Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system

Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering...

Full description

Autores:
Silva Ortega, Jorge Ivan
Isaac Millan, Idi A.
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1837
Acceso en línea:
https://hdl.handle.net/11323/1837
https://repositorio.cuc.edu.co/
Palabra clave:
Cascade-forward back propagation
Long-term demand estimation model
Neural networks
Peak power demand forecast
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_88c3e570541e9731676d69dba9476c6b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1837
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
title Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
spellingShingle Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
Cascade-forward back propagation
Long-term demand estimation model
Neural networks
Peak power demand forecast
title_short Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
title_full Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
title_fullStr Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
title_full_unstemmed Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
title_sort Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
dc.creator.fl_str_mv Silva Ortega, Jorge Ivan
Isaac Millan, Idi A.
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
dc.contributor.author.spa.fl_str_mv Silva Ortega, Jorge Ivan
Isaac Millan, Idi A.
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
dc.subject.eng.fl_str_mv Cascade-forward back propagation
Long-term demand estimation model
Neural networks
Peak power demand forecast
topic Cascade-forward back propagation
Long-term demand estimation model
Neural networks
Peak power demand forecast
description Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-26T14:21:47Z
dc.date.available.none.fl_str_mv 2018-11-26T14:21:47Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-889560864-8
dc.identifier.issn.spa.fl_str_mv 22839216
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1837
dc.identifier.doi.spa.fl_str_mv DOI: 10.3303/CET1867132
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-889560864-8
22839216
DOI: 10.3303/CET1867132
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1837
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Chemical Engineering Transactions
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5ae57be4-c637-48c0-a518-d57f19f1307a/download
https://repositorio.cuc.edu.co/bitstreams/31ad99a9-5f9a-4331-a331-67466a87625a/download
https://repositorio.cuc.edu.co/bitstreams/a9d1a78a-7f34-41ba-b3fe-8dc9629e9f66/download
https://repositorio.cuc.edu.co/bitstreams/759e3661-3c85-4fa8-9322-34e3c0e9ed2e/download
bitstream.checksum.fl_str_mv 5326f8cfd53fc2ac5256c48bc55ac442
8a4605be74aa9ea9d79846c1fba20a33
272befd2945801953a3960976bc4666d
3cdd4836dda33a34ba79bc4cd3b51fe1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760837274107904
spelling Silva Ortega, Jorge IvanIsaac Millan, Idi A.Cardenas Escorcia, Yulineth del CarmenValencia Ochoa, Guillermo Eliecer2018-11-26T14:21:47Z2018-11-26T14:21:47Z2018978-889560864-822839216https://hdl.handle.net/11323/1837DOI: 10.3303/CET1867132Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%.Silva Ortega, Jorge Ivan-0000-0002-7813-0142-600Isaac Millan, Idi A.-f0f6bfa7-0547-4da0-a903-da7572193596-0Cardenas Escorcia, Yulineth del Carmen-6ea49fdf-5d1d-4376-a846-1c4e6362fc0f-0Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cascade-forward back propagationLong-term demand estimation modelNeural networksPeak power demand forecastDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation systemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdfDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdfapplication/pdf180078https://repositorio.cuc.edu.co/bitstreams/5ae57be4-c637-48c0-a518-d57f19f1307a/download5326f8cfd53fc2ac5256c48bc55ac442MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/31ad99a9-5f9a-4331-a331-67466a87625a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.jpgDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.jpgimage/jpeg46162https://repositorio.cuc.edu.co/bitstreams/a9d1a78a-7f34-41ba-b3fe-8dc9629e9f66/download272befd2945801953a3960976bc4666dMD54TEXTDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.txtDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.txttext/plain1643https://repositorio.cuc.edu.co/bitstreams/759e3661-3c85-4fa8-9322-34e3c0e9ed2e/download3cdd4836dda33a34ba79bc4cd3b51fe1MD5511323/1837oai:repositorio.cuc.edu.co:11323/18372024-09-17 14:08:20.087open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=