Effects of turbulization on the disc pump performance
Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fl...
- Autores:
-
Martínez- Díaz, Leonel
Hernández Herrera, Hernán
Castellanos González, Luis Marcos
Varela Izquierdo, Noel
Reyes carvajal, Tirso Lorenzo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5987
- Acceso en línea:
- http://hdl.handle.net/11323/5987
https://repositorio.cuc.edu.co/
- Palabra clave:
- Boundary layer
Disc pump
Circulation
Turbulizers
Viscous drag
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_88691360a1d7b59357cef0ff7b460c4b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5987 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effects of turbulization on the disc pump performance |
title |
Effects of turbulization on the disc pump performance |
spellingShingle |
Effects of turbulization on the disc pump performance Boundary layer Disc pump Circulation Turbulizers Viscous drag |
title_short |
Effects of turbulization on the disc pump performance |
title_full |
Effects of turbulization on the disc pump performance |
title_fullStr |
Effects of turbulization on the disc pump performance |
title_full_unstemmed |
Effects of turbulization on the disc pump performance |
title_sort |
Effects of turbulization on the disc pump performance |
dc.creator.fl_str_mv |
Martínez- Díaz, Leonel Hernández Herrera, Hernán Castellanos González, Luis Marcos Varela Izquierdo, Noel Reyes carvajal, Tirso Lorenzo |
dc.contributor.author.spa.fl_str_mv |
Martínez- Díaz, Leonel Hernández Herrera, Hernán Castellanos González, Luis Marcos Varela Izquierdo, Noel Reyes carvajal, Tirso Lorenzo |
dc.subject.spa.fl_str_mv |
Boundary layer Disc pump Circulation Turbulizers Viscous drag |
topic |
Boundary layer Disc pump Circulation Turbulizers Viscous drag |
description |
Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fluid reducing the wear level; but the pumping mechanism itself makes its efficiency low in comparison with other pumps for similar applications. This research aims to increase the performance of this pump developing a new experimental study based on the turbulization of flow by the placement of turbulizers in the interdisc channel output. The variables involved are the angular velocity (x) and the cross section shape of the turbulizers. Eight impellers were constructed and evaluated using as cross section shape of turbulizers: the triangular, circular, and square. The experimental results show that the creation of circulatory currents, according to the Kutta-Johkovsky theorem, contributes to the increase the efficiency and the head of the disc pump and the square cross section shape of the turbulizers offers the best results. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-09-26 |
dc.date.accessioned.none.fl_str_mv |
2020-02-05T13:28:08Z |
dc.date.available.none.fl_str_mv |
2020-02-05T13:28:08Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1110-0168 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/5987 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1110-0168 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
http://hdl.handle.net/11323/5987 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Discflo Disc Pump. 2015. Web. https://esitechgroup.com/ product/pumps/discflo-disc-pump/. Accessed 15 September 2017. [2] J. Pacello, P. Hanas, Disc Pumpype pump technology for hardto pump applications, Proceedings of 17th Pump User Symposium, Turbomachinery Laboratory, Texas A & M University, 2000. [3] A. Abu Zeida Mostafa, S.M. Abdel Rahman, Bearing problems’ effects on the dynamic performance of pumping stations, Alexandria Eng. J. 52 (2013) 241–248. [4] Paint and Coatings Industry, Disc pumps keep fluids moving. Web. http://www.pcimag.com/articles/86117-disc-pumps-keepfluids-moving. 2001. Accessed 21 June 2017. [5] L. Martinez-Diaz, Method of increase head and efficiency at disc Fig. 12 Velocity without turbulizers. pump, Ph.D. thesis, University of Cienfuegos, Cuba, 2000. [6] M. Oliveira, M.J. Pascoa, Analytical and experimental modeling of a viscous disc pump for MEMS applications, III National Conference on Fluid Mechanics, Thermodynamics and Energy MEFTE - BRAGANC¸ A 09, 2009. [7] S.V. Dolgushedv, S.V. Khaidarov, Simplified description of the flow in a diametral disk friction pump, J. Eng. Phys. Thermophys. 74 (3) (2001) 745–749. [8] V. Miciura, Disc pump, Mach. Construct. Ed. Moscow 112 (1986). [9] O. Tsaviev, Method of increase the head of the disc pump. Author Certificate of invention no. 284612. Russia, 1987. [10] L. Martinez-Dı´az, V. Molina, J. Monteagudo, Disc pump for viscous fluids. Author Certificate of invention no. 22946. Cuban Industrial Property Office. International Patent Classification F 04D 7/04, 2004. [11] J. Pe´ rez, L. Patin˜ oand, H. Espinosa, Three-dimensional simulation of the entrance-impeller interaction of a hydraulic disc pump, J Tech. Eng. University of Zulia 29 (1) (2006). [12] M.H. Shojaeefard, B. Salimian, A. Khalkhali, M. Tahani, A. New, Method to calculate centrifugal pump performance parameters for industrial oils, J. Appl. Fluid Mech. 8 (4) (2015) 673–681. [13] V. Sousa, H. Herna´ ndez, E.C. Quispe, P.R. Viego, J.R. Go´ mez, Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems, Int. J. Electric. Comput. Eng. (IJECE) 7 (6) (2017) 3207–3216. [14] M. Hasanuzzaman, N.A. Rahim, R. Saidur, S.N. Kazi, Energy savings and emissions reductions for rewinding and replacement of industrial motor, Energy 36 (1) (2010) 233–240. [15] I.L. Sauer, H. Tatizawa, F.A. Salotti, S.S. Mercedes, A comparative assessment of Brazilian electric motors performance with minimum efficiency standards, Renew. Sustain. Energy 41 (2015) 308–318. [16] J. Tao Qiu, C. Jun Yang, X. Qian Dong, Z. Long Wang, W. Li, F. Noblesse, Numerical simulation and uncertainty analysis of an axial-flow waterjet pump, J. Mar. Sci. Eng. (2018). [17] H.D. Feng, L. Xu, R.P. Xu, L.J. Wu, X.H. Shi, J.D. Yan, T.Y. Wang, Uncertainty analysis using the thermodynamic method of pump efficiency testing, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 5 (2004) 543–555. [18] ISO. ISO 9906:2012, Rotodynamic pumps – Hydraulic performance acceptance tests – Grades 1, 2 and 3. Geneva, Switzerland, 2012. [19] B. Munson, D. Young, T. Okiishi, W. Huebsch, Fundamentals of Fluid Mechanics, sixth edition., 2009. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Alexandria Engineering Journal |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/47aba795-8a0f-4b3b-8fbb-4bee0cd8b42b/download https://repositorio.cuc.edu.co/bitstreams/9f8f3d15-7b29-4bfb-9d38-558f56748846/download https://repositorio.cuc.edu.co/bitstreams/e91163db-577f-4894-a0c2-5d5faf8199cd/download https://repositorio.cuc.edu.co/bitstreams/3f797bad-18e5-42f4-881e-cadedc31fa33/download https://repositorio.cuc.edu.co/bitstreams/fe617000-4b4a-4b27-91ef-ee0beb2813ee/download |
bitstream.checksum.fl_str_mv |
e911bcadcb257c0a032fc00b74b4de6d 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 8c704d6201297b33c873f128d3a09418 ad15aafcedf1c72ad344b75db653093c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760676917477376 |
spelling |
Martínez- Díaz, LeonelHernández Herrera, HernánCastellanos González, Luis MarcosVarela Izquierdo, NoelReyes carvajal, Tirso Lorenzo2020-02-05T13:28:08Z2020-02-05T13:28:08Z2019-09-261110-0168http://hdl.handle.net/11323/5987Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Disc pumps are used for difficult pumping applications, such as, pumping of high suspension solids and abrasives, viscous fluids, air entrained and shear sensitive fluids. The pumping mechanism, based on the boundary layer effect and the viscous drag minimizes the contact between the pump and the fluid reducing the wear level; but the pumping mechanism itself makes its efficiency low in comparison with other pumps for similar applications. This research aims to increase the performance of this pump developing a new experimental study based on the turbulization of flow by the placement of turbulizers in the interdisc channel output. The variables involved are the angular velocity (x) and the cross section shape of the turbulizers. Eight impellers were constructed and evaluated using as cross section shape of turbulizers: the triangular, circular, and square. The experimental results show that the creation of circulatory currents, according to the Kutta-Johkovsky theorem, contributes to the increase the efficiency and the head of the disc pump and the square cross section shape of the turbulizers offers the best results.Martínez- Díaz, Leonel-will be generated-orcid-0000-0002-4102-0839-600Hernández Herrera, HernánCastellanos González, Luis Marcos-will be generated-orcid-0000-0002-0506-5669-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Reyes carvajal, Tirso Lorenzo-will be generated-orcid-0000-0003-4699-0719-600engAlexandria Engineering JournalCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Boundary layerDisc pumpCirculationTurbulizersViscous dragEffects of turbulization on the disc pump performanceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Discflo Disc Pump. 2015. Web. https://esitechgroup.com/ product/pumps/discflo-disc-pump/. Accessed 15 September 2017.[2] J. Pacello, P. Hanas, Disc Pumpype pump technology for hardto pump applications, Proceedings of 17th Pump User Symposium, Turbomachinery Laboratory, Texas A & M University, 2000.[3] A. Abu Zeida Mostafa, S.M. Abdel Rahman, Bearing problems’ effects on the dynamic performance of pumping stations, Alexandria Eng. J. 52 (2013) 241–248.[4] Paint and Coatings Industry, Disc pumps keep fluids moving. Web. http://www.pcimag.com/articles/86117-disc-pumps-keepfluids-moving. 2001. Accessed 21 June 2017.[5] L. Martinez-Diaz, Method of increase head and efficiency at disc Fig. 12 Velocity without turbulizers. pump, Ph.D. thesis, University of Cienfuegos, Cuba, 2000.[6] M. Oliveira, M.J. Pascoa, Analytical and experimental modeling of a viscous disc pump for MEMS applications, III National Conference on Fluid Mechanics, Thermodynamics and Energy MEFTE - BRAGANC¸ A 09, 2009.[7] S.V. Dolgushedv, S.V. Khaidarov, Simplified description of the flow in a diametral disk friction pump, J. Eng. Phys. Thermophys. 74 (3) (2001) 745–749.[8] V. Miciura, Disc pump, Mach. Construct. Ed. Moscow 112 (1986).[9] O. Tsaviev, Method of increase the head of the disc pump. Author Certificate of invention no. 284612. Russia, 1987.[10] L. Martinez-Dı´az, V. Molina, J. Monteagudo, Disc pump for viscous fluids. Author Certificate of invention no. 22946. Cuban Industrial Property Office. International Patent Classification F 04D 7/04, 2004.[11] J. Pe´ rez, L. Patin˜ oand, H. Espinosa, Three-dimensional simulation of the entrance-impeller interaction of a hydraulic disc pump, J Tech. Eng. University of Zulia 29 (1) (2006).[12] M.H. Shojaeefard, B. Salimian, A. Khalkhali, M. Tahani, A. New, Method to calculate centrifugal pump performance parameters for industrial oils, J. Appl. Fluid Mech. 8 (4) (2015) 673–681.[13] V. Sousa, H. Herna´ ndez, E.C. Quispe, P.R. Viego, J.R. Go´ mez, Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems, Int. J. Electric. Comput. Eng. (IJECE) 7 (6) (2017) 3207–3216.[14] M. Hasanuzzaman, N.A. Rahim, R. Saidur, S.N. Kazi, Energy savings and emissions reductions for rewinding and replacement of industrial motor, Energy 36 (1) (2010) 233–240.[15] I.L. Sauer, H. Tatizawa, F.A. Salotti, S.S. Mercedes, A comparative assessment of Brazilian electric motors performance with minimum efficiency standards, Renew. Sustain. Energy 41 (2015) 308–318.[16] J. Tao Qiu, C. Jun Yang, X. Qian Dong, Z. Long Wang, W. Li, F. Noblesse, Numerical simulation and uncertainty analysis of an axial-flow waterjet pump, J. Mar. Sci. Eng. (2018).[17] H.D. Feng, L. Xu, R.P. Xu, L.J. Wu, X.H. Shi, J.D. Yan, T.Y. Wang, Uncertainty analysis using the thermodynamic method of pump efficiency testing, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 5 (2004) 543–555.[18] ISO. ISO 9906:2012, Rotodynamic pumps – Hydraulic performance acceptance tests – Grades 1, 2 and 3. Geneva, Switzerland, 2012.[19] B. Munson, D. Young, T. Okiishi, W. Huebsch, Fundamentals of Fluid Mechanics, sixth edition., 2009.PublicationORIGINALEffects of turbulization on the disc pump performance.pdfEffects of turbulization on the disc pump performance.pdfapplication/pdf1391558https://repositorio.cuc.edu.co/bitstreams/47aba795-8a0f-4b3b-8fbb-4bee0cd8b42b/downloade911bcadcb257c0a032fc00b74b4de6dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9f8f3d15-7b29-4bfb-9d38-558f56748846/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/e91163db-577f-4894-a0c2-5d5faf8199cd/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEffects of turbulization on the disc pump performance.pdf.jpgEffects of turbulization on the disc pump performance.pdf.jpgimage/jpeg61165https://repositorio.cuc.edu.co/bitstreams/3f797bad-18e5-42f4-881e-cadedc31fa33/download8c704d6201297b33c873f128d3a09418MD55TEXTEffects of turbulization on the disc pump performance.pdf.txtEffects of turbulization on the disc pump performance.pdf.txttext/plain24670https://repositorio.cuc.edu.co/bitstreams/fe617000-4b4a-4b27-91ef-ee0beb2813ee/downloadad15aafcedf1c72ad344b75db653093cMD5611323/5987oai:repositorio.cuc.edu.co:11323/59872024-09-16 16:44:13.875http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |