Selection of the best regression model to explain the variables that influence labor accident electrical company case

The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, gener...

Full description

Autores:
Varela Izquierdo, Noel
Viloria Silva, Amelec Jesus
Pérez Fernández, Damayse
Pineda Lezama, Omar Bonerge
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1767
Acceso en línea:
http://hdl.handle.net/11323/1767
https://repositorio.cuc.edu.co/
Palabra clave:
Hghest percentage
Information criteria
Multivariate statistics
Labor accident regression models
Negative binomial models
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_894295b9e57f3592edacd4296e4573ff
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1767
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Selection of the best regression model to explain the variables that influence labor accident electrical company case
title Selection of the best regression model to explain the variables that influence labor accident electrical company case
spellingShingle Selection of the best regression model to explain the variables that influence labor accident electrical company case
Hghest percentage
Information criteria
Multivariate statistics
Labor accident regression models
Negative binomial models
title_short Selection of the best regression model to explain the variables that influence labor accident electrical company case
title_full Selection of the best regression model to explain the variables that influence labor accident electrical company case
title_fullStr Selection of the best regression model to explain the variables that influence labor accident electrical company case
title_full_unstemmed Selection of the best regression model to explain the variables that influence labor accident electrical company case
title_sort Selection of the best regression model to explain the variables that influence labor accident electrical company case
dc.creator.fl_str_mv Varela Izquierdo, Noel
Viloria Silva, Amelec Jesus
Pérez Fernández, Damayse
Pineda Lezama, Omar Bonerge
dc.contributor.author.spa.fl_str_mv Varela Izquierdo, Noel
Viloria Silva, Amelec Jesus
Pérez Fernández, Damayse
Pineda Lezama, Omar Bonerge
dc.subject.eng.fl_str_mv Hghest percentage
Information criteria
Multivariate statistics
Labor accident regression models
Negative binomial models
topic Hghest percentage
Information criteria
Multivariate statistics
Labor accident regression models
Negative binomial models
description The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, generalized linear models, the values of the deviation percentage explained and the adjusted percentage, and the Akaike and Bayesian information criteria. The following variables were identified through the mentioned techniques: management commitment, compliance with legislation, prevention planning, training in prevention, updating of occupational risk management and policies that have a significant influence on work accident and through The percentages and of the previously mentioned criteria were able to show that the logistic regression is the best model that explains the labor accident by presenting the highest percentage and the lowest values of the criteria when compared with the Poisson regression and negative binomial models.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-11-23T20:02:27Z
dc.date.available.none.fl_str_mv 2018-11-23T20:02:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1816-949X
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/1767
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1816-949X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/1767
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Medwell Journals
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0c08349-394d-4181-8a21-baf7dbb901a3/download
https://repositorio.cuc.edu.co/bitstreams/8679753e-a9c6-4cb1-a3be-5780c4183f0f/download
https://repositorio.cuc.edu.co/bitstreams/df617f0e-f5ab-4544-8458-286c88026dce/download
https://repositorio.cuc.edu.co/bitstreams/82b492ee-0182-4059-886a-70e72b7e1377/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b0c07a2b3be25a75b3cb68b0ea2d63b4
c9106b55956fa13d0518e10b19a65c0c
212b0306580d4f0044d18f9a3edcc832
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760688228466688
spelling Varela Izquierdo, NoelViloria Silva, Amelec JesusPérez Fernández, DamaysePineda Lezama, Omar Bonerge2018-11-23T20:02:27Z2018-11-23T20:02:27Z20171816-949Xhttp://hdl.handle.net/11323/1767Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present research proposes an alternative to select the best model that explains the relation of the variables that influence the labor accident in an electric power company. Among the techniques and tools used are those of occupational safety and health management, multivariate statistics, generalized linear models, the values of the deviation percentage explained and the adjusted percentage, and the Akaike and Bayesian information criteria. The following variables were identified through the mentioned techniques: management commitment, compliance with legislation, prevention planning, training in prevention, updating of occupational risk management and policies that have a significant influence on work accident and through The percentages and of the previously mentioned criteria were able to show that the logistic regression is the best model that explains the labor accident by presenting the highest percentage and the lowest values of the criteria when compared with the Poisson regression and negative binomial models.Varela Izquierdo, Noel-0000-0001-7036-4414-600Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Pérez Fernández, Damayse-25c0e0af-7a5a-4ceb-b175-10b27ed6f312-0Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0engMedwell JournalsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hghest percentageInformation criteriaMultivariate statisticsLabor accident regression modelsNegative binomial modelsSelection of the best regression model to explain the variables that influence labor accident electrical company caseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d0c08349-394d-4181-8a21-baf7dbb901a3/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdfSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdfapplication/pdf312332https://repositorio.cuc.edu.co/bitstreams/8679753e-a9c6-4cb1-a3be-5780c4183f0f/downloadb0c07a2b3be25a75b3cb68b0ea2d63b4MD53THUMBNAILSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.jpgSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.jpgimage/jpeg13933https://repositorio.cuc.edu.co/bitstreams/df617f0e-f5ab-4544-8458-286c88026dce/downloadc9106b55956fa13d0518e10b19a65c0cMD55TEXTSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.txtSelection of the best regression model to explain the variables that influence labor accident electrical company case.pdf.txttext/plain7https://repositorio.cuc.edu.co/bitstreams/82b492ee-0182-4059-886a-70e72b7e1377/download212b0306580d4f0044d18f9a3edcc832MD5611323/1767oai:repositorio.cuc.edu.co:11323/17672024-09-16 16:50:16.34open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=