1D Convolutional Neural Network for Detecting Ventricular Heartbeats

This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear a...

Full description

Autores:
Suárez-León, A. A.
Núñez, José R.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6054
Acceso en línea:
https://hdl.handle.net/11323/6054
https://repositorio.cuc.edu.co/
Palabra clave:
ECG
1D-CNN
Heartbeat classifier
Rights
openAccess
License
CC0 1.0 Universal
Description
Summary:This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers.