Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm
The installation of wave energy converter (WEC) arrays near the coast can have significant impacts on sediment dynamics and coastal morphodynamics. However, methodologies for quantifying these impacts and strategies to minimize them are still in need of development. In this study, we assessed the co...
- Autores:
-
Berrio, Y.
Rivillas-Ospina, G.
Ruiz-Martínez, G.
Arango-Manrique, A.
Ricaurte, C.
Mendoza, E.
Silva, R.
Casas, D.
Bolívar, M.
Díaz, K.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13086
- Acceso en línea:
- https://hdl.handle.net/11323/13086
https://repositorio.cuc.edu.co/
- Palabra clave:
- XBeach
Delft-3D
Nearshore
Wave dynamics
WEC array
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_89d8062a1e35f6cdb34773f12a31d127 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13086 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
title |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
spellingShingle |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm XBeach Delft-3D Nearshore Wave dynamics WEC array |
title_short |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
title_full |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
title_fullStr |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
title_full_unstemmed |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
title_sort |
Energy conversion and beach protection: numerical assessment of a dual-purpose WEC farm |
dc.creator.fl_str_mv |
Berrio, Y. Rivillas-Ospina, G. Ruiz-Martínez, G. Arango-Manrique, A. Ricaurte, C. Mendoza, E. Silva, R. Casas, D. Bolívar, M. Díaz, K. |
dc.contributor.author.none.fl_str_mv |
Berrio, Y. Rivillas-Ospina, G. Ruiz-Martínez, G. Arango-Manrique, A. Ricaurte, C. Mendoza, E. Silva, R. Casas, D. Bolívar, M. Díaz, K. |
dc.subject.proposal.eng.fl_str_mv |
XBeach Delft-3D Nearshore Wave dynamics WEC array |
topic |
XBeach Delft-3D Nearshore Wave dynamics WEC array |
description |
The installation of wave energy converter (WEC) arrays near the coast can have significant impacts on sediment dynamics and coastal morphodynamics. However, methodologies for quantifying these impacts and strategies to minimize them are still in need of development. In this study, we assessed the coastal response to a WEC array on the La Guajira coast in the Colombian Caribbean using a two-step numerical strategy. We used the Delft-3D model to estimate the wave field, which was then transferred to the XBeach model to compute morphological changes. This modelling strategy was applied to three WEC array layouts and compared the morphological responses in terms of the distance and relative orientation of the WEC array to the coast. The results showed that the impact of the simulated WEC array on the beach response varied significantly depending on its distance from the coast, the configuration of the array, and its orientation. These findings highlight the need for further research to develop effective strategies for minimizing coastal erosion impacts on coastal ecosystems through innovative alternatives. Developing such strategies will be crucial to ensure the sustainable implementation of WEC arrays and other renewable energy technologies near the coast. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12 |
dc.date.accessioned.none.fl_str_mv |
2024-06-26T15:41:39Z |
dc.date.available.none.fl_str_mv |
2024-06-26T15:41:39Z 2026-12 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Y. Berrio, G. Rivillas-Ospina, G. Ruiz-Martínez, A. Arango-Manrique, C. Ricaurte, E. Mendoza, R. Silva, D. Casas, M. Bolívar, K. Díaz, Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm, Renewable Energy, Volume 219, Part 2, 2023, 119555, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2023.119555 |
dc.identifier.issn.spa.fl_str_mv |
0960-1481 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13086 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.renene.2023.119555 |
dc.identifier.eissn.spa.fl_str_mv |
1879-0682 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Y. Berrio, G. Rivillas-Ospina, G. Ruiz-Martínez, A. Arango-Manrique, C. Ricaurte, E. Mendoza, R. Silva, D. Casas, M. Bolívar, K. Díaz, Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm, Renewable Energy, Volume 219, Part 2, 2023, 119555, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2023.119555 0960-1481 10.1016/j.renene.2023.119555 1879-0682 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13086 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Renewable Energy |
dc.relation.references.spa.fl_str_mv |
[1] International Energy Agency, Global Coal Demand Is Set to Return to its All-Time High in 2022,” Global Coal Demand Is Set to Return to its All-Time High in 2022, 2022. https://www.iea.org/news/global-coal-demand-is-set-to-return-to-its-all-tim e-high-in-2022. [2] McKinsey & Company, Global energy perspective 2022. https://www.mckinsey. com/industries/oil-and-gas/our-insights/global-energy-perspective-2022, 2022. [3] O. Farrok, K. Ahmed, A.D. Tahlil, M.M. Farah, M.R. Kiran, M.R. Islam, Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies, Sustain 12 (6) (2020), https://doi.org/10.3390/ su12062178. [4] O. Farrok, M. Islam, M. Sheikh, G. Guo, J. Zhu, Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion, IEEE Trans. Magn. 53 (1–4) (2017), https://doi.org/10.1109/ TMAG.2017.2713770 [Online]. Available:. [5] H. Shakouri G, The share of cooling electricity in global warming: estimation of the loop gain for the positive feedback, Energy 179 (2019) 747–761, https://doi.org/ 10.1016/j.energy.2019.04.170. [6] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strateg. Rev. 24 (January) (2019) 38–50, https://doi.org/10.1016/j.esr.2019.01.006. [7] A.G. Majidi, B. Bingolbali, ¨ A. Akpınar, E. Rusu, Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea, Energy 220 (2021), https://doi.org/10.1016/j.energy.2020.119705. [8] EMEC: European Marine Energy Centre, Pelamis wave power. https://www.emec. org.uk/about-us/wave-clients/pelamis-wave-power, 2022. [9] C.A. Rodríguez, P. Rosa-Santos, F. Taveira-Pinto, Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter, Ocean Eng 199 (January) (2020), 107046, https://doi.org/10.1016/j.oceaneng.2020.107046. [10] Q. Chen, J. Zang, J. Birchall, D. Ning, X. Zhao, J. Gao, On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater, Renew. Energy 146 (2020) 414–425, https://doi.org/10.1016/j.renene.2019.06.149. [11] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, J. Geng, Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter, Appl. Energy 259 (November 2019) (2020), 114212, https://doi.org/10.1016/j.apenergy.2019.114212. [12] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, L. Zhang, Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter, Appl. Energy 257 (April 2019) (2020), 113996, https://doi.org/ 10.1016/j.apenergy.2019.113996. [13] S.J. Kim, W. Koo, M.J. Shin, Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system, Renew. Energy 135 (2019) 1260–1269, https://doi.org/10.1016/j. renene.2018.09.097. [14] P. Rosa-Santos, F. Taveira-Pinto, C.A. Rodríguez, V. Ramos, M. Lopez, ´ The CECO wave energy converter: recent developments, Renew. Energy 139 (2019) 368–384, https://doi.org/10.1016/j.renene.2019.02.081. [15] E. Renzi, S. Michele, S. Zheng, S. Jin, D. Greaves, Niche applications and flexible devices for wave energy conversion: a review, Energies 14 (20) (2021) 1–25, https://doi.org/10.3390/en14206537. [16] T.I. Koutrouveli, E. Di Lauro, L. Das Neves, T. Calheiros-Cabral, P. Rosa-Santos, F. Taveira-Pinto, Proof of concept of a breakwater-integrated hybrid wave energy converter using a composite modelling approach, J. Mar. Sci. Eng. 9 (2) (2021) 1–27, https://doi.org/10.3390/jmse9020226. [17] D.Z. Ning, X.L. Zhao, L.F. Chen, M. Zhao, Hydrodynamic performance of an array of wave energy converters integrated with a pontoon-type breakwater, Energies 11 (3) (2018) 8–10, https://doi.org/10.3390/en11030685. [18] X. Zhao, Y. Zhang, M. Li, L. Johanning, Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange, Renew. Energy 172 (2021) 392–407, https://doi. org/10.1016/j.renene.2021.02.138. [19] I. Inertial, Sea Wave Energy Converter, “Energy from the sea.,”, 2023. htt ps://www.eni.com/en-IT/operations/iswec-eni.html. [20] D. Vicinanza, E. Di Lauro, P. Contestabile, C. Gisonni, J.L. Lara, I.J. Losada, Review of innovative harbor breakwaters for wave-energy conversion, J. Waterw. Port, Coastal, Ocean Eng. 145 (4) (2019), https://doi.org/10.1061/(asce)ww.1943- 5460.0000519. [21] T. Flanagan, M. Wengrove, B. Robertson, Coupled wave energy converter and nearshore wave propagation models for coastal impact assessments, J. Mar. Sci. Eng. 10 (3) (2022), https://doi.org/10.3390/jmse10030370. [22] A.J. Garrido, et al., Mathematical modeling of oscillating water columns wavestructure interaction in ocean energy plants, Math. Probl. Eng. 2015 (2015), https://doi.org/10.1155/2015/727982. Figure 2. [23] Z.L. Hutchison, L. Lieber, R.G. Miller, B.J. Williamson, in: T.M.B.T.-C. R. E (Ed.), Environmental Impacts of Tidal and Wave Energy Converters, Elsevier, Oxford, 2022, pp. 258–290, https://doi.org/10.1016/B978-0-12-819727-1.00115-1. [24] A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic, Renew. Sustain. Energy Rev. 161 (February) (2022), 112279, https://doi.org/10.1016/j.rser.2022.112279. [25] G. Lavidas, K. Blok, Shifting wave energy perceptions: the case for wave energy converter (WEC) feasibility at milder resources, Renew. Energy 170 (2021) 1143–1155, https://doi.org/10.1016/j.renene.2021.02.041. [26] M. Goteman, ¨ M. Giassi, J. Engstrom, ¨ J. Isberg, Advances and challenges in wave energy park optimization—a review, Front. Energy Res. 8 (March) (2020), https:// doi.org/10.3389/fenrg.2020.00026. [27] G.J. Dalton, R. Alcorn, T. Lewis, Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America, Renew. Energy 35 (2) (2010) 443–455, https://doi.org/10.1016/j.renene.2009.07.003. [28] E. Rusu, F. Onea, A review of the technologies for wave energy extraction, Clean Energy 2 (1) (2018) 10–19, https://doi.org/10.1093/ce/zky003. [29] E. Mendoza, et al., Beach response to wave energy converter farms acting as coastal defence, Coast. Eng. 87 (2014) 97–111, https://doi.org/10.1016/j. coastaleng.2013.10.018. [30] J. Abanades, D. Greaves, G. Iglesias, Coastal defence using wave farms: the role of farm-to-coast distance, Renew. Energy 75 (2015) 572–582, https://doi.org/ 10.1016/j.renene.2014.10.048. [31] D.R. David, D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, M.L. Buckley, Predicting coastal impacts by wave farms: a comparison of wave-averaged and wave-resolving models, Renew. Energy 183 (2022) 764–780, https://doi.org/10.1016/j. renene.2021.11.048. [32] A. O’Dea, M.C. Haller, H.T. Ozkan-Haller, ¨ The impact of wave energy converter arrays on wave-induced forcing in the surf zone, Ocean Eng 161 (May) (2018) 322–336, https://doi.org/10.1016/j.oceaneng.2018.03.077. [33] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Wave farm effects on the coast: the alongshore position, Sci. Total Environ. 640 (2018) 1176–1186, https://doi.org/10.1016/j.scitotenv.2018.05.281. [34] C. Rodriguez-Delgado, R.J. Bergillos, G. Iglesias, Dual wave farms and coastline dynamics: the role of inter-device spacing, Sci. Total Environ. 646 (2019) 1241–1252, https://doi.org/10.1016/j.scitotenv.2018.07.110. [35] D.L. Millar, H.C.M. Smith, D.E. Reeve, Modelling analysis of the sensitivity of shoreline change to a wave farm, Ocean Eng 34 (5–6) (2007) 884–901, https://doi. org/10.1016/j.oceaneng.2005.12.014. [36] D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model, Renew. Energy 150 (2020) 637–648, https://doi.org/10.1016/j.renene.2019.12.138. [37] S. Contardo, R. Hoeke, M. Hemer, G. Symonds, K. McInnes, J. O’Grady, In situ observations and simulations of coastal wave field transformation by wave energy converters, Coast. Eng. 140 (July) (2018) 175–188, https://doi.org/10.1016/j. coastaleng.2018.07.008. [38] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Protection of gravel-dominated coasts through wave farms: layout and shoreline evolution, Sci. Total Environ. 636 (2018) 1541–1552, https://doi.org/10.1016/j. scitotenv.2018.04.333. [39] G. Iglesias, R. Carballo, Wave farm impact: the role of farm-to-coast distance, Renew. Energy 69 (2014) 375–385, https://doi.org/10.1016/j. renene.2014.03.059. [40] N. Patrizi, et al., Lifecycle environmental impact assessment of an overtopping wave energy converter embedded in breakwater systems, Front. Energy Res. 7 (APR) (2019) 1–10, https://doi.org/10.3389/fenrg.2019.00032. [41] E. Amini, D. Golbaz, F. Amini, M.M. Nezhad, M. Neshat, D.A. Garcia, A parametric study of wave energy converter layouts in real wave models, Energies 13 (22) (2020), https://doi.org/10.3390/en13226095. [42] M.A. Mustapa, O.B. Yaakob, Y.M. Ahmed, C.K. Rheem, K.K. Koh, F.A. Adnan, Wave energy device and breakwater integration: a review, Renew. Sustain. Energy Rev. 77 (September 2015) (2017) 43–58, https://doi.org/10.1016/j.rser.2017.03.110. [43] L. Wang, A. Kolios, L. Cui, Q. Sheng, Flexible multibody dynamics modelling of point-absorber wave energy converters, Renew. Energy 127 (2018) 790–801, https://doi.org/10.1016/j.renene.2018.05.029. [44] X.L. Zhao, D.Z. Ning, Q.P. Zou, D.S. Qiao, S.Q. Cai, Hybrid floating breakwaterWEC system: a review, Ocean Eng 186 (June) (2019), 106126, https://doi.org/ 10.1016/j.oceaneng.2019.106126. [45] G.R. Tomasicchio, et al., Physical model tests on spar buoy for offshore floating wind energy conversion, Ital. J. Eng. Geol. Environ. 20 (1) (2020) 129–143, https://doi.org/10.4408/IJEGE.2020-01.S-15. [46] X. Zheng, et al., Sea trial test on offshore integration of an oscillating buoy wave energy device and floating breakwater, Energy Convers. Manag. 256 (September 2021) (2022), https://doi.org/10.1016/j.enconman.2022.115375. [47] Y. Cheng, et al., Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater, Renew. Sustain. Energy Rev. 161 (July 2021) (2022), 112299, https:// doi.org/10.1016/j.rser.2022.112299. [48] S. Astariz, G. Iglesias, The economics of wave energy: a review, Renew. Sustain. Energy Rev. 45 (2015) 397–408, https://doi.org/10.1016/j.rser.2015.01.061. [49] N. Rangel-Buitrago, A.T. Williams, G. Anfuso, Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls, Ocean Coast. Manag. 156 (2018) 58–75, https:// doi.org/10.1016/j.ocecoaman.2017.04.006. [50] IDEAM, Boletín Condiciones Hidrometeorologicas, ´ 2022. http://www.pronostico syalertas.gov.co/boletin-condiciones-hidrometeorologicas. (Accessed 9 July 2017). [51] N. Rangel, G.A. Melfi, “Morfología, morfodinamica ´ y evolucion ´ reciente en la Península de la Guajira, Caribe Colombiano,” 8 (1) (2013) 7–24. [52] CORPOGUAJIRA and INVEMAR, Atlas marino costero de La Guajira, Ser. Publicaciones Espec. INVEMAR 27 (2012) 188. [53] S. Ball´en, J.D. Barrios, Cuantificacion ´ de Las Transformaciones Territoriales Asociadas A Dinamicas ´ de Produccion ´ Derivadas de los Diferentes Sectores Productivos en la Cuenca del Río Ranchería, La Guajira, Colombia, Univ. St. Tom´ as, 2019, pp. 1–48. [54] G. Rivillas-Ospina, et al., Appmar 1.0: a Python application for downloading and analyzing of WAVEWATCH III® wave and wind data, Comput. Geosci. 