Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobeni...
- Autores:
-
Urieles Guerrero, Alejandro
Ramírez, William
Ortega, María José
Bedoya, Daniel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7140
- Acceso en línea:
- https://hdl.handle.net/11323/7140
https://doi.org/10.1186/s13662-020-02988-0
https://repositorio.cuc.edu.co/
- Palabra clave:
- Generalized apostol frobenius–euler polynomials
Hurwitz zeta function
Fourier expansion
Generalized apostol frobennius–euler numbers
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_888ba84b6564ecc1854f4443be3f1b46 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7140 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
title |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
spellingShingle |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials Generalized apostol frobenius–euler polynomials Hurwitz zeta function Fourier expansion Generalized apostol frobennius–euler numbers |
title_short |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
title_full |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
title_fullStr |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
title_full_unstemmed |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
title_sort |
Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials |
dc.creator.fl_str_mv |
Urieles Guerrero, Alejandro Ramírez, William Ortega, María José Bedoya, Daniel |
dc.contributor.author.spa.fl_str_mv |
Urieles Guerrero, Alejandro Ramírez, William Ortega, María José Bedoya, Daniel |
dc.subject.spa.fl_str_mv |
Generalized apostol frobenius–euler polynomials Hurwitz zeta function Fourier expansion Generalized apostol frobennius–euler numbers |
topic |
Generalized apostol frobenius–euler polynomials Hurwitz zeta function Fourier expansion Generalized apostol frobennius–euler numbers |
description |
The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-14T23:23:10Z |
dc.date.available.none.fl_str_mv |
2020-10-14T23:23:10Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1687-1839 1687-1847 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7140 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1186/s13662-020-02988-0 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1687-1839 1687-1847 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7140 https://doi.org/10.1186/s13662-020-02988-0 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Alkan, M., Simsek, Y.: Generating function for q-Eulerian polynomials and their decomposition and applications. Fixed Point Theory Appl. 2013(72), 1 (2013). https://doi.org/10.1186/1687-1812-2013-72 2. Araci, S., Acikgoz, M.: Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications. Adv. Differ. Equ. 2018, 67 (2018). https://doi.org/10.1186/s13662-018-1526-x 3. Bayad, A.: Fourier expansion for Apostol Bernoulli, Apostol Euler and Apostol Genocchi polynomials. Math. Comput. 80, 2219–2221 (2011). https://doi.org/10.1090/S0025-5718-2011-02476-2 4. Bayad, A., Kim, T.: Identities for Apostol-type Frobenius–Euler polynomiasl resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 23, 164–171 (2016). https://doi.org/10.1134/S1061920816020023 5. Cangul, I.N., Cevik, A.S., Simsek, Y.: Generalization of q-Apostol-type Eulerian numbers and polynomials, and their interpolation functions. Adv. Stud. Contemp. Math. 25(2), 211–220 (2015) 6. Carlitz, L.: Eulerian numbers and polynomials. Math. Mag. 32, 247–260 (1959). https://doi.org/10.2307/3029225 7. Conway, J.B.: Functions of One Complex Variables. Springer, Berlin (1978) 8. Cristina, B., Roberto, B.: Fourier expansions for higher-order Apostol–Genocchi, Apostol–Bernoulli and Apostol–Euler polynomialsv. Adv. Differ. Equ. 2020, 346 (2020). https://doi.org/10.1186/s13662-020-02802-x 9. Follan, G.: Fourier Analysis and Its Applications (1992) 10. Kim, T.: An identity of the symmetry for the Frobenius–Euler polynomials associated with the fermionic p-adic invariant q-integrals on Zp. Rocky Mt. J. Math. 41, 239–247 (2011) 11. Kucukoglu, I., Simsek, Y.: Identities and relations on the q-Apostol type Frobenius–Euler numbers and polynomials. J. Korean Math. Soc. 56(1), 265–284 (2019). https://doi.org/10.4134/JKMS.j180185 12. Kucukoglu, I., Simsek, Y., Srivastava, H.M.: A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials. Quaest. Math. 42 465–478 (2019). https://doi.org/10.2989/16073606.2018.1459925 13. Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2013, 1 (2013). https://doi.org/10.1186/1687-1847-2013-1 14. Luo, Q.: Fourier expansion and integral representations for the Apostol Bernoulli and Apostol Euler polynomials. Math. Comput. 78, 2193–2208 (2009) 15. Luo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291–309 (2011) 16. Quintana, Y., Ramírez, W., Urieles, A.: Euler matrices and their algebraic properties revisited. Appl. Math. Inf. Sci. 14(4), 583–596 (2020). https://doi.org/10.18576/amis/140407 17. Ramírez, W., Ortega, M., Urieles, A.: New generalized Apostol Frobenius–Euler polynomials and their matrix approach. Kragujev. J. Math. 45(3), 393–407 (2021) 18. Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. Fixed Point Theory Appl. 2013(87), 1 (2013). https://doi.org/10.1186/1687-1812-2013-87 19. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) 20. Srivastava, H.M., Kurt, B., Simsek, Y.: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 23(12), 919–938 (2012). https://doi.org/10.1080/10652469.2011.643627 21. Yilmaz, S.: Generating functions for q-Apostol type Frobenius–Euler numbers and polynomials. Axioms 1(3), 395–403 (2012). https://doi.org/10.3390/axioms1030395 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Difference Equations |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02988-0 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/18787330-7b33-4398-9d11-985d823e13f5/download https://repositorio.cuc.edu.co/bitstreams/3336be6f-94ed-49bc-ba14-02e5cad6aa3b/download https://repositorio.cuc.edu.co/bitstreams/9429157d-d872-4594-9956-f7d176bd7f36/download https://repositorio.cuc.edu.co/bitstreams/f0eb1ff1-fa37-470a-83ae-266026ddcd97/download https://repositorio.cuc.edu.co/bitstreams/617633e6-4e8d-4314-9988-1b68cf773dd6/download https://repositorio.cuc.edu.co/bitstreams/d16090c9-130c-4685-a48c-e20555853e2f/download |
bitstream.checksum.fl_str_mv |
7bcff39f2a974e7da3115aabdfd2d9df 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 4f22d98e515755a505c451b1a911d75a 4f22d98e515755a505c451b1a911d75a 0cd99bc72be91e085b55497e4dae8e29 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760697253560320 |
spelling |
Urieles Guerrero, AlejandroRamírez, WilliamOrtega, María JoséBedoya, Daniel2020-10-14T23:23:10Z2020-10-14T23:23:10Z20201687-18391687-1847https://hdl.handle.net/11323/7140https://doi.org/10.1186/s13662-020-02988-0Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.Urieles Guerrero, Alejandro-will be generated-orcid-0000-0002-7186-0898-600Ramírez, WilliamOrtega, María JoséBedoya, DanielengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Difference Equationshttps://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02988-0Generalized apostol frobenius–euler polynomialsHurwitz zeta functionFourier expansionGeneralized apostol frobennius–euler numbersFourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomialsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Alkan, M., Simsek, Y.: Generating function for q-Eulerian polynomials and their decomposition and applications. Fixed Point Theory Appl. 2013(72), 1 (2013). https://doi.org/10.1186/1687-1812-2013-722. Araci, S., Acikgoz, M.: Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications. Adv. Differ. Equ. 2018, 67 (2018). https://doi.org/10.1186/s13662-018-1526-x3. Bayad, A.: Fourier expansion for Apostol Bernoulli, Apostol Euler and Apostol Genocchi polynomials. Math. Comput. 80, 2219–2221 (2011). https://doi.org/10.1090/S0025-5718-2011-02476-24. Bayad, A., Kim, T.: Identities for Apostol-type Frobenius–Euler polynomiasl resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 23, 164–171 (2016). https://doi.org/10.1134/S10619208160200235. Cangul, I.N., Cevik, A.S., Simsek, Y.: Generalization of q-Apostol-type Eulerian numbers and polynomials, and their interpolation functions. Adv. Stud. Contemp. Math. 25(2), 211–220 (2015)6. Carlitz, L.: Eulerian numbers and polynomials. Math. Mag. 32, 247–260 (1959). https://doi.org/10.2307/30292257. Conway, J.B.: Functions of One Complex Variables. Springer, Berlin (1978)8. Cristina, B., Roberto, B.: Fourier expansions for higher-order Apostol–Genocchi, Apostol–Bernoulli and Apostol–Euler polynomialsv. Adv. Differ. Equ. 2020, 346 (2020). https://doi.org/10.1186/s13662-020-02802-x9. Follan, G.: Fourier Analysis and Its Applications (1992)10. Kim, T.: An identity of the symmetry for the Frobenius–Euler polynomials associated with the fermionic p-adic invariant q-integrals on Zp. Rocky Mt. J. Math. 41, 239–247 (2011)11. Kucukoglu, I., Simsek, Y.: Identities and relations on the q-Apostol type Frobenius–Euler numbers and polynomials. J. Korean Math. Soc. 56(1), 265–284 (2019). https://doi.org/10.4134/JKMS.j18018512. Kucukoglu, I., Simsek, Y., Srivastava, H.M.: A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials. Quaest. Math. 42 465–478 (2019). https://doi.org/10.2989/16073606.2018.145992513. Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2013, 1 (2013). https://doi.org/10.1186/1687-1847-2013-114. Luo, Q.: Fourier expansion and integral representations for the Apostol Bernoulli and Apostol Euler polynomials. Math. Comput. 78, 2193–2208 (2009)15. Luo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291–309 (2011)16. Quintana, Y., Ramírez, W., Urieles, A.: Euler matrices and their algebraic properties revisited. Appl. Math. Inf. Sci. 14(4), 583–596 (2020). https://doi.org/10.18576/amis/14040717. Ramírez, W., Ortega, M., Urieles, A.: New generalized Apostol Frobenius–Euler polynomials and their matrix approach. Kragujev. J. Math. 45(3), 393–407 (2021)18. Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. Fixed Point Theory Appl. 2013(87), 1 (2013). https://doi.org/10.1186/1687-1812-2013-8719. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)20. Srivastava, H.M., Kurt, B., Simsek, Y.: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 23(12), 919–938 (2012). https://doi.org/10.1080/10652469.2011.64362721. Yilmaz, S.: Generating functions for q-Apostol type Frobenius–Euler numbers and polynomials. Axioms 1(3), 395–403 (2012). https://doi.org/10.3390/axioms1030395PublicationORIGINALFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdfFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdfapplication/pdf1509460https://repositorio.cuc.edu.co/bitstreams/18787330-7b33-4398-9d11-985d823e13f5/download7bcff39f2a974e7da3115aabdfd2d9dfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3336be6f-94ed-49bc-ba14-02e5cad6aa3b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9429157d-d872-4594-9956-f7d176bd7f36/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.jpgFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.jpgimage/jpeg52920https://repositorio.cuc.edu.co/bitstreams/f0eb1ff1-fa37-470a-83ae-266026ddcd97/download4f22d98e515755a505c451b1a911d75aMD54THUMBNAILFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.jpgFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.jpgimage/jpeg52920https://repositorio.cuc.edu.co/bitstreams/617633e6-4e8d-4314-9988-1b68cf773dd6/download4f22d98e515755a505c451b1a911d75aMD54TEXTFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.txtFourier expansion and integral representation generalized Apostol-type Frobenius–Euler.pdf.txttext/plain30574https://repositorio.cuc.edu.co/bitstreams/d16090c9-130c-4685-a48c-e20555853e2f/download0cd99bc72be91e085b55497e4dae8e29MD5511323/7140oai:repositorio.cuc.edu.co:11323/71402024-09-17 10:16:19.703http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |