Effects of turbulization on the disc pump performance

Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fl...

Full description

Autores:
Martínez- Díaz, Leonel
Hernández Herrera, Hernán
Castellanos González, Luis Marcos
Varela Izquierdo, Noel
Reyes carvajal, Tirso Lorenzo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5987
Acceso en línea:
http://hdl.handle.net/11323/5987
https://repositorio.cuc.edu.co/
Palabra clave:
Boundary layer
Disc pump
Circulation
Turbulizers
Viscous drag
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_88691360a1d7b59357cef0ff7b460c4b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5987
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effects of turbulization on the disc pump performance
title Effects of turbulization on the disc pump performance
spellingShingle Effects of turbulization on the disc pump performance
Boundary layer
Disc pump
Circulation
Turbulizers
Viscous drag
title_short Effects of turbulization on the disc pump performance
title_full Effects of turbulization on the disc pump performance
title_fullStr Effects of turbulization on the disc pump performance
title_full_unstemmed Effects of turbulization on the disc pump performance
title_sort Effects of turbulization on the disc pump performance
dc.creator.fl_str_mv Martínez- Díaz, Leonel
Hernández Herrera, Hernán
Castellanos González, Luis Marcos
Varela Izquierdo, Noel
Reyes carvajal, Tirso Lorenzo
dc.contributor.author.spa.fl_str_mv Martínez- Díaz, Leonel
Hernández Herrera, Hernán
Castellanos González, Luis Marcos
Varela Izquierdo, Noel
Reyes carvajal, Tirso Lorenzo
dc.subject.spa.fl_str_mv Boundary layer
Disc pump
Circulation
Turbulizers
Viscous drag
topic Boundary layer
Disc pump
Circulation
Turbulizers
Viscous drag
description Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fluid reducing the wear level; but the pumping mechanism itself makes its efficiency low in comparison with other pumps for similar applications. This research aims to increase the performance of this pump developing a new experimental study based on the turbulization of flow by the placement of turbulizers in the interdisc channel output. The variables involved are the angular velocity (x) and the cross section shape of the turbulizers. Eight impellers were constructed and evaluated using as cross section shape of turbulizers: the triangular, circular, and square. The experimental results show that the creation of circulatory currents, according to the Kutta-Johkovsky theorem, contributes to the increase the efficiency and the head of the disc pump and the square cross section shape of the turbulizers offers the best results.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-26
dc.date.accessioned.none.fl_str_mv 2020-02-05T13:28:08Z
dc.date.available.none.fl_str_mv 2020-02-05T13:28:08Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1110-0168
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5987
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1110-0168
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/5987
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Discflo Disc Pump. 2015. Web. https://esitechgroup.com/ product/pumps/discflo-disc-pump/. Accessed 15 September 2017.
[2] J. Pacello, P. Hanas, Disc Pumpype pump technology for hardto pump applications, Proceedings of 17th Pump User Symposium, Turbomachinery Laboratory, Texas A & M University, 2000.
[3] A. Abu Zeida Mostafa, S.M. Abdel Rahman, Bearing problems’ effects on the dynamic performance of pumping stations, Alexandria Eng. J. 52 (2013) 241–248.
[4] Paint and Coatings Industry, Disc pumps keep fluids moving. Web. http://www.pcimag.com/articles/86117-disc-pumps-keepfluids-moving. 2001. Accessed 21 June 2017.
[5] L. Martinez-Diaz, Method of increase head and efficiency at disc Fig. 12 Velocity without turbulizers. pump, Ph.D. thesis, University of Cienfuegos, Cuba, 2000.
[6] M. Oliveira, M.J. Pascoa, Analytical and experimental modeling of a viscous disc pump for MEMS applications, III National Conference on Fluid Mechanics, Thermodynamics and Energy MEFTE - BRAGANC¸ A 09, 2009.
[7] S.V. Dolgushedv, S.V. Khaidarov, Simplified description of the flow in a diametral disk friction pump, J. Eng. Phys. Thermophys. 74 (3) (2001) 745–749.
[8] V. Miciura, Disc pump, Mach. Construct. Ed. Moscow 112 (1986).
[9] O. Tsaviev, Method of increase the head of the disc pump. Author Certificate of invention no. 284612. Russia, 1987.
[10] L. Martinez-Dı´az, V. Molina, J. Monteagudo, Disc pump for viscous fluids. Author Certificate of invention no. 22946. Cuban Industrial Property Office. International Patent Classification F 04D 7/04, 2004.
[11] J. Pe´ rez, L. Patin˜ oand, H. Espinosa, Three-dimensional simulation of the entrance-impeller interaction of a hydraulic disc pump, J Tech. Eng. University of Zulia 29 (1) (2006).
[12] M.H. Shojaeefard, B. Salimian, A. Khalkhali, M. Tahani, A. New, Method to calculate centrifugal pump performance parameters for industrial oils, J. Appl. Fluid Mech. 8 (4) (2015) 673–681.
[13] V. Sousa, H. Herna´ ndez, E.C. Quispe, P.R. Viego, J.R. Go´ mez, Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems, Int. J. Electric. Comput. Eng. (IJECE) 7 (6) (2017) 3207–3216.
[14] M. Hasanuzzaman, N.A. Rahim, R. Saidur, S.N. Kazi, Energy savings and emissions reductions for rewinding and replacement of industrial motor, Energy 36 (1) (2010) 233–240.
[15] I.L. Sauer, H. Tatizawa, F.A. Salotti, S.S. Mercedes, A comparative assessment of Brazilian electric motors performance with minimum efficiency standards, Renew. Sustain. Energy 41 (2015) 308–318.
[16] J. Tao Qiu, C. Jun Yang, X. Qian Dong, Z. Long Wang, W. Li, F. Noblesse, Numerical simulation and uncertainty analysis of an axial-flow waterjet pump, J. Mar. Sci. Eng. (2018).
[17] H.D. Feng, L. Xu, R.P. Xu, L.J. Wu, X.H. Shi, J.D. Yan, T.Y. Wang, Uncertainty analysis using the thermodynamic method of pump efficiency testing, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 5 (2004) 543–555.
[18] ISO. ISO 9906:2012, Rotodynamic pumps – Hydraulic performance acceptance tests – Grades 1, 2 and 3. Geneva, Switzerland, 2012.
[19] B. Munson, D. Young, T. Okiishi, W. Huebsch, Fundamentals of Fluid Mechanics, sixth edition., 2009.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Alexandria Engineering Journal
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/47aba795-8a0f-4b3b-8fbb-4bee0cd8b42b/download
https://repositorio.cuc.edu.co/bitstreams/9f8f3d15-7b29-4bfb-9d38-558f56748846/download
https://repositorio.cuc.edu.co/bitstreams/e91163db-577f-4894-a0c2-5d5faf8199cd/download
https://repositorio.cuc.edu.co/bitstreams/3f797bad-18e5-42f4-881e-cadedc31fa33/download
https://repositorio.cuc.edu.co/bitstreams/fe617000-4b4a-4b27-91ef-ee0beb2813ee/download
bitstream.checksum.fl_str_mv e911bcadcb257c0a032fc00b74b4de6d
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
8c704d6201297b33c873f128d3a09418
ad15aafcedf1c72ad344b75db653093c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760676917477376
spelling Martínez- Díaz, LeonelHernández Herrera, HernánCastellanos González, Luis MarcosVarela Izquierdo, NoelReyes carvajal, Tirso Lorenzo2020-02-05T13:28:08Z2020-02-05T13:28:08Z2019-09-261110-0168http://hdl.handle.net/11323/5987Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fluid reducing the wear level; but the pumping mechanism itself makes its efficiency low in comparison with other pumps for similar applications. This research aims to increase the performance of this pump developing a new experimental study based on the turbulization of flow by the placement of turbulizers in the interdisc channel output. The variables involved are the angular velocity (x) and the cross section shape of the turbulizers. Eight impellers were constructed and evaluated using as cross section shape of turbulizers: the triangular, circular, and square. The experimental results show that the creation of circulatory currents, according to the Kutta-Johkovsky theorem, contributes to the increase the efficiency and the head of the disc pump and the square cross section shape of the turbulizers offers the best results.Martínez- Díaz, Leonel-will be generated-orcid-0000-0002-4102-0839-600Hernández Herrera, HernánCastellanos González, Luis Marcos-will be generated-orcid-0000-0002-0506-5669-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Reyes carvajal, Tirso Lorenzo-will be generated-orcid-0000-0003-4699-0719-600engAlexandria Engineering JournalCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Boundary layerDisc pumpCirculationTurbulizersViscous dragEffects of turbulization on the disc pump performanceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Discflo Disc Pump. 2015. Web. https://esitechgroup.com/ product/pumps/discflo-disc-pump/. Accessed 15 September 2017.[2] J. Pacello, P. Hanas, Disc Pumpype pump technology for hardto pump applications, Proceedings of 17th Pump User Symposium, Turbomachinery Laboratory, Texas A & M University, 2000.[3] A. Abu Zeida Mostafa, S.M. Abdel Rahman, Bearing problems’ effects on the dynamic performance of pumping stations, Alexandria Eng. J. 52 (2013) 241–248.[4] Paint and Coatings Industry, Disc pumps keep fluids moving. Web. http://www.pcimag.com/articles/86117-disc-pumps-keepfluids-moving. 2001. Accessed 21 June 2017.[5] L. Martinez-Diaz, Method of increase head and efficiency at disc Fig. 12 Velocity without turbulizers. pump, Ph.D. thesis, University of Cienfuegos, Cuba, 2000.[6] M. Oliveira, M.J. Pascoa, Analytical and experimental modeling of a viscous disc pump for MEMS applications, III National Conference on Fluid Mechanics, Thermodynamics and Energy MEFTE - BRAGANC¸ A 09, 2009.[7] S.V. Dolgushedv, S.V. Khaidarov, Simplified description of the flow in a diametral disk friction pump, J. Eng. Phys. Thermophys. 74 (3) (2001) 745–749.[8] V. Miciura, Disc pump, Mach. Construct. Ed. Moscow 112 (1986).[9] O. Tsaviev, Method of increase the head of the disc pump. Author Certificate of invention no. 284612. Russia, 1987.[10] L. Martinez-Dı´az, V. Molina, J. Monteagudo, Disc pump for viscous fluids. Author Certificate of invention no. 22946. Cuban Industrial Property Office. International Patent Classification F 04D 7/04, 2004.[11] J. Pe´ rez, L. Patin˜ oand, H. Espinosa, Three-dimensional simulation of the entrance-impeller interaction of a hydraulic disc pump, J Tech. Eng. University of Zulia 29 (1) (2006).[12] M.H. Shojaeefard, B. Salimian, A. Khalkhali, M. Tahani, A. New, Method to calculate centrifugal pump performance parameters for industrial oils, J. Appl. Fluid Mech. 8 (4) (2015) 673–681.[13] V. Sousa, H. Herna´ ndez, E.C. Quispe, P.R. Viego, J.R. Go´ mez, Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems, Int. J. Electric. Comput. Eng. (IJECE) 7 (6) (2017) 3207–3216.[14] M. Hasanuzzaman, N.A. Rahim, R. Saidur, S.N. Kazi, Energy savings and emissions reductions for rewinding and replacement of industrial motor, Energy 36 (1) (2010) 233–240.[15] I.L. Sauer, H. Tatizawa, F.A. Salotti, S.S. Mercedes, A comparative assessment of Brazilian electric motors performance with minimum efficiency standards, Renew. Sustain. Energy 41 (2015) 308–318.[16] J. Tao Qiu, C. Jun Yang, X. Qian Dong, Z. Long Wang, W. Li, F. Noblesse, Numerical simulation and uncertainty analysis of an axial-flow waterjet pump, J. Mar. Sci. Eng. (2018).[17] H.D. Feng, L. Xu, R.P. Xu, L.J. Wu, X.H. Shi, J.D. Yan, T.Y. Wang, Uncertainty analysis using the thermodynamic method of pump efficiency testing, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 5 (2004) 543–555.[18] ISO. ISO 9906:2012, Rotodynamic pumps – Hydraulic performance acceptance tests – Grades 1, 2 and 3. Geneva, Switzerland, 2012.[19] B. Munson, D. Young, T. Okiishi, W. Huebsch, Fundamentals of Fluid Mechanics, sixth edition., 2009.PublicationORIGINALEffects of turbulization on the disc pump performance.pdfEffects of turbulization on the disc pump performance.pdfapplication/pdf1391558https://repositorio.cuc.edu.co/bitstreams/47aba795-8a0f-4b3b-8fbb-4bee0cd8b42b/downloade911bcadcb257c0a032fc00b74b4de6dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9f8f3d15-7b29-4bfb-9d38-558f56748846/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/e91163db-577f-4894-a0c2-5d5faf8199cd/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEffects of turbulization on the disc pump performance.pdf.jpgEffects of turbulization on the disc pump performance.pdf.jpgimage/jpeg61165https://repositorio.cuc.edu.co/bitstreams/3f797bad-18e5-42f4-881e-cadedc31fa33/download8c704d6201297b33c873f128d3a09418MD55TEXTEffects of turbulization on the disc pump performance.pdf.txtEffects of turbulization on the disc pump performance.pdf.txttext/plain24670https://repositorio.cuc.edu.co/bitstreams/fe617000-4b4a-4b27-91ef-ee0beb2813ee/downloadad15aafcedf1c72ad344b75db653093cMD5611323/5987oai:repositorio.cuc.edu.co:11323/59872024-09-16 16:44:13.875http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=