Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobeni...
- Autores:
-
Urieles Guerrero, Alejandro
Ramírez, William
Ortega, María José
Bedoya, Daniel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7140
- Acceso en línea:
- https://hdl.handle.net/11323/7140
https://doi.org/10.1186/s13662-020-02988-0
https://repositorio.cuc.edu.co/
- Palabra clave:
- Generalized apostol frobenius–euler polynomials
Hurwitz zeta function
Fourier expansion
Generalized apostol frobennius–euler numbers
- Rights
- openAccess
- License
- CC0 1.0 Universal
Summary: | The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials. |
---|