162 (Mar. 2022), 105098, https://doi.org/10.1016/j.cageo.2022.105098. [55] Deltares, Delft3D-WAVE. Simulation of Short-Crested Waves with SWAN User Manual, 2020. [56] B. Kamranzad, S. Hadadpour, A multi-criteria approach for selection of wave energy converter/location, Energy 204 (2020), 117924, https://doi.org/10.1016/ j.energy.2020.117924. [57] E. Rusu, Study of the wave energy propagation patterns in the western Black Sea, Appl. Sci. 8 (6) (2018), https://doi.org/10.3390/app8060993. [58] Deltares, User manual : Delft3D - flow, User Man (2020) 710. [59] C. Amante, B.W. Eakins, ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24 (2009) 19, https://doi.org/10.1594/PANGAEA.769615. March. [60] A.K. Fragkou, C. Old, V. Venugopal, A. Angeloudis, Benchmarking a two-way coupled coastal wave–current hydrodynamics model, Ocean Model 183 (2023), 102193, https://doi.org/10.1016/j.ocemod.2023.102193. March. [61] A.F. Orejarena-Rondon, ´ J.C. Restrepo, A. Correa-Metrio, A. Orfila, Wave energy flux in the Caribbean Sea: trends and variability, Renew. Energy 181 (2022) 616–629, https://doi.org/10.1016/j.renene.2021.09.081. [62] J. Ruiz-Merchan, ´ L. Otero, M. Conde, J.C. Restrepo, J.C. Ortiz, Field observations of wave and current characteristics on a microtidal reflective beach, J. Coast. Res. 35 (6) (2019) 1164–1184, https://doi.org/10.2112/JCOASTRES-D-18-00120.1. [63] M. Conde-Frias, L. Otero, J.C. Restrepo, J.C. Ortiz, J. Ruiz, A.F. Osorio, Swash oscillations in a microtidal dissipative beach, J. Coast. Res. 33 (6) (2017) 1408–1422, https://doi.org/10.2112/JCOASTRES-D-16-00147.1. [64] J. Cueto, L. Otero, Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches, Appl. Ocean Res. 101 (February) (2020), 102283, https://doi.org/10.1016/j.apor.2020.102283. [65] C. Nederhoff, Modelling the Effects of Hard Structures on Dune Erosion and Overwash, 2014, p. 188. [66] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, Modeling the effects of hard structures on dune erosion and overwash: a case study of the impact of Hurricane Sandy on the New Jersey coast, Proc. Coast. Sediments, San Diego, CA (2015) 1–17, https://doi.org/10.1142/9789814689977_0219. Figure 1. [67] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, MODELING the EFFECTS of HARD STRUCTURES on DUNE EROSION and OVERWASH: a Case Study of the Impact of Hurricane Sandy on the New Jersey Coast, Proc. Coast. Sediments, San Diego, CA, 2015, pp. 1–17. May. [68] D. Roelvink, A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, J. Lescinski, Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng. 56 (11–12) (2009) 1133–1152, https://doi.org/10.1016/j. coastaleng.2009.08.006. [69] L.C. van Rijn, D.J.R. Wasltra, B. Grasmeijer, J. Sutherland, S. Pan, J.P. Sierra, The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models, Coast. Eng. 47 (3) (2003) 295–327, https://doi.org/10.1016/S0378-3839(02)00120-5. [70] J. Sutherland, A.H. Peet, R.L. Soulsby, Evaluating the performance of morphological models, Coast. Eng. 51 (8–9) (2004) 917–939, https://doi.org/ 10.1016/j.coastaleng.2004.07.015. [71] A. Pedrozo-Acuna, ˜ D.J. Simmonds, A.K. Otta, A.J. Chadwick, On the cross-shore profile change of gravel beaches, Coast. Eng. 53 (4) (2006) 335–347, https://doi. org/10.1016/j.coastaleng.2005.10.019. [72] J.J. Williams, A.R. de Alegría-Arzaburu, R.T. McCall, A. Van Dongeren, Modelling gravel barrier profile response to combined waves and tides using XBeach: laboratory and field results, Coast. Eng. 63 (2012) 62–80, https://doi.org/ 10.1016/j.coastaleng.2011.12.010. [73] D. Pender, H. Karunarathna, A statistical-process based approach for modelling beach profile variability, Coast. Eng. 81 (2013) 19–29, https://doi.org/10.1016/j. coastaleng.2013.06.006. [74] G. Rivillas-Ospina, et al., Coastal Restoration on the Barrier Island of Ci´enaga Grande, no. June, 2017, pp. 21–23. [75] E.A. Himmelstoss, R.E. Henderson, M.G. Kratzmann, A.S. Farris, Digital shoreline analysis system (DSAS) version 5.1 user guide: U.S. Geological survey open-file report 2021–1091, U.S. Geol. Surv. 104 (2021). [76] J. Allen, K. Sampanis, J. Wan, D. Greaves, J. Miles, G. Iglesias, Laboratory tests in the development of WaveCat, Sustain 8 (12) (2016), https://doi.org/10.3390/ su8121339. [77] D. Vicinanza, L. Cappietti, V. Ferrante, P. Contestabile, Estimation of the wave energy in the Italian offshore, J. Coast. Res. (2011) 613–617. SPEC. ISSUE 64. [78] A. Cornet, A global wave energy assessment, 59–64, Eighteenth Int. Offshore Polar Eng. Conf., Int. Soc. Offshore Polar Eng. (2008), 00933651 [Online]. Available: https://www.onepetro.org/conference-paper/ISOPE-I-08-370. [79] G. Lavidas, V. Venugopal, A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea, Renew. Energy 103 (2017) 401–417, https://doi.org/10.1016/j.renene.2016.11.055. [80] K. Amarouche, A. Akpınar, N.E.I. Bachari, F. Houma, Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast, Renew. Energy 153 (2020) 840–860, https://doi.org/10.1016/j.renene.2020.02.040. [81] National Hurricane center, Atlantic Tropical Cyclones and Disturbances, 2017. : Jul. 09, 2017. [Online]. Available: https://www.nodc.noaa.gov/gocd/index.html. [82] INVEMAR and CORPOGUAJIRA, Caracterizacion ´ de la zona costera del departamento de La Guajira: una aproximacion ´ para su manejo integrado, 2008, p. 48 [Online]. Available: http://www.pares.com.co/wp-content/uploads /2014/03/. [83] H. Fernandez, et al., The new wave energy converter WaveCat: concept and laboratory tests, Mar. Struct. 29 (1) (2012) 58–70, https://doi.org/10.1016/j. marstruc.2012.10.002. [84] B. Zanuttigh, E. Angelelli, Experimental investigation of floating wave energy converters for coastal protection purpose, Coast. Eng. 80 (2013) 148–159, https:// doi.org/10.1016/j.coastaleng.2012.11.007. [85] M. Van Ormondt, K. Nederhoff, A. Van Dongeren, Delft Dashboard: a quick set-up tool for hydrodynamic models, J. Hydroinformatics 22 (3) (2020) 510–527, https://doi.org/10.2166/hydro.2020.092. [86] A.F. Osorio, S. Ortega, S. Arango-Aramburo, Assessment of the marine power potential in Colombia, Renew. Sustain. Energy Rev. 53 (2016) 966–977, https:// doi.org/10.1016/j.rser.2015.09.057. [87] J. Abanades, D. Greaves, G. Iglesias, Wave farm impact on beach modal state, Mar. Geol. 361 (2015) 126–135, https://doi.org/10.1016/j.margeo.2015.01.008. |
dc.relation.citationendpage.spa.fl_str_mv |
22 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
219 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
22 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0960148123014702?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/35a27011-bd0b-4764-bb05-e8a8a2a3499c/download https://repositorio.cuc.edu.co/bitstreams/63497a56-6a75-443c-a1f3-2b0921713c6c/download https://repositorio.cuc.edu.co/bitstreams/844b4ab4-e1a0-4092-b3e5-ca75455637b8/download https://repositorio.cuc.edu.co/bitstreams/1b9c515b-599a-4899-b66c-0387fd6c479a/download |
bitstream.checksum.fl_str_mv |
9d9f7398c972885b641b8b597d59d7eb 2f9959eaf5b71fae44bbf9ec84150c7a 2b0b72b2f04c6e2349612ffb8822c763 9df57f441d524fdf9e4836d4fa52e63e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760699186085888 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfBerrio, Y.Rivillas-Ospina, G.Ruiz-Martínez, G.Arango-Manrique, A.Ricaurte, C.Mendoza, E.Silva, R.Casas, D.Bolívar, M.Díaz, K.2024-06-26T15:41:39Z2026-122024-06-26T15:41:39Z2023-12Y. Berrio, G. Rivillas-Ospina, G. Ruiz-Martínez, A. Arango-Manrique, C. Ricaurte, E. Mendoza, R. Silva, D. Casas, M. Bolívar, K. Díaz, Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm, Renewable Energy, Volume 219, Part 2, 2023, 119555, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2023.1195550960-1481https://hdl.handle.net/11323/1308610.1016/j.renene.2023.1195551879-0682Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The installation of wave energy converter (WEC) arrays near the coast can have significant impacts on sediment dynamics and coastal morphodynamics. However, methodologies for quantifying these impacts and strategies to minimize them are still in need of development. In this study, we assessed the coastal response to a WEC array on the La Guajira coast in the Colombian Caribbean using a two-step numerical strategy. We used the Delft-3D model to estimate the wave field, which was then transferred to the XBeach model to compute morphological changes. This modelling strategy was applied to three WEC array layouts and compared the morphological responses in terms of the distance and relative orientation of the WEC array to the coast. The results showed that the impact of the simulated WEC array on the beach response varied significantly depending on its distance from the coast, the configuration of the array, and its orientation. These findings highlight the need for further research to develop effective strategies for minimizing coastal erosion impacts on coastal ecosystems through innovative alternatives. Developing such strategies will be crucial to ensure the sustainable implementation of WEC arrays and other renewable energy technologies near the coast.22 páginasapplication/pdfengElsevier B.V.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S0960148123014702?via%3DihubEnergy conversion and beach protection: numerical assessment of a dual-purpose WEC farmArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Renewable Energy[1] International Energy Agency, Global Coal Demand Is Set to Return to its All-Time High in 2022,” Global Coal Demand Is Set to Return to its All-Time High in 2022, 2022. https://www.iea.org/news/global-coal-demand-is-set-to-return-to-its-all-tim e-high-in-2022.[2] McKinsey & Company, Global energy perspective 2022. https://www.mckinsey. com/industries/oil-and-gas/our-insights/global-energy-perspective-2022, 2022.[3] O. Farrok, K. Ahmed, A.D. Tahlil, M.M. Farah, M.R. Kiran, M.R. Islam, Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies, Sustain 12 (6) (2020), https://doi.org/10.3390/ su12062178.[4] O. Farrok, M. Islam, M. Sheikh, G. Guo, J. Zhu, Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion, IEEE Trans. Magn. 53 (1–4) (2017), https://doi.org/10.1109/ TMAG.2017.2713770 [Online]. Available:.[5] H. Shakouri G, The share of cooling electricity in global warming: estimation of the loop gain for the positive feedback, Energy 179 (2019) 747–761, https://doi.org/ 10.1016/j.energy.2019.04.170.[6] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strateg. Rev. 24 (January) (2019) 38–50, https://doi.org/10.1016/j.esr.2019.01.006.[7] A.G. Majidi, B. Bingolbali, ¨ A. Akpınar, E. Rusu, Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea, Energy 220 (2021), https://doi.org/10.1016/j.energy.2020.119705.[8] EMEC: European Marine Energy Centre, Pelamis wave power. https://www.emec. org.uk/about-us/wave-clients/pelamis-wave-power, 2022.[9] C.A. Rodríguez, P. Rosa-Santos, F. Taveira-Pinto, Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter, Ocean Eng 199 (January) (2020), 107046, https://doi.org/10.1016/j.oceaneng.2020.107046.[10] Q. Chen, J. Zang, J. Birchall, D. Ning, X. Zhao, J. Gao, On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater, Renew. Energy 146 (2020) 414–425, https://doi.org/10.1016/j.renene.2019.06.149.[11] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, J. Geng, Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter, Appl. Energy 259 (November 2019) (2020), 114212, https://doi.org/10.1016/j.apenergy.2019.114212.[12] H. Zhang, B. Zhou, C. Vogel, R. Willden, J. Zang, L. Zhang, Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter, Appl. Energy 257 (April 2019) (2020), 113996, https://doi.org/ 10.1016/j.apenergy.2019.113996.[13] S.J. Kim, W. Koo, M.J. Shin, Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system, Renew. Energy 135 (2019) 1260–1269, https://doi.org/10.1016/j. renene.2018.09.097.[14] P. Rosa-Santos, F. Taveira-Pinto, C.A. Rodríguez, V. Ramos, M. Lopez, ´ The CECO wave energy converter: recent developments, Renew. Energy 139 (2019) 368–384, https://doi.org/10.1016/j.renene.2019.02.081.[15] E. Renzi, S. Michele, S. Zheng, S. Jin, D. Greaves, Niche applications and flexible devices for wave energy conversion: a review, Energies 14 (20) (2021) 1–25, https://doi.org/10.3390/en14206537.[16] T.I. Koutrouveli, E. Di Lauro, L. Das Neves, T. Calheiros-Cabral, P. Rosa-Santos, F. Taveira-Pinto, Proof of concept of a breakwater-integrated hybrid wave energy converter using a composite modelling approach, J. Mar. Sci. Eng. 9 (2) (2021) 1–27, https://doi.org/10.3390/jmse9020226.[17] D.Z. Ning, X.L. Zhao, L.F. Chen, M. Zhao, Hydrodynamic performance of an array of wave energy converters integrated with a pontoon-type breakwater, Energies 11 (3) (2018) 8–10, https://doi.org/10.3390/en11030685.[18] X. Zhao, Y. Zhang, M. Li, L. Johanning, Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange, Renew. Energy 172 (2021) 392–407, https://doi. org/10.1016/j.renene.2021.02.138.[19] I. Inertial, Sea Wave Energy Converter, “Energy from the sea.,”, 2023. htt ps://www.eni.com/en-IT/operations/iswec-eni.html.[20] D. Vicinanza, E. Di Lauro, P. Contestabile, C. Gisonni, J.L. Lara, I.J. Losada, Review of innovative harbor breakwaters for wave-energy conversion, J. Waterw. Port, Coastal, Ocean Eng. 145 (4) (2019), https://doi.org/10.1061/(asce)ww.1943- 5460.0000519.[21] T. Flanagan, M. Wengrove, B. Robertson, Coupled wave energy converter and nearshore wave propagation models for coastal impact assessments, J. Mar. Sci. Eng. 10 (3) (2022), https://doi.org/10.3390/jmse10030370.[22] A.J. Garrido, et al., Mathematical modeling of oscillating water columns wavestructure interaction in ocean energy plants, Math. Probl. Eng. 2015 (2015), https://doi.org/10.1155/2015/727982. Figure 2.[23] Z.L. Hutchison, L. Lieber, R.G. Miller, B.J. Williamson, in: T.M.B.T.-C. R. E (Ed.), Environmental Impacts of Tidal and Wave Energy Converters, Elsevier, Oxford, 2022, pp. 258–290, https://doi.org/10.1016/B978-0-12-819727-1.00115-1.[24] A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic, Renew. Sustain. Energy Rev. 161 (February) (2022), 112279, https://doi.org/10.1016/j.rser.2022.112279.[25] G. Lavidas, K. Blok, Shifting wave energy perceptions: the case for wave energy converter (WEC) feasibility at milder resources, Renew. Energy 170 (2021) 1143–1155, https://doi.org/10.1016/j.renene.2021.02.041.[26] M. Goteman, ¨ M. Giassi, J. Engstrom, ¨ J. Isberg, Advances and challenges in wave energy park optimization—a review, Front. Energy Res. 8 (March) (2020), https:// doi.org/10.3389/fenrg.2020.00026.[27] G.J. Dalton, R. Alcorn, T. Lewis, Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America, Renew. Energy 35 (2) (2010) 443–455, https://doi.org/10.1016/j.renene.2009.07.003.[28] E. Rusu, F. Onea, A review of the technologies for wave energy extraction, Clean Energy 2 (1) (2018) 10–19, https://doi.org/10.1093/ce/zky003.[29] E. Mendoza, et al., Beach response to wave energy converter farms acting as coastal defence, Coast. Eng. 87 (2014) 97–111, https://doi.org/10.1016/j. coastaleng.2013.10.018.[30] J. Abanades, D. Greaves, G. Iglesias, Coastal defence using wave farms: the role of farm-to-coast distance, Renew. Energy 75 (2015) 572–582, https://doi.org/ 10.1016/j.renene.2014.10.048.[31] D.R. David, D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, M.L. Buckley, Predicting coastal impacts by wave farms: a comparison of wave-averaged and wave-resolving models, Renew. Energy 183 (2022) 764–780, https://doi.org/10.1016/j. renene.2021.11.048.[32] A. O’Dea, M.C. Haller, H.T. Ozkan-Haller, ¨ The impact of wave energy converter arrays on wave-induced forcing in the surf zone, Ocean Eng 161 (May) (2018) 322–336, https://doi.org/10.1016/j.oceaneng.2018.03.077.[33] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Wave farm effects on the coast: the alongshore position, Sci. Total Environ. 640 (2018) 1176–1186, https://doi.org/10.1016/j.scitotenv.2018.05.281.[34] C. Rodriguez-Delgado, R.J. Bergillos, G. Iglesias, Dual wave farms and coastline dynamics: the role of inter-device spacing, Sci. Total Environ. 646 (2019) 1241–1252, https://doi.org/10.1016/j.scitotenv.2018.07.110.[35] D.L. Millar, H.C.M. Smith, D.E. Reeve, Modelling analysis of the sensitivity of shoreline change to a wave farm, Ocean Eng 34 (5–6) (2007) 884–901, https://doi. org/10.1016/j.oceaneng.2005.12.014.[36] D.P. Rijnsdorp, J.E. Hansen, R.J. Lowe, Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model, Renew. Energy 150 (2020) 637–648, https://doi.org/10.1016/j.renene.2019.12.138.[37] S. Contardo, R. Hoeke, M. Hemer, G. Symonds, K. McInnes, J. O’Grady, In situ observations and simulations of coastal wave field transformation by wave energy converters, Coast. Eng. 140 (July) (2018) 175–188, https://doi.org/10.1016/j. coastaleng.2018.07.008.[38] C. Rodriguez-Delgado, R.J. Bergillos, M. Ortega-S´ anchez, G. Iglesias, Protection of gravel-dominated coasts through wave farms: layout and shoreline evolution, Sci. Total Environ. 636 (2018) 1541–1552, https://doi.org/10.1016/j. scitotenv.2018.04.333.[39] G. Iglesias, R. Carballo, Wave farm impact: the role of farm-to-coast distance, Renew. Energy 69 (2014) 375–385, https://doi.org/10.1016/j. renene.2014.03.059.[40] N. Patrizi, et al., Lifecycle environmental impact assessment of an overtopping wave energy converter embedded in breakwater systems, Front. Energy Res. 7 (APR) (2019) 1–10, https://doi.org/10.3389/fenrg.2019.00032.[41] E. Amini, D. Golbaz, F. Amini, M.M. Nezhad, M. Neshat, D.A. Garcia, A parametric study of wave energy converter layouts in real wave models, Energies 13 (22) (2020), https://doi.org/10.3390/en13226095.[42] M.A. Mustapa, O.B. Yaakob, Y.M. Ahmed, C.K. Rheem, K.K. Koh, F.A. Adnan, Wave energy device and breakwater integration: a review, Renew. Sustain. Energy Rev. 77 (September 2015) (2017) 43–58, https://doi.org/10.1016/j.rser.2017.03.110.[43] L. Wang, A. Kolios, L. Cui, Q. Sheng, Flexible multibody dynamics modelling of point-absorber wave energy converters, Renew. Energy 127 (2018) 790–801, https://doi.org/10.1016/j.renene.2018.05.029.[44] X.L. Zhao, D.Z. Ning, Q.P. Zou, D.S. Qiao, S.Q. Cai, Hybrid floating breakwaterWEC system: a review, Ocean Eng 186 (June) (2019), 106126, https://doi.org/ 10.1016/j.oceaneng.2019.106126.[45] G.R. Tomasicchio, et al., Physical model tests on spar buoy for offshore floating wind energy conversion, Ital. J. Eng. Geol. Environ. 20 (1) (2020) 129–143, https://doi.org/10.4408/IJEGE.2020-01.S-15.[46] X. Zheng, et al., Sea trial test on offshore integration of an oscillating buoy wave energy device and floating breakwater, Energy Convers. Manag. 256 (September 2021) (2022), https://doi.org/10.1016/j.enconman.2022.115375.[47] Y. Cheng, et al., Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater, Renew. Sustain. Energy Rev. 161 (July 2021) (2022), 112299, https:// doi.org/10.1016/j.rser.2022.112299.[48] S. Astariz, G. Iglesias, The economics of wave energy: a review, Renew. Sustain. Energy Rev. 45 (2015) 397–408, https://doi.org/10.1016/j.rser.2015.01.061.[49] N. Rangel-Buitrago, A.T. Williams, G. Anfuso, Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls, Ocean Coast. Manag. 156 (2018) 58–75, https:// doi.org/10.1016/j.ocecoaman.2017.04.006.[50] IDEAM, Boletín Condiciones Hidrometeorologicas, ´ 2022. http://www.pronostico syalertas.gov.co/boletin-condiciones-hidrometeorologicas. (Accessed 9 July 2017).[51] N. Rangel, G.A. Melfi, “Morfología, morfodinamica ´ y evolucion ´ reciente en la Península de la Guajira, Caribe Colombiano,” 8 (1) (2013) 7–24.[52] CORPOGUAJIRA and INVEMAR, Atlas marino costero de La Guajira, Ser. Publicaciones Espec. INVEMAR 27 (2012) 188.[53] S. Ball´en, J.D. Barrios, Cuantificacion ´ de Las Transformaciones Territoriales Asociadas A Dinamicas ´ de Produccion ´ Derivadas de los Diferentes Sectores Productivos en la Cuenca del Río Ranchería, La Guajira, Colombia, Univ. St. Tom´ as, 2019, pp. 1–48.[54] G. Rivillas-Ospina, et al., Appmar 1.0: a Python application for downloading and analyzing of WAVEWATCH III® wave and wind data, Comput. Geosci. 162 (Mar. 2022), 105098, https://doi.org/10.1016/j.cageo.2022.105098.[55] Deltares, Delft3D-WAVE. Simulation of Short-Crested Waves with SWAN User Manual, 2020.[56] B. Kamranzad, S. Hadadpour, A multi-criteria approach for selection of wave energy converter/location, Energy 204 (2020), 117924, https://doi.org/10.1016/ j.energy.2020.117924.[57] E. Rusu, Study of the wave energy propagation patterns in the western Black Sea, Appl. Sci. 8 (6) (2018), https://doi.org/10.3390/app8060993.[58] Deltares, User manual : Delft3D - flow, User Man (2020) 710.[59] C. Amante, B.W. Eakins, ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24 (2009) 19, https://doi.org/10.1594/PANGAEA.769615. March.[60] A.K. Fragkou, C. Old, V. Venugopal, A. Angeloudis, Benchmarking a two-way coupled coastal wave–current hydrodynamics model, Ocean Model 183 (2023), 102193, https://doi.org/10.1016/j.ocemod.2023.102193. March.[61] A.F. Orejarena-Rondon, ´ J.C. Restrepo, A. Correa-Metrio, A. Orfila, Wave energy flux in the Caribbean Sea: trends and variability, Renew. Energy 181 (2022) 616–629, https://doi.org/10.1016/j.renene.2021.09.081.[62] J. Ruiz-Merchan, ´ L. Otero, M. Conde, J.C. Restrepo, J.C. Ortiz, Field observations of wave and current characteristics on a microtidal reflective beach, J. Coast. Res. 35 (6) (2019) 1164–1184, https://doi.org/10.2112/JCOASTRES-D-18-00120.1.[63] M. Conde-Frias, L. Otero, J.C. Restrepo, J.C. Ortiz, J. Ruiz, A.F. Osorio, Swash oscillations in a microtidal dissipative beach, J. Coast. Res. 33 (6) (2017) 1408–1422, https://doi.org/10.2112/JCOASTRES-D-16-00147.1.[64] J. Cueto, L. Otero, Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches, Appl. Ocean Res. 101 (February) (2020), 102283, https://doi.org/10.1016/j.apor.2020.102283.[65] C. Nederhoff, Modelling the Effects of Hard Structures on Dune Erosion and Overwash, 2014, p. 188.[66] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, Modeling the effects of hard structures on dune erosion and overwash: a case study of the impact of Hurricane Sandy on the New Jersey coast, Proc. Coast. Sediments, San Diego, CA (2015) 1–17, https://doi.org/10.1142/9789814689977_0219. Figure 1.[67] C.M. Nederhoff, Q.J. Lodder, M. Boers, J.P. Den Bieman, J.K. Miller, MODELING the EFFECTS of HARD STRUCTURES on DUNE EROSION and OVERWASH: a Case Study of the Impact of Hurricane Sandy on the New Jersey Coast, Proc. Coast. Sediments, San Diego, CA, 2015, pp. 1–17. May.[68] D. Roelvink, A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, J. Lescinski, Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng. 56 (11–12) (2009) 1133–1152, https://doi.org/10.1016/j. coastaleng.2009.08.006.[69] L.C. van Rijn, D.J.R. Wasltra, B. Grasmeijer, J. Sutherland, S. Pan, J.P. Sierra, The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models, Coast. Eng. 47 (3) (2003) 295–327, https://doi.org/10.1016/S0378-3839(02)00120-5.[70] J. Sutherland, A.H. Peet, R.L. Soulsby, Evaluating the performance of morphological models, Coast. Eng. 51 (8–9) (2004) 917–939, https://doi.org/ 10.1016/j.coastaleng.2004.07.015.[71] A. Pedrozo-Acuna, ˜ D.J. Simmonds, A.K. Otta, A.J. Chadwick, On the cross-shore profile change of gravel beaches, Coast. Eng. 53 (4) (2006) 335–347, https://doi. org/10.1016/j.coastaleng.2005.10.019.[72] J.J. Williams, A.R. de Alegría-Arzaburu, R.T. McCall, A. Van Dongeren, Modelling gravel barrier profile response to combined waves and tides using XBeach: laboratory and field results, Coast. Eng. 63 (2012) 62–80, https://doi.org/ 10.1016/j.coastaleng.2011.12.010.[73] D. Pender, H. Karunarathna, A statistical-process based approach for modelling beach profile variability, Coast. Eng. 81 (2013) 19–29, https://doi.org/10.1016/j. coastaleng.2013.06.006.[74] G. Rivillas-Ospina, et al., Coastal Restoration on the Barrier Island of Ci´enaga Grande, no. June, 2017, pp. 21–23.[75] E.A. Himmelstoss, R.E. Henderson, M.G. Kratzmann, A.S. Farris, Digital shoreline analysis system (DSAS) version 5.1 user guide: U.S. Geological survey open-file report 2021–1091, U.S. Geol. Surv. 104 (2021).[76] J. Allen, K. Sampanis, J. Wan, D. Greaves, J. Miles, G. Iglesias, Laboratory tests in the development of WaveCat, Sustain 8 (12) (2016), https://doi.org/10.3390/ su8121339.[77] D. Vicinanza, L. Cappietti, V. Ferrante, P. Contestabile, Estimation of the wave energy in the Italian offshore, J. Coast. Res. (2011) 613–617. SPEC. ISSUE 64.[78] A. Cornet, A global wave energy assessment, 59–64, Eighteenth Int. Offshore Polar Eng. Conf., Int. Soc. Offshore Polar Eng. (2008), 00933651 [Online]. Available: https://www.onepetro.org/conference-paper/ISOPE-I-08-370.[79] G. Lavidas, V. Venugopal, A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea, Renew. Energy 103 (2017) 401–417, https://doi.org/10.1016/j.renene.2016.11.055.[80] K. Amarouche, A. Akpınar, N.E.I. Bachari, F. Houma, Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast, Renew. Energy 153 (2020) 840–860, https://doi.org/10.1016/j.renene.2020.02.040.[81] National Hurricane center, Atlantic Tropical Cyclones and Disturbances, 2017. : Jul. 09, 2017. [Online]. Available: https://www.nodc.noaa.gov/gocd/index.html.[82] INVEMAR and CORPOGUAJIRA, Caracterizacion ´ de la zona costera del departamento de La Guajira: una aproximacion ´ para su manejo integrado, 2008, p. 48 [Online]. Available: http://www.pares.com.co/wp-content/uploads /2014/03/.[83] H. Fernandez, et al., The new wave energy converter WaveCat: concept and laboratory tests, Mar. Struct. 29 (1) (2012) 58–70, https://doi.org/10.1016/j. marstruc.2012.10.002.[84] B. Zanuttigh, E. Angelelli, Experimental investigation of floating wave energy converters for coastal protection purpose, Coast. Eng. 80 (2013) 148–159, https:// doi.org/10.1016/j.coastaleng.2012.11.007.[85] M. Van Ormondt, K. Nederhoff, A. Van Dongeren, Delft Dashboard: a quick set-up tool for hydrodynamic models, J. Hydroinformatics 22 (3) (2020) 510–527, https://doi.org/10.2166/hydro.2020.092.[86] A.F. Osorio, S. Ortega, S. Arango-Aramburo, Assessment of the marine power potential in Colombia, Renew. Sustain. Energy Rev. 53 (2016) 966–977, https:// doi.org/10.1016/j.rser.2015.09.057.[87] J. Abanades, D. Greaves, G. Iglesias, Wave farm impact on beach modal state, Mar. Geol. 361 (2015) 126–135, https://doi.org/10.1016/j.margeo.2015.01.008.221219XBeachDelft-3DNearshoreWave dynamicsWEC arrayPublicationORIGINALEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdfEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdfArtículoapplication/pdf28061566https://repositorio.cuc.edu.co/bitstreams/35a27011-bd0b-4764-bb05-e8a8a2a3499c/download9d9f7398c972885b641b8b597d59d7ebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/63497a56-6a75-443c-a1f3-2b0921713c6c/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdf.txtEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdf.txtExtracted texttext/plain93875https://repositorio.cuc.edu.co/bitstreams/844b4ab4-e1a0-4092-b3e5-ca75455637b8/download2b0b72b2f04c6e2349612ffb8822c763MD53THUMBNAILEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdf.jpgEnergy conversion and beach protection. Numerical assessment of a dual-purpose WEC farm.pdf.jpgGenerated Thumbnailimage/jpeg14161https://repositorio.cuc.edu.co/bitstreams/1b9c515b-599a-4899-b66c-0387fd6c479a/download9df57f441d524fdf9e4836d4fa52e63eMD5411323/13086oai:repositorio.cuc.edu.co:11323/130862024-09-17 10:17:05.926https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |