Machine learning applied to datasets of human activity recognition: data analysis in health care
Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family me...
- Autores:
-
Ariza Colpas, Paola Patricia
Enrico, Vicario
Butt Aziz, Shariq
De-La-Hoz-Franco, Emiro
Piñeres Melo, Marlon Alberto
Oviedo Carrascal, Ana Isabel
Tariq, Muhammad Imran
García Restrepo, Johanna Karina
PATARA, FULVIO
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9487
- Acceso en línea:
- https://hdl.handle.net/11323/9487
https://dx.doi.org/10.2174/1573405618666220104114814
https://repositorio.cuc.edu.co/
- Palabra clave:
- HAR
Human activity recognition
Smarth environment
Classification techniques
VanKasteren dataset
CASAS Kyoto
CASAS Aruba
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_882152f3c092a646c5d07c7a2520d5c4 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9487 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
title |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
spellingShingle |
Machine learning applied to datasets of human activity recognition: data analysis in health care HAR Human activity recognition Smarth environment Classification techniques VanKasteren dataset CASAS Kyoto CASAS Aruba |
title_short |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
title_full |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
title_fullStr |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
title_full_unstemmed |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
title_sort |
Machine learning applied to datasets of human activity recognition: data analysis in health care |
dc.creator.fl_str_mv |
Ariza Colpas, Paola Patricia Enrico, Vicario Butt Aziz, Shariq De-La-Hoz-Franco, Emiro Piñeres Melo, Marlon Alberto Oviedo Carrascal, Ana Isabel Tariq, Muhammad Imran García Restrepo, Johanna Karina PATARA, FULVIO |
dc.contributor.author.spa.fl_str_mv |
Ariza Colpas, Paola Patricia Enrico, Vicario Butt Aziz, Shariq De-La-Hoz-Franco, Emiro Piñeres Melo, Marlon Alberto Oviedo Carrascal, Ana Isabel Tariq, Muhammad Imran García Restrepo, Johanna Karina PATARA, FULVIO |
dc.subject.proposal.eng.fl_str_mv |
HAR Human activity recognition Smarth environment Classification techniques VanKasteren dataset CASAS Kyoto CASAS Aruba |
topic |
HAR Human activity recognition Smarth environment Classification techniques VanKasteren dataset CASAS Kyoto CASAS Aruba |
description |
Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family members and workers, both at home and in geriatric homes. Therefore, there is a need to develop technologies to provide these adults autonomy in indoor environments. Objective: This study aimed to generate a prediction model of daily living activities through classification techniques and selection of characteristics in order to contribute to the development in this area of knowledge, especially in the field of health. Moreover, the study aimed to accurately monitor the activities of the elderly or people with disabilities. Technological developments allow predictive analysis of daily life activities, contributing to the identification of patterns in advance in order to improve the quality of life of the elderly. Methods: The vanKasteren, CASAS Kyoto, and CASAS Aruba datasets were used to validate a predictive model capable of supporting the identification of activities in indoor environments. These datasets have some variation in terms of occupation and the number of daily living activities to be identified. Results: Twelve classifiers were implemented, among which the following stand out: Classification via Regression, OneR, Attribute Selected, J48, Random SubSpace, RandomForest, RandomCommittee, Bagging, Random Tree, JRip, LMT, and REP Tree. The classifiers that show better results when identifying daily life activities are analyzed in the light of precision and recall quality metrics. For this specific experimentation, the Classification via Regression and OneR classifiers obtain the best results. Conclusion: The efficiency of the predictive model based on classification is concluded, showing the results of the two classifiers, i.e., Classification via Regression and OneR, with quality metrics higher than 90% even when the datasets vary in occupation and number of activities. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-31T19:39:36Z |
dc.date.available.none.fl_str_mv |
2022-08-31T19:39:36Z 2023 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/1573405618666220104114814 |
dc.identifier.issn.spa.fl_str_mv |
1573-4056 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9487 |
dc.identifier.url.spa.fl_str_mv |
https://dx.doi.org/10.2174/1573405618666220104114814 |
dc.identifier.doi.spa.fl_str_mv |
10.2174/1573405618666220104114814 |
dc.identifier.eissn.spa.fl_str_mv |
1875-6603 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/1573405618666220104114814 1573-4056 10.2174/1573405618666220104114814 1875-6603 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9487 https://dx.doi.org/10.2174/1573405618666220104114814 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Current Medical Imaging |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bentham Science Publishers B.V. |
dc.publisher.place.spa.fl_str_mv |
United Arab Emirates |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.eurekaselect.com/article/119936 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/14287a5f-23d9-489a-bd97-842628788a5b/download https://repositorio.cuc.edu.co/bitstreams/52c1efea-82b2-4d0a-b131-1a68806897f6/download https://repositorio.cuc.edu.co/bitstreams/e5ed5b2c-5860-4506-8db7-f189563935f8/download https://repositorio.cuc.edu.co/bitstreams/9c228917-a1d7-4a1a-919c-532b4544956f/download |
bitstream.checksum.fl_str_mv |
8dfa9f80cce598d9bcb6e14f9cf89f6a e30e9215131d99561d40d6b0abbe9bad 41bb20ddcf1bc5ebe6df8e32a042efc4 b8e7eacf0525bf6f604e516219cfc48a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760721731518464 |
spelling |
Ariza Colpas, Paola PatriciaEnrico, VicarioButt Aziz, ShariqDe-La-Hoz-Franco, EmiroPiñeres Melo, Marlon AlbertoOviedo Carrascal, Ana IsabelTariq, Muhammad ImranGarcía Restrepo, Johanna KarinaPATARA, FULVIO2022-08-31T19:39:36Z20232022-08-31T19:39:36Z2022Patricia Paola Ariza-Colpas.*, Vicario Enrico Vicario, Shariq Aziz Butt, Emiro De-la_Hoz-Franco,, Alberto Marlon Piñeres-Melo,, Isabel Ana Oviedo-Carrascal, Tariq Imran Muhammad, Restrepo Karina García Johanna and Fulvio Patara, Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care, Current Medical Imaging 2022; 18() . https://dx.doi.org/10.2174/15734056186662201041148141573-4056https://hdl.handle.net/11323/9487https://dx.doi.org/10.2174/157340561866622010411481410.2174/15734056186662201041148141875-6603Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Background: In order to remain active and productive, older adults with poor health require a combination of advanced methods of visual monitoring, optimization, pattern recognition, and learning, which provide safe and comfortable environments and serve as a tool to facilitate the work of family members and workers, both at home and in geriatric homes. Therefore, there is a need to develop technologies to provide these adults autonomy in indoor environments. Objective: This study aimed to generate a prediction model of daily living activities through classification techniques and selection of characteristics in order to contribute to the development in this area of knowledge, especially in the field of health. Moreover, the study aimed to accurately monitor the activities of the elderly or people with disabilities. Technological developments allow predictive analysis of daily life activities, contributing to the identification of patterns in advance in order to improve the quality of life of the elderly. Methods: The vanKasteren, CASAS Kyoto, and CASAS Aruba datasets were used to validate a predictive model capable of supporting the identification of activities in indoor environments. These datasets have some variation in terms of occupation and the number of daily living activities to be identified. Results: Twelve classifiers were implemented, among which the following stand out: Classification via Regression, OneR, Attribute Selected, J48, Random SubSpace, RandomForest, RandomCommittee, Bagging, Random Tree, JRip, LMT, and REP Tree. The classifiers that show better results when identifying daily life activities are analyzed in the light of precision and recall quality metrics. For this specific experimentation, the Classification via Regression and OneR classifiers obtain the best results. Conclusion: The efficiency of the predictive model based on classification is concluded, showing the results of the two classifiers, i.e., Classification via Regression and OneR, with quality metrics higher than 90% even when the datasets vary in occupation and number of activities.1 páginaapplication/pdfengBentham Science Publishers B.V.United Arab EmiratesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfMachine learning applied to datasets of human activity recognition: data analysis in health careArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://www.eurekaselect.com/article/119936Current Medical Imaging161HARHuman activity recognitionSmarth environmentClassification techniquesVanKasteren datasetCASAS KyotoCASAS ArubaPublicationORIGINALMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdfMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdfapplication/pdf15417https://repositorio.cuc.edu.co/bitstreams/14287a5f-23d9-489a-bd97-842628788a5b/download8dfa9f80cce598d9bcb6e14f9cf89f6aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/52c1efea-82b2-4d0a-b131-1a68806897f6/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.txtMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.txttext/plain2684https://repositorio.cuc.edu.co/bitstreams/e5ed5b2c-5860-4506-8db7-f189563935f8/download41bb20ddcf1bc5ebe6df8e32a042efc4MD53THUMBNAILMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.jpgMachine Learning applied to Datasets of Human Activity Recognition An Applications of Data Analysis in HealthCare.pdf.jpgimage/jpeg16270https://repositorio.cuc.edu.co/bitstreams/9c228917-a1d7-4a1a-919c-532b4544956f/downloadb8e7eacf0525bf6f604e516219cfc48aMD5411323/9487oai:repositorio.cuc.edu.co:11323/94872024-09-17 10:48:06.863https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |