Machine learning applied to datasets of human activity recognition: data analysis in health care

Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family me...

Full description

Autores:
Ariza Colpas, Paola Patricia
Enrico, Vicario
Butt Aziz, Shariq
De-La-Hoz-Franco, Emiro
Piñeres Melo, Marlon Alberto
Oviedo Carrascal, Ana Isabel
Tariq, Muhammad Imran
García Restrepo, Johanna Karina
PATARA, FULVIO
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9487
Acceso en línea:
https://hdl.handle.net/11323/9487
https://dx.doi.org/10.2174/1573405618666220104114814
https://repositorio.cuc.edu.co/
Palabra clave:
HAR
Human activity recognition
Smarth environment
Classification techniques
VanKasteren dataset
CASAS Kyoto
CASAS Aruba
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_882152f3c092a646c5d07c7a2520d5c4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9487
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Machine learning applied to datasets of human activity recognition: data analysis in health care
title Machine learning applied to datasets of human activity recognition: data analysis in health care
spellingShingle Machine learning applied to datasets of human activity recognition: data analysis in health care
HAR
Human activity recognition
Smarth environment
Classification techniques
VanKasteren dataset
CASAS Kyoto
CASAS Aruba
title_short Machine learning applied to datasets of human activity recognition: data analysis in health care
title_full Machine learning applied to datasets of human activity recognition: data analysis in health care
title_fullStr Machine learning applied to datasets of human activity recognition: data analysis in health care
title_full_unstemmed Machine learning applied to datasets of human activity recognition: data analysis in health care
title_sort Machine learning applied to datasets of human activity recognition: data analysis in health care
dc.creator.fl_str_mv Ariza Colpas, Paola Patricia
Enrico, Vicario
Butt Aziz, Shariq
De-La-Hoz-Franco, Emiro
Piñeres Melo, Marlon Alberto
Oviedo Carrascal, Ana Isabel
Tariq, Muhammad Imran
García Restrepo, Johanna Karina
PATARA, FULVIO
dc.contributor.author.spa.fl_str_mv Ariza Colpas, Paola Patricia
Enrico, Vicario
Butt Aziz, Shariq
De-La-Hoz-Franco, Emiro
Piñeres Melo, Marlon Alberto
Oviedo Carrascal, Ana Isabel
Tariq, Muhammad Imran
García Restrepo, Johanna Karina
PATARA, FULVIO
dc.subject.proposal.eng.fl_str_mv HAR
Human activity recognition
Smarth environment
Classification techniques
VanKasteren dataset
CASAS Kyoto
CASAS Aruba
topic HAR
Human activity recognition
Smarth environment
Classification techniques
VanKasteren dataset
CASAS Kyoto
CASAS Aruba
description Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family members and workers, both at home and in geriatric homes. Therefore, there is a need to develop technologies to provide these adults autonomy in indoor environments. Objective: This study aimed to generate a prediction model of daily living activities through classification techniques and selection of characteristics in order to contribute to the development in this area of knowledge, especially in the field of health. Moreover, the study aimed to accurately monitor the activities of the elderly or people with disabilities. Technological developments allow predictive analysis of daily life activities, contributing to the identification of patterns in advance in order to improve the quality of life of the elderly. Methods: The vanKasteren, CASAS Kyoto, and CASAS Aruba datasets were used to validate a predictive model capable of supporting the identification of activities in indoor environments. These datasets have some variation in terms of occupation and the number of daily living activities to be identified. Results: Twelve classifiers were implemented, among which the following stand out: Classification via Regression, OneR, Attribute Selected, J48, Random SubSpace, RandomForest, RandomCommittee, Bagging, Random Tree, JRip, LMT, and REP Tree. The classifiers that show better results when identifying daily life activities are analyzed in the light of precision and recall quality metrics. For this specific experimentation, the Classification via Regression and OneR classifiers obtain the best results. Conclusion: The efficiency of the predictive model based on classification is concluded, showing the results of the two classifiers, i.e., Classification via Regression and OneR, with quality metrics higher than 90% even when the datasets vary in occupation and number of activities.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-31T19:39:36Z
dc.date.available.none.fl_str_mv 2022-08-31T19:39:36Z
2023
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/1573405618666220104114814
dc.identifier.issn.spa.fl_str_mv 1573-4056
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9487
dc.identifier.url.spa.fl_str_mv https://dx.doi.org/10.2174/1573405618666220104114814
dc.identifier.doi.spa.fl_str_mv 10.2174/1573405618666220104114814
dc.identifier.eissn.spa.fl_str_mv 1875-6603
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/1573405618666220104114814
1573-4056
10.2174/1573405618666220104114814
1875-6603
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9487
https://dx.doi.org/10.2174/1573405618666220104114814
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Current Medical Imaging
dc.relation.citationendpage.spa.fl_str_mv 16
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bentham Science Publishers B.V.
dc.publisher.place.spa.fl_str_mv United Arab Emirates
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.eurekaselect.com/article/119936
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/14287a5f-23d9-489a-bd97-842628788a5b/download
https://repositorio.cuc.edu.co/bitstreams/52c1efea-82b2-4d0a-b131-1a68806897f6/download
https://repositorio.cuc.edu.co/bitstreams/e5ed5b2c-5860-4506-8db7-f189563935f8/download
https://repositorio.cuc.edu.co/bitstreams/9c228917-a1d7-4a1a-919c-532b4544956f/download
bitstream.checksum.fl_str_mv 8dfa9f80cce598d9bcb6e14f9cf89f6a
e30e9215131d99561d40d6b0abbe9bad
41bb20ddcf1bc5ebe6df8e32a042efc4
b8e7eacf0525bf6f604e516219cfc48a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760721731518464
spelling Ariza Colpas, Paola PatriciaEnrico, VicarioButt Aziz, ShariqDe-La-Hoz-Franco, EmiroPiñeres Melo, Marlon AlbertoOviedo Carrascal, Ana IsabelTariq, Muhammad ImranGarcía Restrepo, Johanna KarinaPATARA, FULVIO2022-08-31T19:39:36Z20232022-08-31T19:39:36Z2022Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/15734056186662201041148141573-4056https://hdl.handle.net/11323/9487https://dx.doi.org/10.2174/157340561866622010411481410.2174/15734056186662201041148141875-6603Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family members and workers, both at home and in geriatric homes. Therefore, there is a need to develop technologies to provide these adults autonomy in indoor environments. Objective: This study aimed to generate a prediction model of daily living activities through classification techniques and selection of characteristics in order to contribute to the development in this area of knowledge, especially in the field of health. Moreover, the study aimed to accurately monitor the activities of the elderly or people with disabilities. Technological developments allow predictive analysis of daily life activities, contributing to the identification of patterns in advance in order to improve the quality of life of the elderly. Methods: The vanKasteren, CASAS Kyoto, and CASAS Aruba datasets were used to validate a predictive model capable of supporting the identification of activities in indoor environments. These datasets have some variation in terms of occupation and the number of daily living activities to be identified. Results: Twelve classifiers were implemented, among which the following stand out: Classification via Regression, OneR, Attribute Selected, J48, Random SubSpace, RandomForest, RandomCommittee, Bagging, Random Tree, JRip, LMT, and REP Tree. The classifiers that show better results when identifying daily life activities are analyzed in the light of precision and recall quality metrics. For this specific experimentation, the Classification via Regression and OneR classifiers obtain the best results. Conclusion: The efficiency of the predictive model based on classification is concluded, showing the results of the two classifiers, i.e., Classification via Regression and OneR, with quality metrics higher than 90% even when the datasets vary in occupation and number of activities.1 páginaapplication/pdfengBentham Science Publishers B.V.United Arab EmiratesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfMachine learning applied to datasets of human activity recognition: data analysis in health careArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://www.eurekaselect.com/article/119936Current Medical Imaging161HARHuman activity recognitionSmarth environmentClassification techniquesVanKasteren datasetCASAS KyotoCASAS ArubaPublicationORIGINALMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdfMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdfapplication/pdf15417https://repositorio.cuc.edu.co/bitstreams/14287a5f-23d9-489a-bd97-842628788a5b/download8dfa9f80cce598d9bcb6e14f9cf89f6aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/52c1efea-82b2-4d0a-b131-1a68806897f6/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.txtMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.txttext/plain2684https://repositorio.cuc.edu.co/bitstreams/e5ed5b2c-5860-4506-8db7-f189563935f8/download41bb20ddcf1bc5ebe6df8e32a042efc4MD53THUMBNAILMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.jpgMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.jpgimage/jpeg16270https://repositorio.cuc.edu.co/bitstreams/9c228917-a1d7-4a1a-919c-532b4544956f/downloadb8e7eacf0525bf6f604e516219cfc48aMD5411323/9487oai:repositorio.cuc.edu.co:11323/94872024-09-17 10:48:06.863https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==