Selection of the best regression model to explain the variables that influence labor accident electrical company case
The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, gener...
- Autores:
-
Varela Izquierdo, Noel
Viloria Silva, Amelec Jesus
Pérez Fernández, Damayse
Pineda Lezama, Omar Bonerge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1767
- Acceso en línea:
- http://hdl.handle.net/11323/1767
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hghest percentage
Information criteria
Multivariate statistics
Labor accident regression models
Negative binomial models
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_894295b9e57f3592edacd4296e4573ff |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1767 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
title |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
spellingShingle |
Selection of the best regression model to explain the variables that influence labor accident electrical company case Hghest percentage Information criteria Multivariate statistics Labor accident regression models Negative binomial models |
title_short |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
title_full |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
title_fullStr |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
title_full_unstemmed |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
title_sort |
Selection of the best regression model to explain the variables that influence labor accident electrical company case |
dc.creator.fl_str_mv |
Varela Izquierdo, Noel Viloria Silva, Amelec Jesus Pérez Fernández, Damayse Pineda Lezama, Omar Bonerge |
dc.contributor.author.spa.fl_str_mv |
Varela Izquierdo, Noel Viloria Silva, Amelec Jesus Pérez Fernández, Damayse Pineda Lezama, Omar Bonerge |
dc.subject.eng.fl_str_mv |
Hghest percentage Information criteria Multivariate statistics Labor accident regression models Negative binomial models |
topic |
Hghest percentage Information criteria Multivariate statistics Labor accident regression models Negative binomial models |
description |
The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, generalized linear models, the values of the deviation percentage explained and the adjusted percentage, and the Akaike and Bayesian information criteria. The following variables were identified through the mentioned techniques: management commitment, compliance with legislation, prevention planning, training in prevention, updating of occupational risk management and policies that have a significant influence on work accident and through The percentages and of the previously mentioned criteria were able to show that the logistic regression is the best model that explains the labor accident by presenting the highest percentage and the lowest values of the criteria when compared with the Poisson regression and negative binomial models. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-11-23T20:02:27Z |
dc.date.available.none.fl_str_mv |
2018-11-23T20:02:27Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1816-949X |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/1767 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1816-949X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
http://hdl.handle.net/11323/1767 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Medwell Journals |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d0c08349-394d-4181-8a21-baf7dbb901a3/download https://repositorio.cuc.edu.co/bitstreams/8679753e-a9c6-4cb1-a3be-5780c4183f0f/download https://repositorio.cuc.edu.co/bitstreams/df617f0e-f5ab-4544-8458-286c88026dce/download https://repositorio.cuc.edu.co/bitstreams/82b492ee-0182-4059-886a-70e72b7e1377/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 b0c07a2b3be25a75b3cb68b0ea2d63b4 c9106b55956fa13d0518e10b19a65c0c 212b0306580d4f0044d18f9a3edcc832 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760688228466688 |
spelling |
Varela Izquierdo, NoelViloria Silva, Amelec JesusPérez Fernández, DamaysePineda Lezama, Omar Bonerge2018-11-23T20:02:27Z2018-11-23T20:02:27Z20171816-949Xhttp://hdl.handle.net/11323/1767Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, generalized linear models, the values of the deviation percentage explained and the adjusted percentage, and the Akaike and Bayesian information criteria. The following variables were identified through the mentioned techniques: management commitment, compliance with legislation, prevention planning, training in prevention, updating of occupational risk management and policies that have a significant influence on work accident and through The percentages and of the previously mentioned criteria were able to show that the logistic regression is the best model that explains the labor accident by presenting the highest percentage and the lowest values of the criteria when compared with the Poisson regression and negative binomial models.Varela Izquierdo, Noel-0000-0001-7036-4414-600Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Pérez Fernández, Damayse-25c0e0af-7a5a-4ceb-b175-10b27ed6f312-0Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0engMedwell JournalsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hghest percentageInformation criteriaMultivariate statisticsLabor accident regression modelsNegative binomial modelsSelection of the best regression model to explain the variables that influence labor accident electrical company caseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d0c08349-394d-4181-8a21-baf7dbb901a3/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdfSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdfapplication/pdf312332https://repositorio.cuc.edu.co/bitstreams/8679753e-a9c6-4cb1-a3be-5780c4183f0f/downloadb0c07a2b3be25a75b3cb68b0ea2d63b4MD53THUMBNAILSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.jpgSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.jpgimage/jpeg13933https://repositorio.cuc.edu.co/bitstreams/df617f0e-f5ab-4544-8458-286c88026dce/downloadc9106b55956fa13d0518e10b19a65c0cMD55TEXTSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.txtSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.txttext/plain7https://repositorio.cuc.edu.co/bitstreams/82b492ee-0182-4059-886a-70e72b7e1377/download212b0306580d4f0044d18f9a3edcc832MD5611323/1767oai:repositorio.cuc.edu.co:11323/17672024-09-16 16:50:16.34open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |