Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system
Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering...
- Autores:
-
Silva Ortega, Jorge Ivan
Isaac Millan, Idi A.
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1837
- Acceso en línea:
- https://hdl.handle.net/11323/1837
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cascade-forward back propagation
Long-term demand estimation model
Neural networks
Peak power demand forecast
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_88c3e570541e9731676d69dba9476c6b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1837 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
title |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
spellingShingle |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system Cascade-forward back propagation Long-term demand estimation model Neural networks Peak power demand forecast |
title_short |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
title_full |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
title_fullStr |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
title_full_unstemmed |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
title_sort |
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system |
dc.creator.fl_str_mv |
Silva Ortega, Jorge Ivan Isaac Millan, Idi A. Cardenas Escorcia, Yulineth del Carmen Valencia Ochoa, Guillermo Eliecer |
dc.contributor.author.spa.fl_str_mv |
Silva Ortega, Jorge Ivan Isaac Millan, Idi A. Cardenas Escorcia, Yulineth del Carmen Valencia Ochoa, Guillermo Eliecer |
dc.subject.eng.fl_str_mv |
Cascade-forward back propagation Long-term demand estimation model Neural networks Peak power demand forecast |
topic |
Cascade-forward back propagation Long-term demand estimation model Neural networks Peak power demand forecast |
description |
Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-26T14:21:47Z |
dc.date.available.none.fl_str_mv |
2018-11-26T14:21:47Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-889560864-8 |
dc.identifier.issn.spa.fl_str_mv |
22839216 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1837 |
dc.identifier.doi.spa.fl_str_mv |
DOI: 10.3303/CET1867132 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-889560864-8 22839216 DOI: 10.3303/CET1867132 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1837 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Chemical Engineering Transactions |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5ae57be4-c637-48c0-a518-d57f19f1307a/download https://repositorio.cuc.edu.co/bitstreams/31ad99a9-5f9a-4331-a331-67466a87625a/download https://repositorio.cuc.edu.co/bitstreams/a9d1a78a-7f34-41ba-b3fe-8dc9629e9f66/download https://repositorio.cuc.edu.co/bitstreams/759e3661-3c85-4fa8-9322-34e3c0e9ed2e/download |
bitstream.checksum.fl_str_mv |
5326f8cfd53fc2ac5256c48bc55ac442 8a4605be74aa9ea9d79846c1fba20a33 272befd2945801953a3960976bc4666d 3cdd4836dda33a34ba79bc4cd3b51fe1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760837274107904 |
spelling |
Silva Ortega, Jorge IvanIsaac Millan, Idi A.Cardenas Escorcia, Yulineth del CarmenValencia Ochoa, Guillermo Eliecer2018-11-26T14:21:47Z2018-11-26T14:21:47Z2018978-889560864-822839216https://hdl.handle.net/11323/1837DOI: 10.3303/CET1867132Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%.Silva Ortega, Jorge Ivan-0000-0002-7813-0142-600Isaac Millan, Idi A.-f0f6bfa7-0547-4da0-a903-da7572193596-0Cardenas Escorcia, Yulineth del Carmen-6ea49fdf-5d1d-4376-a846-1c4e6362fc0f-0Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cascade-forward back propagationLong-term demand estimation modelNeural networksPeak power demand forecastDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation systemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdfDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdfapplication/pdf180078https://repositorio.cuc.edu.co/bitstreams/5ae57be4-c637-48c0-a518-d57f19f1307a/download5326f8cfd53fc2ac5256c48bc55ac442MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/31ad99a9-5f9a-4331-a331-67466a87625a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.jpgDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.jpgimage/jpeg46162https://repositorio.cuc.edu.co/bitstreams/a9d1a78a-7f34-41ba-b3fe-8dc9629e9f66/download272befd2945801953a3960976bc4666dMD54TEXTDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.txtDemand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system.pdf.txttext/plain1643https://repositorio.cuc.edu.co/bitstreams/759e3661-3c85-4fa8-9322-34e3c0e9ed2e/download3cdd4836dda33a34ba79bc4cd3b51fe1MD5511323/1837oai:repositorio.cuc.edu.co:11323/18372024-09-17 14:08:20.087open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |