin, L. On Artificial Intelligence and Deep Learning Within Medical Education (Open Access) (2020) Academic medicine : journal of the Association of American Medical Colleges, 95 (11S Association of American Medical Colleges Learn Serve Lead), pp. S10-S11. Cited 9 times. doi: 10.1097/ACM.0000000000003630 31 Asam, M., Jamal, T., Adeel, M., Hassan, A., Butt, S.A., Ajaz, A., Gulzar, M. Challenges in wireless body area network (Open Access) (2019) International Journal of Advanced Computer Science and Applications, 10 (11), pp. 336-341. Cited 10 times. https://thesai.org/Downloads/Volume10No11/Paper_47-Challenges_in_Wireless_Body_Area_Network.pdf doi: 10.14569/IJACSA.2019.0101147 32 Li, C., Xu, X., Zhou, G., He, K., Qi, T., Zhang, W., Tian, F., (...), Hu, J. Implementation of national health informatization in china: Survey about the status quo (Open Access) (2019) JMIR Medical Informatics, 7 (1), art. no. e12238. Cited 8 times. https://medinform.jmir.org/2019/1/e12238 doi: 10.2196/12238 33 Simblett, S., Matcham, F., Siddi, S., Bulgari, V., di San Pietro, C.B., López, J.H., Ferrão, J., (...), Wykes, T. Barriers to and facilitators of engagement with mHealth technology for remote measurement and management of depression: Qualitative analysis (Open Access) (2019) JMIR mHealth and uHealth, 7 (1), art. no. e11325. Cited 35 times. https://mhealth.jmir.org/2019/1/e11325/pdf doi: 10.2196/11325 34 Pineres-Espitia, G., Butt, S.A., Canate-Masson, M., Alvarez-Navarro, A., Hassan, S.A., Gochhait, S. Gas Sensing System using An Unmanned Aerial Vehicle (Open Access) (2021) 2021 6th International Conference for Convergence in Technology, I2CT 2021, art. no. 9418000. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9417810 ISBN: 978-172818876-8 doi: 10.1109/I2CT51068.2021.9418000 35 Wang, W., Chen, J., Hong, T Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings (Open Access) (2018) Automation in Construction, 94, pp. 233-243. Cited 56 times.doi: 10.1016/j.autcon.2018.07.007 36 Stewart, R., Urban, M., Duchscherer, S., Kaufman, J., Morton, A., Thakur, G., Piburn, J., (...), Moehl, J. A Bayesian machine learning model for estimating building occupancy from open source data (Open Access) (2016) Natural Hazards, 81 (3), pp. 1929-1956. Cited 13 times. www.wkap.nl/journalhome.htm/0921-030X doi: 10.1007/s11069-016-2164-9 37 Desautels, T., Das, R., Calvert, J., Trivedi, M., Summers, C., Wales, D.J., Ercole, A. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: A cross-sectional machine learning approach (Open Access) (2017) BMJ Open, 7 (9), art. no. e017199. Cited 48 times. http://bmjopen.bmj.com/content/early/by/section doi: 10.1136/bmjopen-2017-017199 38 Ortega-Gonzalez, L., Acosta-Coll, M., Piñeres-Espitia, G., Aziz Butt, S. Communication protocols evaluation for a wireless rainfall monitoring network in an urban area (Open Access) (2021) Heliyon, 7 (6), art. no. e07353. Cited 4 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2021.e07353 39 Belciug, S., Gorunescu, F. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs (2016) Artificial Intelligence in Medicine, 68, pp. 59-69. Cited 13 times. www.elsevier.com/locate/artmed doi: 10.1016/j.artmed.2016.03.001 |
dc.relation.citationendpage.spa.fl_str_mv |
556 |
dc.relation.citationstartpage.spa.fl_str_mv |
546 |
dc.relation.citationissue.spa.fl_str_mv |
6 |
dc.relation.citationvolume.spa.fl_str_mv |
55 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Springer Nature Switzerland AG. Part of Springer Nature. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Springer Nature Switzerland AG. Part of Springer Nature. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Pleiades Publishing |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.3103/S0146411621060043 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a0fb17bd-d9a1-4df7-a7a7-7f5eba092597/download https://repositorio.cuc.edu.co/bitstreams/49aca493-fc92-4ab1-a548-cea45e981ddd/download https://repositorio.cuc.edu.co/bitstreams/af2df642-6445-44c3-8c9b-0f873b808777/download https://repositorio.cuc.edu.co/bitstreams/0c7eb2a7-2c2c-4998-8fb8-3af5822b9682/download |
bitstream.checksum.fl_str_mv |
824ce275ec123c38b726dea16cea448f e30e9215131d99561d40d6b0abbe9bad bb7d0e59e55ee5f48309d9e3990187a7 30c8d8a8e229ffdb0f098faa9a0b6fe6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760797400956928 |
spelling |
Gochhait, Dr SaikatDe-La-Hoz-Franco, EmiroShaheen, QaisarDiaz Martinez, Jorge LuisPiñeres Espitia, Gabriel DarioMERCADO POLO, DARWIN2022-08-25T00:01:36Z20222022-08-25T00:01:36Z2021Gochhait, S., Butt, S.A., De-La-Hoz-Franco, E. et al. A Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector. Aut. Control Comp. Sci. 55, 546–556 (2021). https://doi.org/10.3103/S01464116210600430146-4116https://hdl.handle.net/11323/9475https://doi.org/10.3103/S014641162106004310.3103/S01464116210600431558-108XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The health care domain is a culmination and emergence of many other economic sectors that give different services from patient treatment to healing, protective, rehabilitation, and palliative care. The GDP consumes to facilitate health in terms of smart device development, clinical examinations, outsourcing, and tele-medication facilities. The Asian countries and less developed countries with a high population rate are facing health care services related issues. One of these countries is India. India has two types of health care services systems: (i) public service system and (ii) private system. The public health system, i.e., the government, provides facilities to patients as primary health centers (PHCs) through limited secondary and tertiary health institutions like hospitals in rural areas while the private service is owned by local practitioners and institutions. Both of these service providers are facing bed occupancy issues for patients due to a highly populated country. To overcome this issue, we propose a machine learning solution for patient admission scheduling autonomously. The proposed framework helps hospitals to enhance the decision process for bed occupancy for patients concerning their departments and their diseases. We have deployed our framework in real time environment and find that it facilitates the overall performance of bed allocation in the prescribed hospitals.12 páginasapplication/pdfengPleiades PublishingUnited StatesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Springer Nature Switzerland AG. Part of Springer Nature.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfA machine learning solution for bed occupancy issue for smart healthcare sectorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link.springer.com/article/10.3103/S0146411621060043Automatic Control and Computer Sciences1 Ndurukia, Z., Njeru, A.W., Waiganjo, E. Factors influencing demand for micro insurance services in the insurance industry in Kenya, Int (2017) J. Acad. Res. Bus. Soc. Sci., 7, pp. 232-259. Cited 2 times.2 Healthcare, and Pharmaceuticals (2017) The Economic Intelligence Unit3 Roughley, S.D. Five years of the knime vernalis cheminformatics community contribution (Open Access) (2020) Current Medicinal Chemistry, 27 (38), pp. 6495-6522. Cited 6 times. https://www.eurekaselect.com/165102/article doi: 10.2174/09298673256661809041136164 Hildebrandt, H. Crossing the boundaries from individual medical care to regional public health outcomes: The triple aim of “Gesundes Kinzigtal” – better health + improved care + affordable costs (2014) Int. J. Integr. Care, 14 (5). Cited 3 times.5 Kathpalia, B.S.K. (2015) WITHDRAWN: Disabilities found during services selection board medical examination – An overview6 Dam, L. Comparative analysis of life insurance sector in India with BRIC nations, Anveshak – Int (2017) J. Manage., 6, pp. 66-75.7 Gassmann, O., Schuhmacher, A., von Zedtwitz, M., Reepmeyer, G. Leading pharmaceutical innovation: How to win the life science race: Third edition (2018) Leading Pharmaceutical Innovation: How to Win the Life Science Race: Third Edition, pp. 1-179. Cited 4 times. https://www.springer.com/in/book/9783319668321 ISBN: 978-331966833-8; 978-331966832-1 doi: 10.1007/978-3-319-66833-88 Yoon, E., Lim, Y. A study on green building certification criteria for healthcare facilities–Focused on system and contents for healthcare in BREEAM, LEED, CASBEE (2016) J. Korea Inst. Healthcare Archit., 22, pp. 17-26.9 Pujar, S.M., Kamat, R.K., Bansode, S.Y., Kamat, R.R., Katigennavar, S.H. Identifying and exploiting human needs for a people centric evolving knowledge society: A case study of Indian ICT Emergence (2008) International Information and Library Review, 40 (3), pp. 165-170. Cited 5 times. doi: 10.1080/10572317.2008.1076277710 De-Loyde, K.J., Harrison, J.D., Durcinoska, I., Shepherd, H.L., Solomon, M.J., Young, J.M. Which information source is best? Concordance between patient report, clinician report and medical records of patient co-morbidity and adjuvant therapy health information (2015) Journal of Evaluation in Clinical Practice, 21 (2), pp. 339-346. Cited 20 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2753 doi: 10.1111/jep.1232711 Butt, S.A., Tariq, M.I. (2020) Big Data with Green Internet of Things (G-Iot) for the Development of Smart Cities and Technologies. Cited 2 times.12 Beck, C., Georgiou, J. A wearable, multimodal, vitals acquisition unit for intelligent field triage (2016) Proceedings - IEEE International Symposium on Circuits and Systems, 2016-July, art. no. 7538853, pp. 1530-1533. Cited 7 times. ISBN: 978-147995340-0 doi: 10.1109/ISCAS.2016.753885313 Wang, J., Qiu, M., Guo, B Enabling real-time information service on telehealth system over cloud-based big data platform (Open Access) (2017) Journal of Systems Architecture, 72, pp. 69-79. Cited 69 times. https://www.journals.elsevier.com/journal-of-systems-architecture doi: 10.1016/j.sysarc.2016.05.00314 Butt, S.A. Analysis of unfair means cases in computer-based examination systems (2016) Pac. Sci. Rev. B: Humanit. Soc. Sci., 2, pp. 75-79. Cited 7 times.15 Hill, J., Nielsen, M., Fox, M.H. Understanding the social factors that contribute to diabetes: a means to informing health care and social policies for the chronically ill. (Open Access) (2013) The Permanente journal, 17 (2), pp. 67-72. Cited 95 times. doi: 10.7812/TPP/12-09916 Goodwin, N. How should integrated care address the challenge of people with complex health and social care needs? Emerging lessons from international case studies (Open Access) (2015) International Journal of Integrated Care, 15 (JULY), art. no. A006. Cited 15 times. http://www.ijic.org/index.php/ijic/article/download/2254/3038 doi: 10.5334/ijic.225417 Marmot, Sir, Friel, S., Bell, R., Houweling, T.A., Taylor, S. Closing the gap in a generation: health equity through action on the social determinants of health (Open Access) (2008) The Lancet, 372 (9650), pp. 1661-1669. Cited 1975 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(08)61690-618 Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., (...), Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 (Open Access) (2017) The Lancet, 389 (10082), pp. 1907-1918. Cited 2827 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(17)30505-619 Shaheen, Q., Shiraz, M., Khan, S., Majeed, R., Guizani, M., Khan, N., Aseere, A.M. Towards Energy Saving in Computational Clouds: Taxonomy, Review, and Open Challenges (Open Access) (2018) IEEE Access, 6, pp. 29407-29418. Cited 15 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.283355120 Tripathi, V.V.R., Tripathi, A., Jaiswal, S. Health welfare system in modern India revitalizing Indian healthcare–Its potential and challenges (2019) ZENITH Int. J. Multidiscip. Res., 9, pp. 178-193. Cited 2 times.21 Prinja, S., Bahuguna, P., Gupta, I., Chowdhury, S., Trivedi, M. Role of insurance in determining utilization of healthcare and financial risk protection in India (Open Access) (2019) PLoS ONE, 14 (2), art. no. e0211793. Cited 29 times. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211793&type=printable doi: 10.1371/journal.pone.021179322 Jones, R. Links between bed occupancy, deaths and costs (2015) British Journal of Health Care Management, 21 (11), pp. 544-545. Cited 7 times. http://www.magonlinelibrary.com/doi/pdf/10.12968/bjhc.2015.21.11.544 doi: 10.12968/bjhc.2015.21.11.54423 (2020) Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. Cited 3 times.24 Earnest, A., Chen, M.I., Ng, D., Leo, Y.S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore (Open Access) (2005) BMC Health Services Research, 5, art. no. 36. Cited 101 times. http://www.biomedcentral.com/content/pdf/1472-6963-5-36.pdf doi: 10.1186/1472-6963-5-3625 Kutafina, E., Bechtold, I., Kabino, K., Jonas, S.M. Recursive neural networks in hospital bed occupancy forecasting (Open Access) (2019) BMC Medical Informatics and Decision Making, 19 (1), art. no. 39. Cited 11 times. http://www.biomedcentral.com/bmcmedinformdecismak/ doi: 10.1186/s12911-019-0776-126 Awan, I.A., Shiraz, M., Hashmi, M.U., Shaheen, Q., Akhtar, R., Ditta, A. Secure Framework Enhancing AES Algorithm in Cloud Computing (Open Access) (2020) Security and Communication Networks, 2020, art. no. 8863345. Cited 12 times. https://www.hindawi.com/journals/scn/ doi: 10.1155/2020/886334527 Zhecheng, Z. An online short-term bed occupancy rate prediction procedure based on discrete event simulation (2014) J. Hosp. Adm., 3, pp. 37-42. Cited 4 times.28 Butt, S.A., Gochhait, S., Andleeb, S., Adeel, M. (2021) Games features for health disciplines for patient learning as entertainment, Digital Entertainment. Cited 5 times. Palgrave Macmillan, Singapore29 Butt, S.A., Anjum, M.W., Hassan, S.A., Garai, A., Onyema, E.M. (2021) Smart health application for remote tracking of ambulatory patients, Smart Healthcare System Design: Security and Privacy Aspects, Hafizul Islam, S.K. and Samanta, D.30 Carin, L. On Artificial Intelligence and Deep Learning Within Medical Education (Open Access) (2020) Academic medicine : journal of the Association of American Medical Colleges, 95 (11S Association of American Medical Colleges Learn Serve Lead), pp. S10-S11. Cited 9 times. doi: 10.1097/ACM.000000000000363031 Asam, M., Jamal, T., Adeel, M., Hassan, A., Butt, S.A., Ajaz, A., Gulzar, M. Challenges in wireless body area network (Open Access) (2019) International Journal of Advanced Computer Science and Applications, 10 (11), pp. 336-341. Cited 10 times. https://thesai.org/Downloads/Volume10No11/Paper_47-Challenges_in_Wireless_Body_Area_Network.pdf doi: 10.14569/IJACSA.2019.010114732 Li, C., Xu, X., Zhou, G., He, K., Qi, T., Zhang, W., Tian, F., (...), Hu, J. Implementation of national health informatization in china: Survey about the status quo (Open Access) (2019) JMIR Medical Informatics, 7 (1), art. no. e12238. Cited 8 times. https://medinform.jmir.org/2019/1/e12238 doi: 10.2196/1223833 Simblett, S., Matcham, F., Siddi, S., Bulgari, V., di San Pietro, C.B., López, J.H., Ferrão, J., (...), Wykes, T. Barriers to and facilitators of engagement with mHealth technology for remote measurement and management of depression: Qualitative analysis (Open Access) (2019) JMIR mHealth and uHealth, 7 (1), art. no. e11325. Cited 35 times. https://mhealth.jmir.org/2019/1/e11325/pdf doi: 10.2196/1132534 Pineres-Espitia, G., Butt, S.A., Canate-Masson, M., Alvarez-Navarro, A., Hassan, S.A., Gochhait, S. Gas Sensing System using An Unmanned Aerial Vehicle (Open Access) (2021) 2021 6th International Conference for Convergence in Technology, I2CT 2021, art. no. 9418000. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9417810 ISBN: 978-172818876-8 doi: 10.1109/I2CT51068.2021.941800035 Wang, W., Chen, J., Hong, T Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings (Open Access) (2018) Automation in Construction, 94, pp. 233-243. Cited 56 times.doi: 10.1016/j.autcon.2018.07.00736 Stewart, R., Urban, M., Duchscherer, S., Kaufman, J., Morton, A., Thakur, G., Piburn, J., (...), Moehl, J. A Bayesian machine learning model for estimating building occupancy from open source data (Open Access) (2016) Natural Hazards, 81 (3), pp. 1929-1956. Cited 13 times. www.wkap.nl/journalhome.htm/0921-030X doi: 10.1007/s11069-016-2164-937 Desautels, T., Das, R., Calvert, J., Trivedi, M., Summers, C., Wales, D.J., Ercole, A. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: A cross-sectional machine learning approach (Open Access) (2017) BMJ Open, 7 (9), art. no. e017199. Cited 48 times. http://bmjopen.bmj.com/content/early/by/section doi: 10.1136/bmjopen-2017-01719938 Ortega-Gonzalez, L., Acosta-Coll, M., Piñeres-Espitia, G., Aziz Butt, S. Communication protocols evaluation for a wireless rainfall monitoring network in an urban area (Open Access) (2021) Heliyon, 7 (6), art. no. e07353. Cited 4 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2021.e0735339 Belciug, S., Gorunescu, F. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs (2016) Artificial Intelligence in Medicine, 68, pp. 59-69. Cited 13 times. www.elsevier.com/locate/artmed doi: 10.1016/j.artmed.2016.03.001556546655AlgorithmsBed occupancy rateHealthcareMachine learningPublicationORIGINALA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdfA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdfapplication/pdf864574https://repositorio.cuc.edu.co/bitstreams/a0fb17bd-d9a1-4df7-a7a7-7f5eba092597/download824ce275ec123c38b726dea16cea448fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/49aca493-fc92-4ab1-a548-cea45e981ddd/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdf.txtA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdf.txttext/plain48544https://repositorio.cuc.edu.co/bitstreams/af2df642-6445-44c3-8c9b-0f873b808777/downloadbb7d0e59e55ee5f48309d9e3990187a7MD53THUMBNAILA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdf.jpgA Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector.pdf.jpgimage/jpeg5828https://repositorio.cuc.edu.co/bitstreams/0c7eb2a7-2c2c-4998-8fb8-3af5822b9682/download30c8d8a8e229ffdb0f098faa9a0b6fe6MD5411323/9475oai:repositorio.cuc.edu.co:11323/94752024-09-17 12:45:10.286https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |