1D Convolutional Neural Network for Detecting Ventricular Heartbeats

This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear a...

Full description

Autores:
Suárez-León, A. A.
Núñez, José R.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6054
Acceso en línea:
https://hdl.handle.net/11323/6054
https://repositorio.cuc.edu.co/
Palabra clave:
ECG
1D-CNN
Heartbeat classifier
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_89410114b2b1b35b7003f60adef6cbb9
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6054
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
title 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
spellingShingle 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
ECG
1D-CNN
Heartbeat classifier
title_short 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
title_full 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
title_fullStr 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
title_full_unstemmed 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
title_sort 1D Convolutional Neural Network for Detecting Ventricular Heartbeats
dc.creator.fl_str_mv Suárez-León, A. A.
Núñez, José R.
dc.contributor.author.spa.fl_str_mv Suárez-León, A. A.
Núñez, José R.
dc.subject.spa.fl_str_mv ECG
1D-CNN
Heartbeat classifier
topic ECG
1D-CNN
Heartbeat classifier
description This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-26T22:32:43Z
dc.date.available.none.fl_str_mv 2020-02-26T22:32:43Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6054
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6054
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d706f69c-c358-4d9b-9c47-08d8c8793e57/download
https://repositorio.cuc.edu.co/bitstreams/0b6a31bd-d727-4e74-a414-c74f54bda29c/download
https://repositorio.cuc.edu.co/bitstreams/6a5095c6-d731-4feb-851e-9ffd931e3f4b/download
https://repositorio.cuc.edu.co/bitstreams/221e62fd-b500-4916-9088-2ea6672b47ec/download
https://repositorio.cuc.edu.co/bitstreams/29f8bdd2-034c-4287-92e1-89ac07fa7b04/download
https://repositorio.cuc.edu.co/bitstreams/9d229cf4-f51b-4578-b712-8f4682e8b660/download
bitstream.checksum.fl_str_mv 9e3dbdf0432c2c7cd6b2e20b115f4c14
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
8080ab33a9dad13031b18aaac267fd5a
8080ab33a9dad13031b18aaac267fd5a
5d52b0e3a0105628514f8b6631459e38
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760786876399616
spelling Suárez-León, A. A.Núñez, José R.2020-02-26T22:32:43Z2020-02-26T22:32:43Z2020https://hdl.handle.net/11323/6054Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers.Suárez-León, A. A.Núñez, José R.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ECG1D-CNNHeartbeat classifier1D Convolutional Neural Network for Detecting Ventricular HeartbeatsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINAL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdfapplication/pdf9658https://repositorio.cuc.edu.co/bitstreams/d706f69c-c358-4d9b-9c47-08d8c8793e57/download9e3dbdf0432c2c7cd6b2e20b115f4c14MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0b6a31bd-d727-4e74-a414-c74f54bda29c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6a5095c6-d731-4feb-851e-9ffd931e3f4b/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpg1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpgimage/jpeg46337https://repositorio.cuc.edu.co/bitstreams/221e62fd-b500-4916-9088-2ea6672b47ec/download8080ab33a9dad13031b18aaac267fd5aMD54THUMBNAIL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpg1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpgimage/jpeg46337https://repositorio.cuc.edu.co/bitstreams/29f8bdd2-034c-4287-92e1-89ac07fa7b04/download8080ab33a9dad13031b18aaac267fd5aMD54TEXT1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.txt1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.txttext/plain1274https://repositorio.cuc.edu.co/bitstreams/9d229cf4-f51b-4578-b712-8f4682e8b660/download5d52b0e3a0105628514f8b6631459e38MD5511323/6054oai:repositorio.cuc.edu.co:11323/60542024-09-17 11:09:14.668http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=