1D Convolutional Neural Network for Detecting Ventricular Heartbeats
This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear a...
- Autores:
-
Suárez-León, A. A.
Núñez, José R.
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6054
- Acceso en línea:
- https://hdl.handle.net/11323/6054
https://repositorio.cuc.edu.co/
- Palabra clave:
- ECG
1D-CNN
Heartbeat classifier
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_89410114b2b1b35b7003f60adef6cbb9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6054 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
title |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
spellingShingle |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats ECG 1D-CNN Heartbeat classifier |
title_short |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
title_full |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
title_fullStr |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
title_full_unstemmed |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
title_sort |
1D Convolutional Neural Network for Detecting Ventricular Heartbeats |
dc.creator.fl_str_mv |
Suárez-León, A. A. Núñez, José R. |
dc.contributor.author.spa.fl_str_mv |
Suárez-León, A. A. Núñez, José R. |
dc.subject.spa.fl_str_mv |
ECG 1D-CNN Heartbeat classifier |
topic |
ECG 1D-CNN Heartbeat classifier |
description |
This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-26T22:32:43Z |
dc.date.available.none.fl_str_mv |
2020-02-26T22:32:43Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6054 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6054 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d706f69c-c358-4d9b-9c47-08d8c8793e57/download https://repositorio.cuc.edu.co/bitstreams/0b6a31bd-d727-4e74-a414-c74f54bda29c/download https://repositorio.cuc.edu.co/bitstreams/6a5095c6-d731-4feb-851e-9ffd931e3f4b/download https://repositorio.cuc.edu.co/bitstreams/221e62fd-b500-4916-9088-2ea6672b47ec/download https://repositorio.cuc.edu.co/bitstreams/29f8bdd2-034c-4287-92e1-89ac07fa7b04/download https://repositorio.cuc.edu.co/bitstreams/9d229cf4-f51b-4578-b712-8f4682e8b660/download |
bitstream.checksum.fl_str_mv |
9e3dbdf0432c2c7cd6b2e20b115f4c14 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 8080ab33a9dad13031b18aaac267fd5a 8080ab33a9dad13031b18aaac267fd5a 5d52b0e3a0105628514f8b6631459e38 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760786876399616 |
spelling |
Suárez-León, A. A.Núñez, José R.2020-02-26T22:32:43Z2020-02-26T22:32:43Z2020https://hdl.handle.net/11323/6054Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers.Suárez-León, A. A.Núñez, José R.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ECG1D-CNNHeartbeat classifier1D Convolutional Neural Network for Detecting Ventricular HeartbeatsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINAL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdfapplication/pdf9658https://repositorio.cuc.edu.co/bitstreams/d706f69c-c358-4d9b-9c47-08d8c8793e57/download9e3dbdf0432c2c7cd6b2e20b115f4c14MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0b6a31bd-d727-4e74-a414-c74f54bda29c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6a5095c6-d731-4feb-851e-9ffd931e3f4b/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpg1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpgimage/jpeg46337https://repositorio.cuc.edu.co/bitstreams/221e62fd-b500-4916-9088-2ea6672b47ec/download8080ab33a9dad13031b18aaac267fd5aMD54THUMBNAIL1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpg1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.jpgimage/jpeg46337https://repositorio.cuc.edu.co/bitstreams/29f8bdd2-034c-4287-92e1-89ac07fa7b04/download8080ab33a9dad13031b18aaac267fd5aMD54TEXT1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.txt1D Convolutional Neural Network for Detecting Ventricular Heartbeats.pdf.txttext/plain1274https://repositorio.cuc.edu.co/bitstreams/9d229cf4-f51b-4578-b712-8f4682e8b660/download5d52b0e3a0105628514f8b6631459e38MD5511323/6054oai:repositorio.cuc.edu.co:11323/60542024-09-17 11:09:14.668http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |