Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water
This research describes the effect of the photocatalyst concentration, irradiation power, concentration of inorganic salts and the initial pH on the three parameters of a Langmuir-Hinshelwood-model: inactivation kinetic constant; k, dimensionless interaction coefficient; K*, and inhibition coefficie...
- Autores:
-
MORENO RIOS, ANDREA LILIANA
Ballesteros, Luz M.
Castro-López, Camilo A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7467
- Acceso en línea:
- https://hdl.handle.net/11323/7467
http://doi.org/10.1080/01496395.2019.1676784
https://repositorio.cuc.edu.co/
- Palabra clave:
- Photocatalytic disinfection
TiO2
kinetics
process variables
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_8a03b837dd03fbcca68d9c6567e97f7a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7467 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
title |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
spellingShingle |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water Photocatalytic disinfection TiO2 kinetics process variables |
title_short |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
title_full |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
title_fullStr |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
title_full_unstemmed |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
title_sort |
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water |
dc.creator.fl_str_mv |
MORENO RIOS, ANDREA LILIANA Ballesteros, Luz M. Castro-López, Camilo A. |
dc.contributor.author.spa.fl_str_mv |
MORENO RIOS, ANDREA LILIANA Ballesteros, Luz M. Castro-López, Camilo A. |
dc.subject.spa.fl_str_mv |
Photocatalytic disinfection TiO2 kinetics process variables |
topic |
Photocatalytic disinfection TiO2 kinetics process variables |
description |
This research describes the effect of the photocatalyst concentration, irradiation power, concentration of inorganic salts and the initial pH on the three parameters of a Langmuir-Hinshelwood-model: inactivation kinetic constant; k, dimensionless interaction coefficient; K*, and inhibition coefficient; n, which was applied to the photocatalytic disinfection of water with TiO2. In general, there is a qualitative finding in the effects on parameters of some variables since an increase in k was always related to a decrease in K*. Such relation was observed for the amount of TiO2, the irradiation power and the increase in concentration of inorganic salts: NaCl and CaCO3. Moreover, increase in MgSO4 concentration do not cause a tendency of change on the described parameters. As for pH of the reaction media, an increasing effect on k is observed when its value promotes proximity between bacteria and TiO2 particles. Finally, small changes were observed for n with the studied variables, but indeed significant for mathematical fitting. Thus, these findings led to the formulation of a mathematical description of the effects of the most important variables and their interactions on the kinetic parameters. This last hypothesis was validated by comparison of experimental and predicted data with high correlations. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-11-24T16:29:43Z |
dc.date.available.none.fl_str_mv |
2020-11-24T16:29:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7467 |
dc.identifier.doi.spa.fl_str_mv |
http://doi.org/10.1080/01496395.2019.1676784 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7467 http://doi.org/10.1080/01496395.2019.1676784 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Bylund, J.; Toljander, J.; Lysén, M.; Rasti, N.; Engqvist, J.; Simonsson, M. Measuring Sporadic Gastrointestinal Illness Associated with Drinking Water - an Overview of Methodologies. J. Water Health. 2017, 15(3), 321–340. DOI: 10.2166/wh.2017.261. [2] Verma, K.; Gupta, D.; Gupta, A. B. Optimization of Ozone Disinfection and Its Effect on Trihalomethanes. J. Environ. Chem. Eng. 2016, 4, 3021–3032. DOI: 10.1016/j.jece.2016.06.017. [3] Mecha, A. C.; Onyango, M. S.; Ochieng, A.; Momba, M. N. B. Evaluation of Synergy and Bacterial Regrowth in Photocatalytic Ozonation Disinfection of Municipal Wastewater. Sci. Total Environ. 2017, 601–602, 626–635. DOI: 10.1016/j.scitotenv.2017.05.204. [4] Nie, X. B.; Li, Z. H.; Long, Y. N.; He, P. P.; Xu, C. Chlorine Inactivation of Tubifex in Drinking Water and the Synergistic Effect of Sequential Inactivation with UV Irradiation and Chlorine. Chemosphere. 2017, 177, 7–14. DOI: 10.1016/j.chemosphere.2017.02.142. [5] Du, Y.; Lv, X. T.; Wu, Q. Y.; Zhang, D. Y.; Zhou, Y. T.; Peng, L.; Hu, H. Y. Formation and Control of Disinfection by Products and Toxicity during Reclaimed Water Chlorination: A Review. J Environ Sci. 2017, 58, 5–63. DOI: 10.1016/j.jes.2017.01.013. [6] Rokicka-Konieczna, P.; Makowska-Szczupak, A.; Kusiak-Nejman, E.; Morawski, A. W. Photocatalytic Water Disinfection under the Artificial Solar Light by Fructose-modified TiO2. Chem. Eng. J. 2019, 372, 203–215. DOI: 10.1016/j.cej.2019.04.113. [7] Figueredo, F. M.; Gutiérrez, A. S.; Acevedo, M. A.; Manzano, M. A. Estimating Lethal Dose of Solar Radiation for Enterococus Inactivation through Radiation Reachig the Water Layer. Application to Solar Water Disinfection (SODIS). Solar Energy. 2017, 158, 303–310. DOI: 10.1016/j.solener.2017.09.006. [8] Castro, A. M.; Polo, L. M. I.; Marugán, J.; Fernández, I. P. F. Mechanistic Model of the Escherichia Coli Inactivation by Solar Disinfection Based on the Photo-generation of Internal ROS and the Photo-inactivation of Enzymes: CAT and SOD. Chem. Eng. J. 2017, 318, 214–223. DOI: 10.1016/j. cej.2016.06.093. [9] Gutiérrez, Z. H. M.; Alvear, D. J. J.; Rengifo, H. J. A.; Sanabria, J. Addition of Hydrogen Peroxide to Groundwater with Natural Iron INduces Water Disinfection by Photo-Fenton at Circumneutral pH and Other Photochemical Events. Photochem. Photobiol. 2017, 93(5), 1224–1231. DOI: 10.1111/ php.12779. [10] Reddy, P. V. L.; Kavitha, B.; Reddy, P. A. K.; Kim, K. H. TiO2-based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. DOI: 10.1016/j.envres.2017.01.018. [11] Zhu, Z.; Cai, H.; Sun, D. W. Titanium Dioxide (TiO2) Photocatalysis Technology for Nonthermal Inactivation of Microorganisms in Foods. Trend Food Sci. Technol. 2018, 75, 23–35. DOI: 10.1016/j.tifs.2018.02.018. [12] Uyguner Demirel, C. S.; Cemre Birben, N.; Bekbolet, M. A Comprehensive Review on the Use of Second Generation TiO2 Photocatalysts: Microorganism Inactivation. Chemosphere. 2018, 211, 420–448. DOI: 10.1016/j.chemosphere.2018.07.121. [13] Cai, Y.; Stromme, M.; Welch, K. Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. J. Biomater. Nanobiotechnol. 2014, 5, 200–209. DOI: 10.4236/jbnb.2014.53024. [14] An, T.; Zhao, H.; Wong, P. K., Editors. Advances in Photocatalytic Disinfection; Springer Nature: Berlin, Germany, 2017. http://www.springer.com/gp/book/ 9783662534946 [15] Wang, W.; Huang, G.; Yu, J. C.; Wong, P. K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. J Environ Sci. 2015, 34, 232–247. DOI: 10.1016/j.jes.2015.05.003. [16] Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M. C.; Horvatovich, P.; Gies, J. P.; Keller, V.; Keller, N.; Andre, P. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia Coli. Appl. Environ. Microbiol. 2014, 80(8), 2573–2581. DOI: 10.1128/ AEM.03995-13. [17] Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. DOI: 10.1016/j.watres.2010.02.039. [18] Fagan, R.; McCormack, D. E.; Dionysiou, D. D.; Pillai, S. C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. DOI: 10.1016/j.mssp.2015.07.052. [19] Castro, C. A.; Osorio, P.; Sienkiewicz, A.; Pulgarin, C.; Centeno, A.; Giraldo, S. A. Photocatalytic Production of 1O2 and OH Mediated by Silver Oxidation during the Photoinactivation of Escherichia Coli with TiO2. J. Hazard. Mater. 2012, 211–212, 172–181. DOI: 10.1016/j.jhazmat.2011.08.076. [20] Castro, C. A.; Jurado, A.; Sissa, D.; Giraldo, S. A. Performance of Ag-TiO2 Photocatalysts Towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations. Int. J. Photoenergy 2012, 2012, 10. Article ID 261045. DOI: 10.1155/2012/261045. [21] Dalrymple, O. K.; Stefanakos, E.; Trotz, M. A.; Goswami, D. Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. DOI: 10.1016/j. apcatb.2010.05.001. [22] Sichel, C.; Tello, J.; de Cara, M.; Fernández, I. P. Effect of UV Solar Intensity and Dose on the Photocatalytic Disinfection of Bacteria and Fungi. Catal. Today. 2007, 129, 152–160. DOI: 10.1016/j.cattod.2007.06.061. [23] Malato, S.; Maldonado, M. I.; Fernández, I. P.; Oller, I.; Polo, I.; Sánchez, M. R. Decontamination and Disinfection of Water by Solar Photocatalysis: The Pilot Plants of the PLataforma Solar De Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. DOI: 10.1016/j.mssp.2015.07.017. [24] Rincón, A. G.; Pulgarín, C. Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E.coli K12 Photocatalytic Inactivation by TiO2 Implication in Solar Water Disinfection. Appl. Catal. B Environ. 2004, 51, 283–302. DOI: 10.1016/j. apcatb.2004.03.007. [25] Rincón, A. G.; Pulgarín, C. Field Solar E.coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose and Appropriate Parameter for Standarization of Water Solar Disinfection? Solar Energy. 2004, 77, 635–648. DOI: 10.1016/j.solener.2004.08.002. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Separation Science and Technology |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/01496395.2019.1676784 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/714ed153-5d9e-4b02-b8fd-b68ffc92fd50/download https://repositorio.cuc.edu.co/bitstreams/d02a1ae8-f00e-4d28-b584-383d45642b54/download https://repositorio.cuc.edu.co/bitstreams/d5ee90b5-efc4-4e59-b2ec-8f4e35f08af4/download https://repositorio.cuc.edu.co/bitstreams/27718f0a-f90b-4bca-9cdd-6beedbf6f08b/download https://repositorio.cuc.edu.co/bitstreams/9c95def6-a77d-4b78-bbb6-3febe2a17d73/download |
bitstream.checksum.fl_str_mv |
6bf0324c1efec1e86b302a9b76e87d74 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 7997e30d075a158279d006750a0cadaa c79e066a101c87435d3cb12394285487 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166857349136384 |
spelling |
MORENO RIOS, ANDREA LILIANABallesteros, Luz M.Castro-López, Camilo A.2020-11-24T16:29:43Z2020-11-24T16:29:43Z2019https://hdl.handle.net/11323/7467http://doi.org/10.1080/01496395.2019.1676784Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research describes the effect of the photocatalyst concentration, irradiation power, concentration of inorganic salts and the initial pH on the three parameters of a Langmuir-Hinshelwood-model: inactivation kinetic constant; k, dimensionless interaction coefficient; K*, and inhibition coefficient; n, which was applied to the photocatalytic disinfection of water with TiO2. In general, there is a qualitative finding in the effects on parameters of some variables since an increase in k was always related to a decrease in K*. Such relation was observed for the amount of TiO2, the irradiation power and the increase in concentration of inorganic salts: NaCl and CaCO3. Moreover, increase in MgSO4 concentration do not cause a tendency of change on the described parameters. As for pH of the reaction media, an increasing effect on k is observed when its value promotes proximity between bacteria and TiO2 particles. Finally, small changes were observed for n with the studied variables, but indeed significant for mathematical fitting. Thus, these findings led to the formulation of a mathematical description of the effects of the most important variables and their interactions on the kinetic parameters. This last hypothesis was validated by comparison of experimental and predicted data with high correlations.MORENO RIOS, ANDREA LILIANA-will be generated-orcid-0000-0002-5454-6784-600Ballesteros, Luz M.Castro-López, Camilo A.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Separation Science and Technologyhttps://www.tandfonline.com/doi/full/10.1080/01496395.2019.1676784Photocatalytic disinfectionTiO2kineticsprocess variablesInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of waterArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Bylund, J.; Toljander, J.; Lysén, M.; Rasti, N.; Engqvist, J.; Simonsson, M. Measuring Sporadic Gastrointestinal Illness Associated with Drinking Water - an Overview of Methodologies. J. Water Health. 2017, 15(3), 321–340. DOI: 10.2166/wh.2017.261.[2] Verma, K.; Gupta, D.; Gupta, A. B. Optimization of Ozone Disinfection and Its Effect on Trihalomethanes. J. Environ. Chem. Eng. 2016, 4, 3021–3032. DOI: 10.1016/j.jece.2016.06.017.[3] Mecha, A. C.; Onyango, M. S.; Ochieng, A.; Momba, M. N. B. Evaluation of Synergy and Bacterial Regrowth in Photocatalytic Ozonation Disinfection of Municipal Wastewater. Sci. Total Environ. 2017, 601–602, 626–635. DOI: 10.1016/j.scitotenv.2017.05.204.[4] Nie, X. B.; Li, Z. H.; Long, Y. N.; He, P. P.; Xu, C. Chlorine Inactivation of Tubifex in Drinking Water and the Synergistic Effect of Sequential Inactivation with UV Irradiation and Chlorine. Chemosphere. 2017, 177, 7–14. DOI: 10.1016/j.chemosphere.2017.02.142.[5] Du, Y.; Lv, X. T.; Wu, Q. Y.; Zhang, D. Y.; Zhou, Y. T.; Peng, L.; Hu, H. Y. Formation and Control of Disinfection by Products and Toxicity during Reclaimed Water Chlorination: A Review. J Environ Sci. 2017, 58, 5–63. DOI: 10.1016/j.jes.2017.01.013.[6] Rokicka-Konieczna, P.; Makowska-Szczupak, A.; Kusiak-Nejman, E.; Morawski, A. W. Photocatalytic Water Disinfection under the Artificial Solar Light by Fructose-modified TiO2. Chem. Eng. J. 2019, 372, 203–215. DOI: 10.1016/j.cej.2019.04.113.[7] Figueredo, F. M.; Gutiérrez, A. S.; Acevedo, M. A.; Manzano, M. A. Estimating Lethal Dose of Solar Radiation for Enterococus Inactivation through Radiation Reachig the Water Layer. Application to Solar Water Disinfection (SODIS). Solar Energy. 2017, 158, 303–310. DOI: 10.1016/j.solener.2017.09.006.[8] Castro, A. M.; Polo, L. M. I.; Marugán, J.; Fernández, I. P. F. Mechanistic Model of the Escherichia Coli Inactivation by Solar Disinfection Based on the Photo-generation of Internal ROS and the Photo-inactivation of Enzymes: CAT and SOD. Chem. Eng. J. 2017, 318, 214–223. DOI: 10.1016/j. cej.2016.06.093.[9] Gutiérrez, Z. H. M.; Alvear, D. J. J.; Rengifo, H. J. A.; Sanabria, J. Addition of Hydrogen Peroxide to Groundwater with Natural Iron INduces Water Disinfection by Photo-Fenton at Circumneutral pH and Other Photochemical Events. Photochem. Photobiol. 2017, 93(5), 1224–1231. DOI: 10.1111/ php.12779.[10] Reddy, P. V. L.; Kavitha, B.; Reddy, P. A. K.; Kim, K. H. TiO2-based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. DOI: 10.1016/j.envres.2017.01.018.[11] Zhu, Z.; Cai, H.; Sun, D. W. Titanium Dioxide (TiO2) Photocatalysis Technology for Nonthermal Inactivation of Microorganisms in Foods. Trend Food Sci. Technol. 2018, 75, 23–35. DOI: 10.1016/j.tifs.2018.02.018.[12] Uyguner Demirel, C. S.; Cemre Birben, N.; Bekbolet, M. A Comprehensive Review on the Use of Second Generation TiO2 Photocatalysts: Microorganism Inactivation. Chemosphere. 2018, 211, 420–448. DOI: 10.1016/j.chemosphere.2018.07.121.[13] Cai, Y.; Stromme, M.; Welch, K. Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. J. Biomater. Nanobiotechnol. 2014, 5, 200–209. DOI: 10.4236/jbnb.2014.53024.[14] An, T.; Zhao, H.; Wong, P. K., Editors. Advances in Photocatalytic Disinfection; Springer Nature: Berlin, Germany, 2017. http://www.springer.com/gp/book/ 9783662534946[15] Wang, W.; Huang, G.; Yu, J. C.; Wong, P. K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. J Environ Sci. 2015, 34, 232–247. DOI: 10.1016/j.jes.2015.05.003.[16] Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M. C.; Horvatovich, P.; Gies, J. P.; Keller, V.; Keller, N.; Andre, P. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia Coli. Appl. Environ. Microbiol. 2014, 80(8), 2573–2581. DOI: 10.1128/ AEM.03995-13.[17] Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. DOI: 10.1016/j.watres.2010.02.039.[18] Fagan, R.; McCormack, D. E.; Dionysiou, D. D.; Pillai, S. C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. DOI: 10.1016/j.mssp.2015.07.052.[19] Castro, C. A.; Osorio, P.; Sienkiewicz, A.; Pulgarin, C.; Centeno, A.; Giraldo, S. A. Photocatalytic Production of 1O2 and OH Mediated by Silver Oxidation during the Photoinactivation of Escherichia Coli with TiO2. J. Hazard. Mater. 2012, 211–212, 172–181. DOI: 10.1016/j.jhazmat.2011.08.076.[20] Castro, C. A.; Jurado, A.; Sissa, D.; Giraldo, S. A. Performance of Ag-TiO2 Photocatalysts Towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations. Int. J. Photoenergy 2012, 2012, 10. Article ID 261045. DOI: 10.1155/2012/261045.[21] Dalrymple, O. K.; Stefanakos, E.; Trotz, M. A.; Goswami, D. Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. DOI: 10.1016/j. apcatb.2010.05.001.[22] Sichel, C.; Tello, J.; de Cara, M.; Fernández, I. P. Effect of UV Solar Intensity and Dose on the Photocatalytic Disinfection of Bacteria and Fungi. Catal. Today. 2007, 129, 152–160. DOI: 10.1016/j.cattod.2007.06.061.[23] Malato, S.; Maldonado, M. I.; Fernández, I. P.; Oller, I.; Polo, I.; Sánchez, M. R. Decontamination and Disinfection of Water by Solar Photocatalysis: The Pilot Plants of the PLataforma Solar De Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. DOI: 10.1016/j.mssp.2015.07.017.[24] Rincón, A. G.; Pulgarín, C. Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E.coli K12 Photocatalytic Inactivation by TiO2 Implication in Solar Water Disinfection. Appl. Catal. B Environ. 2004, 51, 283–302. DOI: 10.1016/j. apcatb.2004.03.007.[25] Rincón, A. G.; Pulgarín, C. Field Solar E.coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose and Appropriate Parameter for Standarization of Water Solar Disinfection? Solar Energy. 2004, 77, 635–648. DOI: 10.1016/j.solener.2004.08.002.PublicationORIGINALInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdfInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdfapplication/pdf98759https://repositorio.cuc.edu.co/bitstreams/714ed153-5d9e-4b02-b8fd-b68ffc92fd50/download6bf0324c1efec1e86b302a9b76e87d74MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/d02a1ae8-f00e-4d28-b584-383d45642b54/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d5ee90b5-efc4-4e59-b2ec-8f4e35f08af4/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdf.jpgInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdf.jpgimage/jpeg43304https://repositorio.cuc.edu.co/bitstreams/27718f0a-f90b-4bca-9cdd-6beedbf6f08b/download7997e30d075a158279d006750a0cadaaMD54TEXTInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdf.txtInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water.pdf.txttext/plain1725https://repositorio.cuc.edu.co/bitstreams/9c95def6-a77d-4b78-bbb6-3febe2a17d73/downloadc79e066a101c87435d3cb12394285487MD5511323/7467oai:repositorio.cuc.edu.co:11323/74672024-09-17 14:18:50.751http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |