Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region

Adequate water resources management includes understanding patterns and spatiotemporal variability of precipitation, as this variable is determinant for ecosystems’ stability, food security, and most human activities. Based on satellite estimations validated through ground measurements from 59 meteo...

Full description

Autores:
Morales-Acuña, Enrique
Linero-Cueto, Jean Rogelio
Canales, Fausto
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8779
Acceso en línea:
https://hdl.handle.net/11323/8779
https://doi.org/10.3390/hydrology8030128
https://repositorio.cuc.edu.co/
Palabra clave:
Precipitation
Climate variability
Rainfall trends
CHIRPS v2.0
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_8894fd8f00c3ff95fe7cb5f6198958bf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8779
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
title Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
spellingShingle Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
Precipitation
Climate variability
Rainfall trends
CHIRPS v2.0
title_short Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
title_full Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
title_fullStr Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
title_full_unstemmed Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
title_sort Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian region
dc.creator.fl_str_mv Morales-Acuña, Enrique
Linero-Cueto, Jean Rogelio
Canales, Fausto
dc.contributor.author.spa.fl_str_mv Morales-Acuña, Enrique
Linero-Cueto, Jean Rogelio
Canales, Fausto
dc.subject.spa.fl_str_mv Precipitation
Climate variability
Rainfall trends
CHIRPS v2.0
topic Precipitation
Climate variability
Rainfall trends
CHIRPS v2.0
description Adequate water resources management includes understanding patterns and spatiotemporal variability of precipitation, as this variable is determinant for ecosystems’ stability, food security, and most human activities. Based on satellite estimations validated through ground measurements from 59 meteorological stations, the objective of this study is to evaluate the long-term spatiotemporal variability and trends of the average monthly precipitation in the Magdalena Department, Colombia, for the 1981–2018 period. This heterogeneous region comprises many different ecoregions in its 23,188 km2 area. The analysis of spatial variability allowed for the determination of four different subregions based on the differences in the average values of precipitation and the degree of rainfall variability. The trend analysis indicates that the current rainfall patterns contradict previous estimates of a progressive decrease in annual averages due to climate change in the study region, as most of the department does not exhibit statistically significant trends, except for the Sierra Nevada de Santa Marta area, where this study found reductions between 10 mm yr−1 and 30 mm yr−1. The findings of this study also suggest the existence of some links between precipitation patterns with regional phenomena of climate variability and solar activity.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-08T20:46:33Z
dc.date.available.none.fl_str_mv 2021-10-08T20:46:33Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2306-5338
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8779
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/hydrology8030128
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2306-5338
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8779
https://doi.org/10.3390/hydrology8030128
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Ayalew, D.; Tesfaye, K.; Mamo, G.; Yitaferu, B.; Bayu, W. Variability of Rainfall and Its Current Trend in Amhara Region, Ethiopia. Afr. J. Agric. Res. 2012, 7. [CrossRef]
2. Zhao, W.; Yu, X.; Ma, H.; Zhu, Q.; Zhang, Y.; Qin, W.; Ai, N.; Wang, Y. Analysis of Precipitation Characteristics during 1957-2012 in the Semi-Arid Loess Plateau, China. PLoS ONE 2015, 10, e0141662. [CrossRef]
3. Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [CrossRef]
4. Weldegerima, T.M.; Zeleke, T.T.; Birhanu, B.S.; Zaitchik, B.F.; Fetene, Z.A. Analysis of Rainfall Trends and Its Relationship with SST Signals in the Lake Tana Basin, Ethiopia. Adv. Meteorol. 2018, 2018, 1–10. [CrossRef]
5. Cattani, E.; Merino, A.; Guijarro, J.A.; Levizzani, V. East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products. Remote Sens. 2018, 10, 931. [CrossRef]
6. Cruz-Roa, A.F.; Barrios, M.I. Estimación de datos faltantes de lluvia mensual a través de la asimilación de información satelital y pluviométrica en una cuenca andina tropical. Idesia 2018, 36, 107–117. [CrossRef]
7. Serrat-Capdevila, A.; Valdes, J.B.; Stakhiv, E.Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. J. Am. Water Resour. Assoc. 2014, 50, 509–525. [CrossRef]
8. Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. LongTerm Spatial-Temporal Trends and Variability of Rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2019, 137, 1869–1882. [CrossRef]
9. Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [CrossRef]
10. Gebremichael, M.; Krajewski, W.F.; Morrissey, M.L.; Huffman, G.J.; Adler, R.F. A Detailed Evaluation of GPCP 1◦ Daily Rainfall Estimates over the Mississippi River Basin. J. Appl. Meteorol. 2005, 44, 665–681. [CrossRef]
11. Urrea, V.; Ochoa, A.; Mesa, O. Validación de La Base de Datos de Precipitación CHIRPS Para Colombia a Escala Diaria, Mensual y Anual En El Periodo 1981–2014. In Proceedings of the XXVII Congreso Latinoamericano de Hidráulica; IAHS: Lima, Perú, 2016; Available online: http://ladhi2016.org (accessed on 16 July 2021).
12. Elgamal, A.; Reggiani, P.; Jonoski, A. Impact Analysis of Satellite Rainfall Products on Flow Simulations in the Magdalena River Basin, Colombia. J. Hydrol. Reg. Stud. 2017, 9, 85–103. [CrossRef]
13. Cruz-Roa, A.F.; Olaya-Marín, E.J.; Barrios, M.I. Ground and Satellite Based Assessment of Meteorological Droughts: The Coello River Basin Case Study. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 114–121. [CrossRef]
14. Vallejo-Bernal, S.M.; Urrea, V.; Bedoya-Soto, J.M.; Posada, D.; Olarte, A.; Cárdenas-Posso, Y.; Ruiz-Murcia, F.; Martínez, M.T.; Petersen, W.A.; Huffman, G.J.; et al. Ground Validation of TRMM 3B43 V7 Precipitation Estimates over Colombia. Part I: Monthly and Seasonal Timescales. Int. J. Climatol. 2021, 41, 601–624. [CrossRef]
15. Fernandes, K.; Muñoz, A.G.; Ramirez-Villegas, J.; Agudelo, D.; Llanos-Herrera, L.; Esquivel, A.; Rodriguez-Espinoza, J.; Prager, S.D. Improving Seasonal Precipitation Forecasts for Agriculture in the Orinoquía Region of Colombia. Weather Forecast. 2020, 35, 437–449. [CrossRef]
16. Palomino-Ángel, S.; Anaya-Acevedo, J.A.; Botero, B.A. Evaluation of 3B42V7 and IMERG Daily-Precipitation Products for a Very High-Precipitation Region in Northwestern South America. Atmos. Res. 2019, 217, 37–48. [CrossRef]
17. Navarro-Monterroza, E.; Arias, P.A.; Vieira, S.C. El Niño/Southern Oscillation Modoki and Its Effects on the Spatiotemporal Variability of Precipitation in Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2019, 43, 120–132. [CrossRef]
18. López López, P.; Immerzeel, W.W.; Rodríguez Sandoval, E.A.; Sterk, G.; Schellekens, J. Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia. Front. Earth Sci. 2018, 6. [CrossRef]
19. Hurtado-Montoya, A.F.; Mesa-Sánchez, Ó.J. Reanalysis of Monthly Precipitation Fields in Colombian Territory. Dyna 2014, 81, 251–258. [CrossRef]
20. Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [CrossRef]
21. Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Ribbe, L.; Nauditt, A.; Giraldo-Osorio, J.D.; Thinh, N.X. Temporal and Spatial Evaluation of Satellite Rainfall Estimates over Different Regions in Latin-America. Atmos. Res. 2018, 213, 34–50. [CrossRef]
22. Hodson de Jaramillo, E.; Castaño, J.; Poveda, G.; Roldán, G.; Chavarriaga Aguirre, P. Seguridad Alimentaria y Nutricional en Colombia; La Red Interamericana de Academias de Ciencias (IANAS): Mexico City, Mexico, 2017; ISBN 978-607-8379-29-3.
23. Gomez Vargas, M. Estudio del impacto del cambio climático en los caudales de entrada al embalse del Río Frío. Inge Cuc 2016, 12, 42–50. [CrossRef]
24. Vuille, M.; Bradley, R.S.; Werner, M.; Keimig, F. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Advances in Global Change Research; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 75–99. ISBN 978-94-015-1252-7.
25. Ochoa, A.; Poveda, G. Distribución Espacial de Señales de Cambio Climático En Colombia. In Proceedings of the XXIII Congreso Latinoamericano de Hidráulica; Asociación Internacional de Investigaciones Hidráulicas: Cartagena de Indias, Colombia, 2008; pp. 1–10.
26. Cantor Gómez, D.C. Evaluación y Análisis Espaciotemporal de Tendencias de Largo Plazo en la Hidroclimatología Colombiana. Master’s Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2011.
27. Carmona, A.M.; Poveda, G. Detection of Long-Term Trends in Monthly Hydro-Climatic Series of Colombia through Empirical Mode Decomposition. Clim. Chang. 2014, 123, 301–313. [CrossRef]
28. Ramirez-Villegas, J.; Salazar, M.; Jarvis, A.; Navarro-Racines, C.E. A Way Forward on Adaptation to Climate Change in Colombian Agriculture: Perspectives towards 2050. Clim. Chang. 2012, 115, 611–628. [CrossRef]
29. Armenta, G.; Dorado, J.; Rodriguez, A.; Ruiz, J. Escenarios de Cambio Climático Para Precipitación y Temperaturas En Colombia 2011–2100 Herramientas Científicas Para La Toma de Decisiones—Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático; IDEAM: Bogotá, Colombia, 2014; ISBN 978-958-8902-56-2.
30. Pabón Caicedo, J.D. Cambio Climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2012, 36, 261–278.
31. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—a New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [CrossRef] [PubMed]
32. Funk, C.; Peterson, P.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. DA Quasi-Global Precipitation Time Series for Drought Monitoringata Series. US Geol. Surv. Data Ser. 2014, 832, 1–12. [CrossRef]
33. Instituto Geográfico Agustín Codazzi (IGAC); Instituto de Hidrologia, Meteorologia y Estudios Ambientales (IDEAM); Instituto Alexander von Humboldt. Ecosistemas Continentales, Costeros y Marinos de Colombia; Imprenta Nacional de Colombia: Bogotá, Colombia, 2008.
34. Durango, L.C. Climatología de Los Principales Puertos Del Caribe Colombiano; DT Boletín Científico CIOH; Centro de Investigaciones Oceanográficas e Hidrográficas: Cartagena de Indias, Colombia, 2009; pp. 4–10.
35. Bula-Meyer, G. En: Reichel; Dolmatoff, G., Ed.; FONDO FEN-COLOMBIA: Caribe, Colombia, 1990; pp. 101–113.
36. Corredor, J.E. Phytoplankton Response to Low Level Nutrient Enrichment through Upwelling in the Columbian Caribbean Basin. Deep Sea Res. Part A Oceanogr. Res. Pap. 1979, 26, 731–741. [CrossRef]
37. Franco-Herrera, A. Oceanografía de la Ensenada de Gaira: El Rodadero, más que un Centro Turístico en el Caribe Colombiano, 1st ed.; Univ. de Bogotá Jorge Tadeo Lozano: Bogotá, Colombia, 2005; ISBN 978-958-9029-72-5.
38. Loaiza Cerón, W.; Andreoli, R.V.; Kayano, M.T.; Ferreira de Souza, R.A.; Jones, C.; Carvalho, L.M.V. The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere 2020, 11, 174. [CrossRef]
39. Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hastala escala. Rev. Acad. Colomb.Cienc. Tierra 2004, 28, 201–222.
40. Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and Inter-Annual Variability of the Present Climate in Northern South America and Southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [CrossRef]
41. Arango, C.; Dorado, J.; Guzmán, D.; Ruiz, J. Climatología Trimestral de Colombia. 2015; p. 19. Available online: http://www.ideam.gov.co/documents/21021/21789/Climatolog%C3%ADa+Trimestral+para+Colombia+(Ruiz,+Guzman, +Arango+y+Dorado).pdf/c2825963-c373-449a-a7cb-8480874478d9 (accessed on 16 July 2021).
42. Instituto de Hidrología, Meteorología y Estudios Ambientales; Instituto Alexander von Humboldt; Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis”; Instituto Amazónico de Investigaciones Científicas; Instituto de Investigaciones Ambientales del Pacífico; Instituto Geográfico Agustín Codazzi. Ecosistemas Continentales, Costeros y Marinos de Colombia; IDEAM; IGAC; IAvH; Invemar; I. Sinchi; IIAP; Imprenta Nacional de Colombia: Bogotá, Colombia, 2007; ISBN 978-958-8323-16-9.
43. Instituto de Hidrología, Meteorología y Estudios Ambientales. Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 12 December 2020).
44. Climate Hazards Center CHPclim—High-Quality Monthly Rainfall Climatology. Available online: https://www.chc.ucsb.edu/ data/chpclim (accessed on 12 December 2020).
45. NASA (National Aeronautics and Space Administration). TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree x 0.25 Degree V7 (TRMM_3B42_Daily). Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary (accessed on 12 December 2020).
46. Urrea, V.; Ochoa, A.; Mesa, O. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. [CrossRef]
47. Pedreros, D.H.; Rojas, A.; Funk, C.; Peterson, P.; Landsfeld, M.F.; Husak, G.J. The Use of CHIRPS to Analyze Historical Rainfall in Colombia. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2014.
48. Alemu, M.M.; Bawoke, G.T. Analysis of Spatial Variability and Temporal Trends of Rainfall in Amhara Region, Ethiopia. J. Water Clim. Chang. 2020, 11, 1505–1520. [CrossRef]
49. Lemma, E.; Upadhyaya, S.; Ramsankaran, R.J. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales Ac. Int. J. Remote Sens. 2019, 40, 4019–4042. [CrossRef]
50. Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and Time Series Trend Analysis of Rainfall and Temperature in Northcentral Ethiopia: A Case Study in Woleka Sub-Basin. Weather Clim. Extrem. 2018, 19, 29–41. [CrossRef]
51. Zakwan, M.; Ara, Z. Statistical Analysis of Rainfall in Bihar. Sustain. Water Resour. Manag. 2019, 5, 1781–1789. [CrossRef]
52. Miró, J.J.; Caselles, V.; Estrela, M.J. Multiple Imputation of Rainfall Missing Data in the Iberian Mediterranean Context. Atmos. Res. 2017, 197, 313–330. [CrossRef]
53. Zhu, H.; He, H.; Fan, H.; Xu, L.; Jiang, J.; Jiang, M.; Xu, Y. Regional Characteristics of Long-Term Variability of Summer Precipitation in the Poyang Lake Basin and Possible Links with Large-Scale Circulations. Atmosphere 2020, 11, 1033. [CrossRef]
54. Engeland, K.; Borga, M.; Creutin, J.-D.; François, B.; Ramos, M.-H.; Vidal, J.-P. Space-Time Variability of Climate Variables and Intermittent Renewable Electricity Production—A Review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [CrossRef]
55. Silva, A.T. Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables. In Fundamentals of Statistical Hydrology; Naghettini, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 537–577.
56. Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Ka´zmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [CrossRef]
57. Tadese, M.T.; Kumar, L.; Koech, R.; Zemadim, B. Hydro-Climatic Variability: A Characterisation and Trend Study of the Awash River Basin, Ethiopia. Hydrology 2019, 6, 35. [CrossRef]
58. Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [CrossRef]
59. Estupiñan-Castellanos, A.R. Estudio de la Variabilidad Espacio Temporal de la Precipitación en Colombia. Master’s Thesis, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia, 2016.
60. Guzmán, D.; Ruiz, J.F.; Cadena, M. Regionalización de Colombia Según La Estacionalidad de La Precipitación Media Mensual, a Través Análisis de Componentes Principales (ACP); IDEAM—Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climático: Bogotá, Colombia, 2014; p. 54.
61. Marrugo-Negrete, J.; Pinedo-Hernández, J.; Combatt, E.M.; Bravo, A.G.; Díez, S. Flood-induced Metal Contamination in the Topsoil of Floodplain Agricultural Soils: A Case-study in Colombia. Land Degrad. Dev. 2019, 30, 2139–2149. [CrossRef]
62. Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a High-Resolution Precipitation Database (CHIRPS) over Cyprus for a 30-Year Period. Atmos. Res. 2016, 169, 459–464. [CrossRef]
63. Paredes Trejo, F.J.; Barbosa, H.A.; Peñaloza-Murillo, M.A.; Alejandra Moreno, M.; Farías, A. Intercomparison of Improved Satellite Rainfall Estimation with CHIRPS Gridded Product and Rain Gauge Data over Venezuela. Atmósfera 2016, 29, 323–342. [CrossRef]
64. Mejía, F.; Mesa, O.; Poveda, G.; Vélez, J.; Hoyos, C.; Mantilla, R.; Barco, J.; Cuartas, A.; Montoya, M.; Botero, B. Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. Dyna 1999, 66, 7–15.
65. Pabón Caicedo, J.D.; Eslava Ramírez, J.A.; Gómez Torrez, R.E. Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorol. Colomb. 2001, 4, 47–59.
66. Trojer, H. Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia. Fundamentals for Tropical and Meteorological Zoning in the Tropics Especially Colombia, 1959.
67. Hurtado-Montoya, A.F.H.; Mesa-Sánchez, Ó.J. Cambio climático y variabilidad espacio—Temporal de la precipitación en Colombia. Reveia 2015, 12, 131–150. [CrossRef]
68. De Ideam, I.H. Meteorología y Estudios Ambientales; Estudio Nacional del Agua: Bogotá, Colombia, 2015; ISBN 978-958-8067-70-4.
69. Quereda Sala, J.; Montón Chiva, E.; Escrig Barberá, J. La evolución de las precipitaciones en la cuenca occidental del Mediterráneo: ¿tendencia o ciclos? Ingeo 2000, 17–35. [CrossRef]
70. Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-Climatic Variability over the Andes of Colombia Associated with ENSO: A Review of Climatic Processes and Their Impact on One of the Earth’s Most Important Biodiversity Hotspots. Clim. Dyn. 2011, 36, 2233–2249. [CrossRef]
71. Puertas Orozco, O.L.; Carvajal Escobar, Y. Incidencia de El Niño-Oscilación del Sur en la precipitación y la temperatura del aire en Colombia, utilizando el Climate Explorer. Rev. Cient. Ing. Desarro. 2008, 23, 104–118.
72. González-Rodríguez, E.; Villalobos, H.; Gómez-Muñoz, V.M.; Ramos-Rodríguez, A. Computational Method for Extracting and Modeling Periodicities in Time Series. Open J. Stat. 2015, 5, 604. [CrossRef]
73. Eslava, J.A. Climatology and Climatic Diversity of Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 1993, 18, 507–538.
74. León, G.E.; Zea, J.A.; Eslava, J.A. General Circulation and the Intertropical Convergence Zone in Colombia. Meteorol. Colomb. 2000, 1, 31–38.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Hydrology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2306-5338/8/3/128
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8779/1/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8779/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8779/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8779/4/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8779/5/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf.txt
bitstream.checksum.fl_str_mv 9e8f175858e230ccac7f8eb572586c9f
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
82e78ac53f506eb97f13404099c6585f
f39b6d526d9393874ae752db78a97279
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400189626515456
spelling Morales-Acuña, Enriqueea35adf83cc26d6b85c1f746ca6a04e3300Linero-Cueto, Jean Rogelio0e45f3703a83fc68fa6358e224f9439a300Canales, Fausto0682879bea857c7ccbcd9e1b7d60ddfc2021-10-08T20:46:33Z2021-10-08T20:46:33Z20212306-5338https://hdl.handle.net/11323/8779https://doi.org/10.3390/hydrology8030128Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Adequate water resources management includes understanding patterns and spatiotemporal variability of precipitation, as this variable is determinant for ecosystems’ stability, food security, and most human activities. Based on satellite estimations validated through ground measurements from 59 meteorological stations, the objective of this study is to evaluate the long-term spatiotemporal variability and trends of the average monthly precipitation in the Magdalena Department, Colombia, for the 1981–2018 period. This heterogeneous region comprises many different ecoregions in its 23,188 km2 area. The analysis of spatial variability allowed for the determination of four different subregions based on the differences in the average values of precipitation and the degree of rainfall variability. The trend analysis indicates that the current rainfall patterns contradict previous estimates of a progressive decrease in annual averages due to climate change in the study region, as most of the department does not exhibit statistically significant trends, except for the Sierra Nevada de Santa Marta area, where this study found reductions between 10 mm yr−1 and 30 mm yr−1. The findings of this study also suggest the existence of some links between precipitation patterns with regional phenomena of climate variability and solar activity.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hydrologyhttps://www.mdpi.com/2306-5338/8/3/128PrecipitationClimate variabilityRainfall trendsCHIRPS v2.0Assessment of precipitation variability and trends based on satellite estimations for a heterogeneous Colombian regionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Ayalew, D.; Tesfaye, K.; Mamo, G.; Yitaferu, B.; Bayu, W. Variability of Rainfall and Its Current Trend in Amhara Region, Ethiopia. Afr. J. Agric. Res. 2012, 7. [CrossRef]2. Zhao, W.; Yu, X.; Ma, H.; Zhu, Q.; Zhang, Y.; Qin, W.; Ai, N.; Wang, Y. Analysis of Precipitation Characteristics during 1957-2012 in the Semi-Arid Loess Plateau, China. PLoS ONE 2015, 10, e0141662. [CrossRef]3. Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [CrossRef]4. Weldegerima, T.M.; Zeleke, T.T.; Birhanu, B.S.; Zaitchik, B.F.; Fetene, Z.A. Analysis of Rainfall Trends and Its Relationship with SST Signals in the Lake Tana Basin, Ethiopia. Adv. Meteorol. 2018, 2018, 1–10. [CrossRef]5. Cattani, E.; Merino, A.; Guijarro, J.A.; Levizzani, V. East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products. Remote Sens. 2018, 10, 931. [CrossRef]6. Cruz-Roa, A.F.; Barrios, M.I. Estimación de datos faltantes de lluvia mensual a través de la asimilación de información satelital y pluviométrica en una cuenca andina tropical. Idesia 2018, 36, 107–117. [CrossRef]7. Serrat-Capdevila, A.; Valdes, J.B.; Stakhiv, E.Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. J. Am. Water Resour. Assoc. 2014, 50, 509–525. [CrossRef]8. Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. LongTerm Spatial-Temporal Trends and Variability of Rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2019, 137, 1869–1882. [CrossRef]9. Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [CrossRef]10. Gebremichael, M.; Krajewski, W.F.; Morrissey, M.L.; Huffman, G.J.; Adler, R.F. A Detailed Evaluation of GPCP 1◦ Daily Rainfall Estimates over the Mississippi River Basin. J. Appl. Meteorol. 2005, 44, 665–681. [CrossRef]11. Urrea, V.; Ochoa, A.; Mesa, O. Validación de La Base de Datos de Precipitación CHIRPS Para Colombia a Escala Diaria, Mensual y Anual En El Periodo 1981–2014. In Proceedings of the XXVII Congreso Latinoamericano de Hidráulica; IAHS: Lima, Perú, 2016; Available online: http://ladhi2016.org (accessed on 16 July 2021).12. Elgamal, A.; Reggiani, P.; Jonoski, A. Impact Analysis of Satellite Rainfall Products on Flow Simulations in the Magdalena River Basin, Colombia. J. Hydrol. Reg. Stud. 2017, 9, 85–103. [CrossRef]13. Cruz-Roa, A.F.; Olaya-Marín, E.J.; Barrios, M.I. Ground and Satellite Based Assessment of Meteorological Droughts: The Coello River Basin Case Study. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 114–121. [CrossRef]14. Vallejo-Bernal, S.M.; Urrea, V.; Bedoya-Soto, J.M.; Posada, D.; Olarte, A.; Cárdenas-Posso, Y.; Ruiz-Murcia, F.; Martínez, M.T.; Petersen, W.A.; Huffman, G.J.; et al. Ground Validation of TRMM 3B43 V7 Precipitation Estimates over Colombia. Part I: Monthly and Seasonal Timescales. Int. J. Climatol. 2021, 41, 601–624. [CrossRef]15. Fernandes, K.; Muñoz, A.G.; Ramirez-Villegas, J.; Agudelo, D.; Llanos-Herrera, L.; Esquivel, A.; Rodriguez-Espinoza, J.; Prager, S.D. Improving Seasonal Precipitation Forecasts for Agriculture in the Orinoquía Region of Colombia. Weather Forecast. 2020, 35, 437–449. [CrossRef]16. Palomino-Ángel, S.; Anaya-Acevedo, J.A.; Botero, B.A. Evaluation of 3B42V7 and IMERG Daily-Precipitation Products for a Very High-Precipitation Region in Northwestern South America. Atmos. Res. 2019, 217, 37–48. [CrossRef]17. Navarro-Monterroza, E.; Arias, P.A.; Vieira, S.C. El Niño/Southern Oscillation Modoki and Its Effects on the Spatiotemporal Variability of Precipitation in Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2019, 43, 120–132. [CrossRef]18. López López, P.; Immerzeel, W.W.; Rodríguez Sandoval, E.A.; Sterk, G.; Schellekens, J. Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia. Front. Earth Sci. 2018, 6. [CrossRef]19. Hurtado-Montoya, A.F.; Mesa-Sánchez, Ó.J. Reanalysis of Monthly Precipitation Fields in Colombian Territory. Dyna 2014, 81, 251–258. [CrossRef]20. Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [CrossRef]21. Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Ribbe, L.; Nauditt, A.; Giraldo-Osorio, J.D.; Thinh, N.X. Temporal and Spatial Evaluation of Satellite Rainfall Estimates over Different Regions in Latin-America. Atmos. Res. 2018, 213, 34–50. [CrossRef]22. Hodson de Jaramillo, E.; Castaño, J.; Poveda, G.; Roldán, G.; Chavarriaga Aguirre, P. Seguridad Alimentaria y Nutricional en Colombia; La Red Interamericana de Academias de Ciencias (IANAS): Mexico City, Mexico, 2017; ISBN 978-607-8379-29-3.23. Gomez Vargas, M. Estudio del impacto del cambio climático en los caudales de entrada al embalse del Río Frío. Inge Cuc 2016, 12, 42–50. [CrossRef]24. Vuille, M.; Bradley, R.S.; Werner, M.; Keimig, F. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Advances in Global Change Research; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 75–99. ISBN 978-94-015-1252-7.25. Ochoa, A.; Poveda, G. Distribución Espacial de Señales de Cambio Climático En Colombia. In Proceedings of the XXIII Congreso Latinoamericano de Hidráulica; Asociación Internacional de Investigaciones Hidráulicas: Cartagena de Indias, Colombia, 2008; pp. 1–10.26. Cantor Gómez, D.C. Evaluación y Análisis Espaciotemporal de Tendencias de Largo Plazo en la Hidroclimatología Colombiana. Master’s Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2011.27. Carmona, A.M.; Poveda, G. Detection of Long-Term Trends in Monthly Hydro-Climatic Series of Colombia through Empirical Mode Decomposition. Clim. Chang. 2014, 123, 301–313. [CrossRef]28. Ramirez-Villegas, J.; Salazar, M.; Jarvis, A.; Navarro-Racines, C.E. A Way Forward on Adaptation to Climate Change in Colombian Agriculture: Perspectives towards 2050. Clim. Chang. 2012, 115, 611–628. [CrossRef]29. Armenta, G.; Dorado, J.; Rodriguez, A.; Ruiz, J. Escenarios de Cambio Climático Para Precipitación y Temperaturas En Colombia 2011–2100 Herramientas Científicas Para La Toma de Decisiones—Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático; IDEAM: Bogotá, Colombia, 2014; ISBN 978-958-8902-56-2.30. Pabón Caicedo, J.D. Cambio Climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2012, 36, 261–278.31. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—a New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [CrossRef] [PubMed]32. Funk, C.; Peterson, P.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. DA Quasi-Global Precipitation Time Series for Drought Monitoringata Series. US Geol. Surv. Data Ser. 2014, 832, 1–12. [CrossRef]33. Instituto Geográfico Agustín Codazzi (IGAC); Instituto de Hidrologia, Meteorologia y Estudios Ambientales (IDEAM); Instituto Alexander von Humboldt. Ecosistemas Continentales, Costeros y Marinos de Colombia; Imprenta Nacional de Colombia: Bogotá, Colombia, 2008.34. Durango, L.C. Climatología de Los Principales Puertos Del Caribe Colombiano; DT Boletín Científico CIOH; Centro de Investigaciones Oceanográficas e Hidrográficas: Cartagena de Indias, Colombia, 2009; pp. 4–10.35. Bula-Meyer, G. En: Reichel; Dolmatoff, G., Ed.; FONDO FEN-COLOMBIA: Caribe, Colombia, 1990; pp. 101–113.36. Corredor, J.E. Phytoplankton Response to Low Level Nutrient Enrichment through Upwelling in the Columbian Caribbean Basin. Deep Sea Res. Part A Oceanogr. Res. Pap. 1979, 26, 731–741. [CrossRef]37. Franco-Herrera, A. Oceanografía de la Ensenada de Gaira: El Rodadero, más que un Centro Turístico en el Caribe Colombiano, 1st ed.; Univ. de Bogotá Jorge Tadeo Lozano: Bogotá, Colombia, 2005; ISBN 978-958-9029-72-5.38. Loaiza Cerón, W.; Andreoli, R.V.; Kayano, M.T.; Ferreira de Souza, R.A.; Jones, C.; Carvalho, L.M.V. The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere 2020, 11, 174. [CrossRef]39. Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hastala escala. Rev. Acad. Colomb.Cienc. Tierra 2004, 28, 201–222.40. Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and Inter-Annual Variability of the Present Climate in Northern South America and Southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [CrossRef]41. Arango, C.; Dorado, J.; Guzmán, D.; Ruiz, J. Climatología Trimestral de Colombia. 2015; p. 19. Available online: http://www.ideam.gov.co/documents/21021/21789/Climatolog%C3%ADa+Trimestral+para+Colombia+(Ruiz,+Guzman, +Arango+y+Dorado).pdf/c2825963-c373-449a-a7cb-8480874478d9 (accessed on 16 July 2021).42. Instituto de Hidrología, Meteorología y Estudios Ambientales; Instituto Alexander von Humboldt; Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis”; Instituto Amazónico de Investigaciones Científicas; Instituto de Investigaciones Ambientales del Pacífico; Instituto Geográfico Agustín Codazzi. Ecosistemas Continentales, Costeros y Marinos de Colombia; IDEAM; IGAC; IAvH; Invemar; I. Sinchi; IIAP; Imprenta Nacional de Colombia: Bogotá, Colombia, 2007; ISBN 978-958-8323-16-9.43. Instituto de Hidrología, Meteorología y Estudios Ambientales. Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 12 December 2020).44. Climate Hazards Center CHPclim—High-Quality Monthly Rainfall Climatology. Available online: https://www.chc.ucsb.edu/ data/chpclim (accessed on 12 December 2020).45. NASA (National Aeronautics and Space Administration). TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree x 0.25 Degree V7 (TRMM_3B42_Daily). Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary (accessed on 12 December 2020).46. Urrea, V.; Ochoa, A.; Mesa, O. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. [CrossRef]47. Pedreros, D.H.; Rojas, A.; Funk, C.; Peterson, P.; Landsfeld, M.F.; Husak, G.J. The Use of CHIRPS to Analyze Historical Rainfall in Colombia. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2014.48. Alemu, M.M.; Bawoke, G.T. Analysis of Spatial Variability and Temporal Trends of Rainfall in Amhara Region, Ethiopia. J. Water Clim. Chang. 2020, 11, 1505–1520. [CrossRef]49. Lemma, E.; Upadhyaya, S.; Ramsankaran, R.J. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales Ac. Int. J. Remote Sens. 2019, 40, 4019–4042. [CrossRef]50. Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and Time Series Trend Analysis of Rainfall and Temperature in Northcentral Ethiopia: A Case Study in Woleka Sub-Basin. Weather Clim. Extrem. 2018, 19, 29–41. [CrossRef]51. Zakwan, M.; Ara, Z. Statistical Analysis of Rainfall in Bihar. Sustain. Water Resour. Manag. 2019, 5, 1781–1789. [CrossRef]52. Miró, J.J.; Caselles, V.; Estrela, M.J. Multiple Imputation of Rainfall Missing Data in the Iberian Mediterranean Context. Atmos. Res. 2017, 197, 313–330. [CrossRef]53. Zhu, H.; He, H.; Fan, H.; Xu, L.; Jiang, J.; Jiang, M.; Xu, Y. Regional Characteristics of Long-Term Variability of Summer Precipitation in the Poyang Lake Basin and Possible Links with Large-Scale Circulations. Atmosphere 2020, 11, 1033. [CrossRef]54. Engeland, K.; Borga, M.; Creutin, J.-D.; François, B.; Ramos, M.-H.; Vidal, J.-P. Space-Time Variability of Climate Variables and Intermittent Renewable Electricity Production—A Review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [CrossRef]55. Silva, A.T. Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables. In Fundamentals of Statistical Hydrology; Naghettini, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 537–577.56. Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Ka´zmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [CrossRef]57. Tadese, M.T.; Kumar, L.; Koech, R.; Zemadim, B. Hydro-Climatic Variability: A Characterisation and Trend Study of the Awash River Basin, Ethiopia. Hydrology 2019, 6, 35. [CrossRef]58. Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [CrossRef]59. Estupiñan-Castellanos, A.R. Estudio de la Variabilidad Espacio Temporal de la Precipitación en Colombia. Master’s Thesis, Universidad Nacional de Colombia—Sede Medellín, Medellín, Colombia, 2016.60. Guzmán, D.; Ruiz, J.F.; Cadena, M. Regionalización de Colombia Según La Estacionalidad de La Precipitación Media Mensual, a Través Análisis de Componentes Principales (ACP); IDEAM—Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climático: Bogotá, Colombia, 2014; p. 54.61. Marrugo-Negrete, J.; Pinedo-Hernández, J.; Combatt, E.M.; Bravo, A.G.; Díez, S. Flood-induced Metal Contamination in the Topsoil of Floodplain Agricultural Soils: A Case-study in Colombia. Land Degrad. Dev. 2019, 30, 2139–2149. [CrossRef]62. Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a High-Resolution Precipitation Database (CHIRPS) over Cyprus for a 30-Year Period. Atmos. Res. 2016, 169, 459–464. [CrossRef]63. Paredes Trejo, F.J.; Barbosa, H.A.; Peñaloza-Murillo, M.A.; Alejandra Moreno, M.; Farías, A. Intercomparison of Improved Satellite Rainfall Estimation with CHIRPS Gridded Product and Rain Gauge Data over Venezuela. Atmósfera 2016, 29, 323–342. [CrossRef]64. Mejía, F.; Mesa, O.; Poveda, G.; Vélez, J.; Hoyos, C.; Mantilla, R.; Barco, J.; Cuartas, A.; Montoya, M.; Botero, B. Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. Dyna 1999, 66, 7–15.65. Pabón Caicedo, J.D.; Eslava Ramírez, J.A.; Gómez Torrez, R.E. Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorol. Colomb. 2001, 4, 47–59.66. Trojer, H. Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia. Fundamentals for Tropical and Meteorological Zoning in the Tropics Especially Colombia, 1959.67. Hurtado-Montoya, A.F.H.; Mesa-Sánchez, Ó.J. Cambio climático y variabilidad espacio—Temporal de la precipitación en Colombia. Reveia 2015, 12, 131–150. [CrossRef]68. De Ideam, I.H. Meteorología y Estudios Ambientales; Estudio Nacional del Agua: Bogotá, Colombia, 2015; ISBN 978-958-8067-70-4.69. Quereda Sala, J.; Montón Chiva, E.; Escrig Barberá, J. La evolución de las precipitaciones en la cuenca occidental del Mediterráneo: ¿tendencia o ciclos? Ingeo 2000, 17–35. [CrossRef]70. Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-Climatic Variability over the Andes of Colombia Associated with ENSO: A Review of Climatic Processes and Their Impact on One of the Earth’s Most Important Biodiversity Hotspots. Clim. Dyn. 2011, 36, 2233–2249. [CrossRef]71. Puertas Orozco, O.L.; Carvajal Escobar, Y. Incidencia de El Niño-Oscilación del Sur en la precipitación y la temperatura del aire en Colombia, utilizando el Climate Explorer. Rev. Cient. Ing. Desarro. 2008, 23, 104–118.72. González-Rodríguez, E.; Villalobos, H.; Gómez-Muñoz, V.M.; Ramos-Rodríguez, A. Computational Method for Extracting and Modeling Periodicities in Time Series. Open J. Stat. 2015, 5, 604. [CrossRef]73. Eslava, J.A. Climatology and Climatic Diversity of Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 1993, 18, 507–538.74. León, G.E.; Zea, J.A.; Eslava, J.A. General Circulation and the Intertropical Convergence Zone in Colombia. Meteorol. Colomb. 2000, 1, 31–38.ORIGINALAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdfAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdfapplication/pdf8248119https://repositorio.cuc.edu.co/bitstream/11323/8779/1/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf9e8f175858e230ccac7f8eb572586c9fMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8779/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8779/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdf.jpgAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdf.jpgimage/jpeg75598https://repositorio.cuc.edu.co/bitstream/11323/8779/4/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf.jpg82e78ac53f506eb97f13404099c6585fMD54open accessTEXTAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdf.txtAssessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region.pdf.txttext/plain61707https://repositorio.cuc.edu.co/bitstream/11323/8779/5/Assessment%20of%20Precipitation%20Variability%20and%20Trends%20Based%20on%20Satellite%20Estimations%20for%20a%20Heterogeneous%20Colombian%20Region.pdf.txtf39b6d526d9393874ae752db78a97279MD55open access11323/8779oai:repositorio.cuc.edu.co:11323/87792023-12-14 16:29:42.46CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==